ebook img

Hybrid Composite Wires for Tensile Armour in Flexible Risers PDF

190 Pages·2017·9.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hybrid Composite Wires for Tensile Armour in Flexible Risers

Hybrid Composite Wires for Tensile Armour in Flexible Risers A thesis submitted to The University of Manchester for the degree of Doctorate of Philosophy In the faculty of Science and Engineering September 2016 Mayank Gautam Textile Composite Group School of Materials Table of Contents Table of Contents Table of Contents ......................................................................................................... 1 List of Figures .............................................................................................................. 6 List of Tables.............................................................................................................. 11 Thesis Abstract ........................................................................................................... 12 Declaration ................................................................................................................. 13 Copyright Statement .................................................................................................. 14 Acknowledgements .................................................................................................... 15 Introduction ............................................................................................... 16 1.1. Introduction to flexible risers ...................................................................... 16 1.2. Research motivations and rationale ............................................................. 17 1.3. Hybrid composite wires ............................................................................... 18 1.4. Research disseminations .............................................................................. 21 1.5. Outline of the thesis ..................................................................................... 22 Review of Literature .................................................................................. 24 2.1. Flexible risers .............................................................................................. 24 2.1.1. Types of risers ...................................................................................... 25 2.1.2. Composition of flexible riser ............................................................... 26 2.1.2.1. Carcass ....................................................................................... 26 2.1.2.1. Pressure sheath ........................................................................... 27 2.1.2.2. Pressure armour .......................................................................... 27 2.1.2.3. Tensile armour ........................................................................... 29 1 Table of Contents 2.1.2.4. Anti-wear layers ......................................................................... 29 2.1.2.5. Anti-buckling layer and outer sheath ......................................... 29 2.1.2.6. Carbon steel ................................................................................ 31 2.1.3. Design process for flexible risers ......................................................... 32 2.1.4. Failure modes in flexible risers ............................................................ 32 2.1.5. Failure modes of flexible riser due to tensile armours ......................... 35 2.1.5.1. Defects due to manufacturing processes .................................... 35 2.1.5.2. Tensile fatigue ............................................................................ 36 2.1.5.3. Buckling ..................................................................................... 37 2.2. Composites .................................................................................................. 39 2.2.1. Unidirectional composite manufacturing: pultrusion .......................... 43 2.2.2. Composites in marine applications ...................................................... 44 2.2.3. Composites in risers ............................................................................. 44 2.3. Braiding ....................................................................................................... 46 2.3.1. Braid geometric and structural parameters .......................................... 48 2.3.1.1. Braid angle and braid cover ....................................................... 48 2.3.1.2. Braid crimp................................................................................. 51 2.3.1.3. Braid topology ............................................................................ 52 2.3.2. Mechanical properties of braid (non-infused state) ............................. 53 2.4. Braidtrusion ................................................................................................. 54 2.5. Summary ..................................................................................................... 55 Study of Manufacturing Processes for Hybrid Wire Composite Wires .... 57 3.1. Material specification and properties ........................................................... 57 3.1.1. Quality of composite rods ...................................................................... 59 3.2. Manufacturing process for hybrid composite wire ....................................... 61 2 Table of Contents 3.2.1. Over-braiding process: Pack with Ф 2 mm rods ................................... 65 3.2.2. Over-braiding process: Pack with Ф 4 mm rods ................................... 65 3.3. Measurement process: Braid structural parameters ...................................... 68 3.3.1. Braid angle ............................................................................................. 68 3.3.2. Braid thickness ....................................................................................... 70 3.3.3. Tow width .............................................................................................. 72 3.3.4. Braid crimp ............................................................................................ 73 3.4. Results: Braid parameters ............................................................................. 74 3.4. Theoretical and experimental braid cover factor .......................................... 75 3.4. Quantification of the tow tension during the braiding process .................... 78 3.4. Summary ...................................................................................................... 84 Mechanical Testing and Characterisation of Hybrid Composite Wires .... 85 4.1. Mechanical tests procedures ......................................................................... 85 4.1.1. Flexure tests ........................................................................................... 85 4.1.2. Torsion tests ........................................................................................... 89 4.1.3. Tensile tests for single rods ................................................................... 92 4.2. Mechanical characterisation ......................................................................... 92 4.2.1. Axial and in-plane shear modulus of single rods ................................... 92 4.2.2. Flexural behaviour ................................................................................. 94 4.2.2.1. Effect of point load......................................................................... 97 4.2.2.2. Effect of boundary conditions ........................................................ 99 4.2.3. Torsional behaviour ............................................................................. 101 4.3. Comparison of hybrid composite wires with traditional metallic armour wires .............................................................................................................................. 105 4.3.1. Corrosion ............................................................................................ 105 3 Table of Contents 4.3.2. Flexural and torsional stiffness ........................................................... 105 4.3.2.1. Comparison with traditional metallic tensile armour wires. ............ 106 4.3.2.2. Comparison with metallic structures with similar dimensions ........ 107 4.3.3. Behaviour under through thickness compression ............................... 107 4.4. Summary .................................................................................................... 108 Multi-scale Modelling of Hybrid Composite Armour Wires .................. 109 5.1. Introduction ................................................................................................ 109 5.2. Methodology for multiscale modelling ...................................................... 111 5.2.1. Elastic properties of composite rods .................................................... 111 5.2.2. Braid shell properties: meso-mechanical analytical model ................. 114 5.2.3. Computational modelling: finite element model ................................. 120 5.2.3.1. Geometry and mesh...................................................................... 120 5.3.3.2. Mesh sensitivity study .................................................................. 121 5.3.3.3. Interaction properties ................................................................... 123 5.3.3.4. Boundary conditions .................................................................... 126 5.3. Results and observations ............................................................................ 129 5.3.1. Torsional behaviour ............................................................................. 129 5.3.2. Flexural behaviour ............................................................................... 134 5.5. Summary .................................................................................................... 145 Parametric Studies Using Multiscale Model ........................................... 147 6.1. Introduction ................................................................................................ 147 6.2. Effect of friction ......................................................................................... 147 6.3. Effect of model length ................................................................................ 149 6.4. Different combinations of material systems ............................................... 151 6.5. Summary .................................................................................................... 156 4 Table of Contents Conclusions and Directions for Future Research .................................... 157 7.1. Manufacturing study ................................................................................... 157 7.2. Mechanical characterisation ....................................................................... 158 7.3. Multi-scale model and parametric studies .................................................. 160 7.4. Recommendations for future work ............................................................. 162 Bibliography ............................................................................................................. 163 Appendix .................................................................................................................. 174 Word Count: 45,235 5 List of Figures List of Figures Figure 1.1: Comparison between two flexible risers with (a) metallic tensile armour wires, and (b) hybrid composite tensile armour wire ................................................. 19 Figure 1.2: Different configurations of hybrid wires studied in thesis ...................... 20 Figure 1.3: Conceptual representation of types of tensile armour wires: (a) traditional carbon steel, (b) line packed circular composite rods held together by over-braid sleeve, (c) carbon reinforced composite strip, (d) carbon reinforced composite strips stacked in the form of packed cards held together by over-braid sleeve, and (e) hexagonal packed circular composite rods held together by over-braid sleeve (studied in this thesis) .............................................................................................................. 21 Figure 1.4: Schematic representation of the outline of thesis .................................... 22 Figure 2.1: Carcass of a flexible riser [15] ................................................................. 26 Figure 2.2: Zeta interlock layer for pressure armour [16] .......................................... 27 Figure 2.3: Composition of a typical flexible riser .................................................... 28 Figure 2.4: Fabrication process of tensile armour [13, 22] ........................................ 30 Figure 2.5: Failure of flexible risers due to: (a) failure of external sheath [22] (b) collapse of carcass [13] .............................................................................................. 33 Figure 2.6: Failure of flexible risers due to corrosion of tensile armour wires from H2S and CO2 [22, 35] ........................................................................................................ 34 Figure 2.7: Failure of tensile armour wires due to tensile fatigue [39] , .................... 36 Figure 2.8: Failure of tensile armour wires due to radial buckling [45] .................... 37 Figure 2.9: Failure of tensile armour wires due to lateral buckling [47]. .................. 38 Figure 2.10: Schematic representation of a unidirectional fibre reinforced composite with a: (a) 3-D view and (b) 2-D cross-sectional view .............................................. 39 Figure 2.11 : Molecular structure of ethylene and of ultra-high–molecular-weight polyethylene (UHMW-PE), where n is the degree of polymerization ....................... 41 Figure 2.12: Molecular chain distribution of: (a) thermoplastic polymer, and (b) thermoset polymer obtained from [61] ...................................................................... 42 Figure 2.13: Typical pultrusion machine obtained from [70] .................................... 43 6 List of Figures Figure 2.14: Flexible riser with (a) steel armour, and (b) composite armour shown in [80] ............................................................................................................................. 45 Figure 2.15: Schematic representation of parts of a maypole braiding machine: (a) deck, (b) carrier with mounted bobbin ....................................................................... 47 Figure 2.16: Computer aided drawing using TexGen software [89] of a braid with 45⁰ braid angle depicting: (a) braid angle, (b) braid unit cell, and (c) braid crimp .......... 49 Figure 2.17: Most commonly used braid topologies: (a) Diamond (1/1), (b) Regular (2/2), and (c) Hercules (3/3) ....................................................................................... 52 Figure 2.18: A typical load–extension curve of a biaxial braided structure [103] ..... 53 Figure 2.19 : Arrangement of braiding-pultrusion process obtained from [105] ....... 54 Figure 3.1: Process of measurement of density of composite rod in (a) & (b), and braid fibres in (c) & (d) ....................................................................................................... 58 Figure 3.2: Scanning electron micro-graphs of cross-section of Ф 4 mm rod ........... 59 Figure 3.3: Optical micrographs showing alignment of fibres along the length of pultruded composite rods with (a) & (b) Ф 2 mm, and (c) & (d) Ф 4 mm ................ 60 Figure 3.4: Different configurations of hybrid composite tensile armour wires Note - HCW: Hybrid composite wires; θ is the braid angle. ................................................ 62 Figure 3.5: Hybrid composite tensile armour wire manufacturing processes ............ 63 Figure 3.6: Reverse braiding and braid jamming phenomenon. ................................ 66 Figure 3.7: Braiding at low carrier tension of only 50 grams .................................... 68 Figure 3.8: Braid angle measurement through: (a) digital protractor and (b) image analysis. . .................................................................................................................... 69 Figure 3.9: Process of braid thickeness measurement using: (a) circumference of the hybrid composite wires and (b) thickness of hybrid composite wires ....................... 71 Figure 3.10: Schematic of cross-section of hybrid composite wire showing different thicknesses of components ......................................................................................... 72 Figure 3.11: Process of measurement of tow width using image analysis software .. 72 Figure 3.12: Schematic representation of the crimp determination process .............. 73 Figure 3.13: Theoretical and experimental cover factor for hybrid armour wires with Ф 4 mm rods, using 12 carriers on a 24 carrier braiding machine (containing the images of the hybrid wires) ........................................................................................ 76 7 List of Figures Figure 3.14: 2-D Schematic representation of tension mechanism during braiding process using just two carriers ................................................................................... 79 Figure 3.15: Schematic representation of different cases of tow tension that may be encountered during the braiding process.................................................................... 81 Figure 3.16: Schematic representation of methodology used for calculating coefficient of friction using braid carriers .................................................................................... 82 Figure 4.1: Flexural tests being conducted on hybrid composite wire using: (a) three point flexural test (for hybrid wires with Φ 2 mm rods), (b) four point flexural test (for hybrid wires with Φ 2 mm rods), (c) three point flexural test (for hybrid wires with Φ 4 mm rods), and (d) four point flexural test (for hybrid wires with Φ 4 mm rods) ... 88 Figure 4.2: Torsion test to maximum limit of 40° twist angle for: (a) hybrid wire (45° braid angle) with Ф 2 mm rods and (b) hybrid wire (45° braid angle) with Ф 4 mm rods ............................................................................................................................. 91 Figure 4.3: Four point flexural test on hybrid composite wires (with Ф 4 mm rods and regular braid topology) for: (a) 30° and (b) 45° braid angle ...................................... 95 Figure 4.4: Failed single rods during flexural test for (a) Ф 2 mm rod, (b) 4 mm diameter rod, (c) micrograph of the cross-section of fractured Ф 4 mm rod, at the point loads .................................................................................................................. 96 Figure 4.5: Flexural behaviour of hybrid wires and individual rods for: (a) Ф 2 mm rods and (b) Ф 4 mm rods ......................................................................................... 98 Figure 4.6: Effect of edge boundary conditions ......................................................... 99 Figure 4.7: Effect of boundary condition for hybrid wire with Ф 4 mm rods: (a) without braid (taped edges), (b) without braid (bonded edges), (c) with braid (45°, 2/2, taped edges), and (d) with braid (45°, 2/2, non-bonded edges) ......................................... 100 Figure 4.8: Torsional behaviour of hybrid wires and individual rods for: (a) Ф 2 mm rods and (b) Ф 4 mm rods ........................................................................................ 103 Figure 4.9: Comparison between different structures using: (a) flexural rigidity and (b) torsional rigidity ....................................................................................................... 106 Figure 5.1: Schematic representation of the process for multi-scale modelling of hybrid composite armour wires ................................................................................ 110 Figure 5.2: Schematic representation of material coordinates of pultruded composite rods, with fibre axis as “1” direction ........................................................................ 112 8 List of Figures Figure 5.3: (a) Material orientation for composite rod, (b) material orientation for shell, and (c) mesh for the model....................................................................................... 120 Figure 5.4: The different number of elements used to carry out the mesh sensitivity study on multiscale model for hybrid composite wires with Ф 4 mm rods ............. 122 Figure 5.5: Mesh density sensitivity study for flexural and torsional mode of deformation for hybrid wire assembly with Ф 4 mm rods ....................................... 123 Figure 5.6: Micrographs of cross-section of composite rod with Ф 4 mm, showing matrix rich circumference ........................................................................................ 124 Figure 5.7: Hoop pressure (p ) applied on the braid shell, and (b) displacements (in o mm) encountered by rods due to applied hoop pressure .......................................... 126 Figure 5.8: Schematic representation of boundary conditions on the multi-scale model in case of: (a) torsion, (b) three-point flexure, and (c) four-point flexure tests. ...... 128 Figure 5.9: Experimental and FE behaviour of hybrid composite wires under torsion .................................................................................................................................. 131 Figure 5.10: Stress (von Misses in Nmm-2) distribution in multiscale model for 45° braid with diamond braid topology at 3°/m twist: (a) without hoop pressure, and (b) with hoop pressure. Note: SNEG (fraction = -1) implies stresses at face of shell in contact the rods. ....................................................................................................... 133 Figure 5.11: Experimental and FE behaviour of hybrid composite wires for 3 point flexural test ............................................................................................................... 135 Figure 5.12: Stress (von Misses in Nmm-2) distribution in multiscale model for 45° braid with diamond braid topology at a mid-span deflection of 2.5 mm, in a 3 point flexural set-up, (a) without hoop pressure and (b) with hoop pressure. Note: SNEG (fraction = -1) implies stresses at face of shell in contact the rod ............................ 139 Figure 5.13: Experimental and FE behaviour of hybrid composite wires for 4 point flexural test ............................................................................................................... 142 Figure 5.14: Stress (von Misses in Nmm-2) distribution in multiscale model for 45° braid with diamond braid at a mid-span deflection of ~2.5 mm, in a 4 point flexural set-up: (a) without hoop pressure, and (b) with hoop pressure. Note: SNEG (fraction = -1) implies stresses at face of shell in contact the rods. ........................................ 145 Figure 6.1: Effect of coefficient of friction in hybrid composite wires using multiscale model ........................................................................................................................ 148 9

Description:
In the faculty of Science and Engineering. September 2016. Mayank Gautam modelling technique used for finite element modelling of elastic behaviour (flexural and torsional) of hybrid . to water by making it act as an electrical cathode), which promotes reliability and maintenance expenses of the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.