ARTICLE Received27Jul 2012 |Accepted 18 Dec 2012 |Published 29 Jan 2013 DOI:10.1038/ncomms2397 OPEN Human CLPP reverts the longevity phenotype of a fungal ClpP deletion strain Fabian Fischer1, Andrea Weil1, Andrea Hamann1 & Heinz D. Osiewacz1 Mitochondrial maintenance crucially depends on the quality control of proteins by various chaperones,proteasesandrepairenzymes.Whilemostoftheinvolvedcomponentshavebeen studied in some detail, little is known on the biological role of the CLPXP protease complex locatedinthemitochondrialmatrix.HereweshowthatdeletionofPaClpP,encodingtheCLP protease proteolytic subunit CLPP, leads to an unexpected healthy phenotype and increased lifespan of the fungal ageing model organism Podospora anserina. This phenotype can be reverted by expression of human ClpP in the fungal deletion background, demonstrating functionalconservationofhumanandfungalCLPP.Ourresultsshowthatthebiologicalroleof eukaryotic CLP proteases can be studiedin an experimentally accessible model organism. 1JohannWolfgangGoetheUniversity,FacultyforBiosciences&ClusterofExcellence,‘MacromolecularComplexes’Frankfurt,InstituteofMolecular Biosciences,Max-von-Laue-Stra(cid:2)e9,60438Frankfurt,Germany.CorrespondenceandrequestsformaterialsshouldbeaddressedtoH.D.O. (email:[email protected]). NATURECOMMUNICATIONS|4:1397|DOI:10.1038/ncomms2397|www.nature.com/naturecommunications 1 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2397 M itochondriaareorganellesofeukaryoticorganismsthat demonstrating that overexpression of the gene encoding the are involved in a number of vital processes, including mitochondrial LON proteasehomologuePaLON1in P. anserina the assembly of iron/sulphur clusters, biosynthesis of results in robust lifespan extension10. In this context, the lipids and amino acids and the generation of ATP via oxidative DPaClpP strain served as a control to assess the contribution of phosphorylation. Therefore, it is not surprising that mitochon- PaCLPP to the mitochondrial matrix serine protease activity but drial dysfunction is associated with numerous adverse phenom- was not further characterized. ena such as ageing1–3 or degenerative diseases like Parkinson’s Here we report this characterisation. After verification of andAlzheimer’sdisease4.Tomaintainafunctionalpopulationof DPaClpP by Southern blot analysis (Fig. 1b), absence of the mitochondria, a complex network of quality control pathways is protein in the deletion strain was confirmed by western blot active1–3.Inthisnetwork,proteinqualitycontrolisfundamental. analysis(Fig.1c).Understandardgrowthconditionsat271Cand In the mitochondrial matrix of most eukaryotic organisms, two constant light, the PaClpP deletion strain displayed no soluble AAAþ (ATPase associated with diverse cellular impairments of its vital functions, that is, growth rate and activities) serine proteases termed LON and CLPXP are located. female fertility (Fig. 1d,e) and was morphologically While the former is a homo-oligomeric complex with each indistinguishable from the wild-type. Furthermore, susceptibility subunitcontainingaproteaseandchaperonedomain5,CLPXPis of DPaClpP to various oxidative stressors thought to impair a hetero-oligomeric complex consisting of individual CLPP mitochondrial and/or cellular protein homoeostasis, including proteolytic and CLPX chaperone subunits6. The cellular paraquat, copper sulphate and H O , as well as against 2 2 function of LON proteases, including their relevance for ageing dithiothreitol-induced endoplasmic reticulum (ER) stress was processes, has been studied in some detail in a number of unchanged(SupplementaryFig.S1).Remarkably,comparedwith eukaryotic models7–12.In contrast, inpart because ofthe lackof thewild-type(n¼59),lifespanofDPaClpP(n¼57)wasfoundto suitable model organisms, data on the biological role of the be significantly increased (mean lifespan:þ71%, maximum mitochondrial CLPXP protease complex, aside from its implied lifespan:þ167%; P¼5.8E-18 by two-tailed Wilcoxon rank-sum function in the so-called ‘mitochondrial unfolded protein test;Fig.1f).Thisresult,thoughcounter-intuitiveatfirstglance,is response’13–15, is scarce and to date no physiological substrates reminiscentofthehealthylongevityphenotyperesultingfromthe of any eukaryotic CLP protease have been identified. deletionofPaIap,encodingthemembrane-boundmitochondrial The filamentous ascomycete P. anserina which, in contrast to i-AAA protease in P. anserina17. other filamentous fungi, is characterized by a limited lifespan, displays a clear mitochondrial aetiology of ageing and has been extensively investigated to unravel the molecular basis of ageing DPaClpPlongevityisindependentofi-AAAandLONprotease. processes16. Recent work demonstrated a clear impact of TheobservationthatbothDPaClpPandthePaIapdeletionstrain mitochondrial protein quality control on the regulation of (DPaIap) are long-lived at 271C prompted us to investigate lifespan and stress adaptation in this model organism10,12,17. whethertheseproteasesmightbeinvolvedinthesamemolecular Inthepresentstudy,weinvestigatedtheeffectsofdeletingthe pathwaysregulatinglifespan.Tothisend, wegeneratedadouble gene encoding the CLP protease proteolytic subunit CLPP in mutant (DPaClpP/DPaIap) in which both genes, that is, PaClpP P. anserina. Unexpectedly, the PaClpP deletion strain is viable and PaIap, are deleted (Supplementary Fig. S2) and analysed its and characterized by an extended lifespan without any distinct lifespan in comparison with the wild-type and the respective impairment. We further demonstrate that the longevity pheno- single deletion strains (Fig. 1f). A lifespan extension similar to type can be reverted by expression of human ClpP, thus that of DPaClpP was verified for DPaIap (mean lifespan:þ74%, identifying P. anserina as a promising in vivo model to study maximum lifespan:þ89%; n¼15), corresponding to the results the biological role of the poorly characterized mitochondrial obtainedinanearlierstudy17.Interestingly,lifespanofthedouble CLPXP protease complex. deletion strain (n¼89) was even further increased (mean lifespan:þ225%, maximum lifespanþ530%) and significantly longer than that of either DPaClpP (P¼3.1E-17 by two-tailed Results Wilcoxon rank-sum test) or DPaIap (P¼4.2E-08 by two-tailed In silico identification of CLP protease components. While Wilcoxon rank-sum test). This additive lifespan extending effect CLPP is absent in several lower eukaryotes, including the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe6, the followingtheconcomitantdeletionofPaClpPandPaIapsuggests at least two possible scenarios: absence of the encoded genomeofP.anserinacodesforaCLPPhomologue,aswellasfor components influences pathways acting in parallel to promote homologues of the CLP chaperones CLPA, CLPB and CLPX longevity or lack of either PaIAP or PaCLPP causes mild (http://podospora.igmors.u-psud.fr). With the exception of the mitochondrialstress,aneffectwhichisexacerbatedinthedouble chaperone PaCLPA, all proteins have a predicted probability for deletionstrain,therebyactivatingcommondownstreampathways mitochondrial localization of 490%. PaCLPP displays the that are responsible for the observed extension of lifespan. expected distribution of the canonical catalytic residues In addition, to examine the epistatic relationship between (Ser, His and Asp) and is highly conserved compared to CLPP PaClpP and PaIap in more detail, we analysed the lifespans and from other species, sharing about 60% similarity with the growth rates of the single and double deletion strains at 371C homologues from human, Caenorhabditis elegans and (Supplementary Fig. S3). While deletion of PaIap had already Escherichia coli (Fig. 1a). The deduced PaCLPP pre-protein is been demonstrated to result in a pronounced heat-sensitive composed of 254 amino acids and contains a putative phenotype17, the PaClpP deletion strain displayed only a minor mitochondrial targeting sequence. After import into mitochon- impairmentoffitnessatelevatedtemperatures.Interestingly,heat dria,cleavageofthemitochondrialtargetingsequenceisexpected to lead to a mature protein of B25kDa. stress sensitivity of the DPaClpP/DPaIap double deletion strain wasslightlyincreasedcomparedwitheithersingledeletionstrain. This observation argues for potentially overlapping functions Deletion of PaClpP extends lifespan. To investigate the biolo- of PaCLPP and PaIAP in a cellular heat stress response in gical role of the mitochondrial CLPXP protease complex in P. anserina. P. anserina, we analysed a PaClpP deletion strain (DPaClpP), As it was previously reported that overexpression of the gene which was generated in the course of an earlier study codingfortheP.anserinaLONproteasehomologuePaLON1led 2 NATURECOMMUNICATIONS|4:1397|DOI:10.1038/ncomms2397|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2397 PaCLPP Wild-tΔypPeaClpP 0.7 254 aa 0.6 PaClpP CeHCsLCPLPP-P1 277 aa 5670 %% ble wth rateper day) 000...345 EcCLPP 20272 a1a a a 58 % Wild-typeΔ PaClpMPr(K) Gro(cm 00..12 Wild-type ΔPaClpP MTS Catalytic residues (Ser, His, Asp) Anti-PaCLPP - 26 Anti-PaPOR - 34 1.0 Wild-type e ΔPaClpP ale fertility (%) 111146802460000000 Relative survival rat 0.5 ΔΔPPaaICalppP/ΔPaIap em 20 F Wild-type ΔPaClpP 10 20 30 40 50 60 70 80 90 100110120130140150160170180 Age (days) Figure1|DeletionofClpPinP.anserinaextendsthehealthylifespanat271C.(a)TheCLPPhomologuesfromP.anserina,Homosapiens,C.elegansand E.colidisplayaconserveddistributionofthecanonicalcatalyticresiduesSer,HisandAsp.Additionally,alleukaryoticCLPPscontainamitochondrial targetingsequence(MTS).ThelengthofthedifferentCLPPhomologuesvariesfrom207aminoacidsinE.colito277aminoacidsinH.sapiens.Theamino- acidsequenceofPaCLPPshares57%,60%and58%similaritywiththatofHsCLPP,CeCLPP-1,andEcCLPP,respectively.(b)Southernblotanalysisof HindIIIdigestedgenomicDNAfromwild-typeandDPaClpP.ThePaClpP-specifichybridizationprobedetectsthe4995-bpfragmentcontainingPaClpPonlyin wild-typegenomicDNA.A2454-bpfragmentcontainingthephleomycinresistancegene(ble)isdetectedbyable-specifichybridizationprobeonlyin genomicDNAofDPaClpP.(c)Westernblotanalysisofmitochondrialproteinextractsfromwild-typeandDPaClpP.ThePaCLPP-specificantibodydetects theB25-kDaPaCLPPmonomeronlyinthewild-typesample.PaPORIN(PaPOR)wasdetectedasaloadingcontrol.(d)Growthrateofwild-type (0.60±0.04;n¼59)andDPaClpP(0.58±0.04;n¼55;P¼0.07bytwo-tailedWilcoxonrank-sumtest)isolatesat271C.Datagiveninparenthesesare meangrowthrate±s.e.incentimetresperday.(e)Femalefertilityofwild-type(100±14.7;n¼11)andDPaClpP(126.1±20.3;n¼11;P¼0.26bytwo-tailed Wilcoxonrank-sumtest)isolatesat271C.Datagiveninparenthesesaremeanfemalefertility±s.e.inpercentage.(f)Lifespanofwild-type(21.7±0.5; n¼59),DPaClpP(37.1±1.5;n¼57;P¼5.8E-18),DPaIap(37.9±1.8;n¼15;P¼2.7E-09)andDPaClpP/DPaIap(70.6±3.4;n¼90;P¼8.5E-25)isolatesat 271C.Datagiveninparenthesesaremeanlifespan±s.e.indays.P-valuesweredeterminedincomparisonwiththewild-typesamplebytwo-tailed Wilcoxonrank-sumtest. toanincreaseinhealthspansimilartothatofDPaClpP10,wealso experiments (Supplementary Fig. S5). Western blot analysis of investigatedwhetherthedeletionstrain’slongevityphenotypecan mitochondrial protein extracts from DPaClpP/HsClpP_OEx1 beaccountedforbyacompensatoryupregulationofthisprotease. with an HsCLPP-specific antibody confirmed the presence of Both CLPXP and LON are soluble proteases located in the matureHsCLPPwithanapparentmolecularmassofB26kDain mitochondrial matrix and it is thus well conceivable that they mitochondria of the transgenic mutant strain (Fig. 2a). possess overlapping substrate specificities and may at least Next, we examined whether HsCLPP forms functional oligo- partially be able to compensate for dysfunction or even loss of mers in the mitochondria of P. anserina. The proteolytic core of eachother.Yet,weobservednosignificantchangeintherelative the mitochondrial CLPXP protease complex is composed of two PaLON1 protein abundance in mitochondrial protein extracts heptameric CLPP rings, which congregate to form a self-com- from the PaClpP deletion strain (n¼6) when compared with partmentalised, cylindrical structure reminiscent of the 20S pro- those of the wild-type strain (n¼6; P¼0.63 by two-tailed teasome core particle. Only if HsCLPP were able to form this Student’st-test;SupplementaryFig.S4),suggestingthatPaLON1 structureinsidethefungalmitochondria,complementationofthe does not have a major role in the extended lifespan of DPaClpP. deletion strain could be expected. To detect possible oligomers, mitochondrial protein extracts from DPaClpP/HsClpP_OEx1 were solubilised with the mild detergent digitonin and separated Human CLPP reverts the DPaClpP longevity phenotype. by blue native-polyacrylamide gel electrophoresis (BN-PAGE)18. Having demonstrated that deletion of PaClpP is non-lethal and After western blotting and incubation with an HsCLPP-specific leadstoaspecificphenotype,weaskedthequestionofwhetheror antibody, two distinct oligomers could be detected in the notthisphenotypecanberevertedbyheterologousexpressionof DPaClpP/HsClpP_OEx1 sample (Fig. 2b). The apparent aconstructcodingforhumanCLPP.Toensurestableexpression molecular mass ratio of these two oligomers was 1:2, as ofthetransgene,avectorcontainingthefull-lengthopenreading expected for the single heptameric CLPP ring and the CLPP frame (ORF) of the human ClpP complementary DNA (cDNA) proteolytic core cylinder formed by two such heptamers. After undercontrolofaconstitutive,P.anserina-specificpromoterwas heat denaturation of the DPaClpP/HsClpP_OEx1 sample the constructedandsubsequentlytransformedintoprotoplastsofthe signals disappeared, confirming the presence of bona fide PaClpPdeletionstrain.Theresultingtransformantswereverified HsCLPP oligomers inside mitochondria of the fungal by Southern blot analysis and two independent transformants transformants. However, the oligomers appeared roughly 20% (DPaClpP/HsClpP_OEx1and2),eachwithasingleintegrationof larger than one would expect from calculating their molecular the vector into their genome, were selected for subsequent massbasedonthatofasingleHsCLPPmonomer.Thisapparent NATURECOMMUNICATIONS|4:1397|DOI:10.1038/ncomms2397|www.nature.com/naturecommunications 3 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2397 a b HsClpPH_sOClEpxP1_OEx1(den.) tloHoefssnCthg)ul.epmvTPitha_ynOispEChaxLlem2nP:ooPtsPytto¼pceop2mbr.4oypEvHli-ed0tse9eCtLrhbePeyvPeinrtcswilvoeoianv-rtolaoyiflfueandDrgcPutWiaeoCsnillsfcpooPorx’fsotPhnpearCorcaLnanpPokauP-bnsiaculniemtddy ClpP_OEx1 Mr(K) Wild-tΔypPeaClpΔPPaClΔpPP/aC2lp ×P/ Heptamer tfuhnugsidtoemhounmstarnast.es the functional conservation of CLPP from Hs 480 - Wild-typΔePaClpΔPPaCMlprP(/K) 242 - Discussion Anti-HsCLPP - 26 The biological role of eukaryotic CLP proteases is as yet only Anti-PaPOR - 34 146 - Heptamer poorly understood. Unfortunately, the unicellular ascomycete Anti- Anti- S. cerevisiae, the most thoroughly studied and accessible PaCLPP HsCLPP eukaryotic model organism20, lacks a CLPP homologue6 and c 1.0 thus is not suitable to investigate eukaryotic CLP proteases. Strikingly,thegenomeofthefilamentousascomyceteP.anserina e Wild-type urvival rat 0.5 ΔΔΔPPPaaaCCClllpppPPP//HHssCCllppPP__OOEExx12 emthniacttoodcdheesolneatdiorCinaLlPoCPfLPPhaocCmhlpaoPploegraounned,eatCshLuwPsXela.lbOlaasutiroanrehsooumfltsomloditgeoumcehoononsfdtrrtaihtaeel elative s CexLtePnXsPionprootefasteheacthiveiatylthleyadlsifetospaanduuanldpehrensottaynpdea,rtdhatgrios,watnh R conditions but slightly impaired fitness at elevated temperatures. Very similar effects have previously been 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 observed in a PaIap deletion strain17. As the concomitant Age (days) deletion of both genes enhances either effect, it can be assumed Figure2|HeterologousexpressionofhumanClpPcomplementsthe that, firstly, the P. anserina CLPP and i-AAA protease are longevityphenotypeofDPaClpP.(a)Representativewesternblotanalysis involvedinparallelpathwaysregulatinglifespanand/orthattheir ofmitochondrialproteinextractsfromwild-type,DPaClpPandDPaClpP/ absence under standard growth conditions causes mild but HsClpP_OEx1.TheHsCLPP-specificantibodydetectstheB26kDaHsCLPP tolerable stress leading to mitochondrial hormesis (that is, the monomeronlyintheDPaClpP/HsClpP_OEx1sample.PaPORIN(PaPOR)was beneficial activation of maintenance and repair pathways that detectedasaloadingcontrol.(b)Westernblotanalysisofthesame ultimately results in the observed lifespan extension21) and, mitochondrialproteinextractsasin(a)followingBN-PAGE.Incubationof secondly,thatPaCLPPandPaIAParecooperativelyinvolvedina thewesternblotmembranewithaPaCLPP-specificantibodyvisualizedtwo mitochondria-specific heat stress response. The underlying oligomerswithapparentmolecularmassesofB170and340kDainthe mechanisms, however, remain to be understood and have to be wild-typesample.IntheDPaClpP/HsClpP_OEx1sample,twodistinct addressed in future studies. Similarly, the role of PaCLPX needs oligomerswithapparentmolecularmassesofB220and440kDawere to be investigated in detail. As S. cerevisiae possesses a CLPX detectedafterincubationwithanHsCLPP-specificantibody.Additionally, homologue despite the absence of CLPP22, it is probable that theDPaClpP/HsClpP_OEx1(den.)samplewasheatdenaturedfor10minat eukaryotic CLPX chaperones perform functions independent of 951C,afterwhichtheHsCLPPoligomerscouldnotbedetectedanymore. theirroleintheCLPXPproteasecomplex.Indeed,humanCLPX (c)Lifespanofwild-type(23.3±0.4;n¼39),DPaClpP(39.8±1.9;n¼37; has recently been shown to be involved in mitochondrial DNA P¼7.2E-13),DPaClpP/HsClpP_OEx1(26.2±0.7;n¼40;P¼6.8E-04)and maintenance through interaction with the mitochondrial DPaClpP/HsClpP_OEx2(26.2±0.7;n¼39;P¼2.5E-03)isolatesat271C. transcription factor TFAM23. Comparative analysis of DPaClpP Datagiveninparenthesesaremeanlifespan±s.e.indays.P-valueswere and a PaClpX deletion strain is likely to generate important determinedincomparisonwiththewild-typesamplebytwo-tailed insightsintopossibleprotease-independentfunctionsofCLPXin Wilcoxonrank-sumtest. P. anserina. Overall, the finding that deletion of PaClpP leads to an unexpected effect on lifespan, which can be reverted by human discrepancy can most likely be attributed to the migration of CLPP, identifies the potential of P. anserina to be used as an proteinsduringBN-PAGEbeingsignificantlyinfluencedbytheir experimentally accessible system to study the yet unknown native shape, their intrinsic charge and the amount of bound functionsofeukaryoticCLPproteases,possiblyincludingthoseof Coomassie dye19. As an additional control, the western blot thehumanhomologues.Itthusmaybepossibletodevelopinvivo membrane was incubated with a PaCLPP-specific antibody, approaches for the characterization of substrate recognition thereby visualizing endogenous PaCLPP oligomers in the mechanisms, to identify CLPXP-specific substrates, to unravel mitochondrial protein extract from the wild-type strain. The interactions of CLPXP with other components of the mitochon- apparent molecular mass of these oligomers was more in accord drial protein quality control system and to integrate the with their theoretically calculated size. elaborated mechanisms into the complex molecular network of Finally, lifespans of the transgenic DPaClpP/HsClpP_OEx mitochondrial pathways governing development and biological mutant strains were analysed in comparison with their parental ageing1–3. strain DPaClpP and the wild-type(Fig. 2c). The PaClpPdeletion strain (n¼37) consistently showed an increase in its lifespan (mean lifespan:þ71%, maximum lifespan:þ167%) compared Methods with the wild-type (n¼39; P¼7.2E-13 by two-tailed Wilcoxon P.anserinastrainsandcultivation.Inthepresentstudy,theP.anserinawild-type rank-sumtest).Strikingly,lifespanofthetwoindependentstrains strain‘s’24,thePaClpPdeletionstrainDPaClpP(ref.10),thePaIapdeletionstrain DPaClpP/HsClpP_OEx1(n¼40)and2(n¼39)wasonlyslightly DPaIap(ref.17),anewlygeneratedDPaClpP/DPaIapdoubledeletionstrainanda longer than that of the wild-type (mean lifespan:þ12%, newlygeneratedPaClpPdeletionstrainoverexpressinghumanClpP(DPaClpP/ HsClpP_OEx)wereused.Allmutantstrainsareinthegeneticbackgroundofthe maximum lifespan:þ44%) and significantly reduced compared wild-typestrain‘s’.StrainsweregrownonstandardcornmealagarBiomalz-Mais- with DPaClpP (DPaClpP/HsClpP_OEx1: P¼9.5E-10, DPaClpP/ Medium(BMM)at271Cunderconstantlight25. 4 NATURECOMMUNICATIONS|4:1397|DOI:10.1038/ncomms2397|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2397 Lifespandetermination.Todeterminethelifespanofthestrainsusedinthis Southernblotanalysis.TotalDNAofP.anserinawasisolatedfollowingthe study,monokaryoticascosporeswereisolatedfromindependentcrossesofthe protocoldevelopedbyLecellierandSilarforrapidextractionofnucleicacidsfrom respectivestrainsandgerminatedfor2daysat271CinthedarkonBMMsup- filamentousfungi27.DNAdigestion,gelelectrophoresisandSouthernblottingwere plementedwith60mMammoniumacetate.Aftergermination,piecesofthe performedaccordingtostandardprotocols.ForSouthernblothybridizationand resulting2daysoldmyceliawereplacedonM2agarracetubes(M2medium: detection,Digoxigenin-labelledhybridizationprobes(DIGDNALabellingand 0.25gl(cid:2)1KHPO,0.3gl(cid:2)1KHPO,0.25gl(cid:2)1MgSO (cid:3)7HO,0.5gl(cid:2)1urea, DetectionKit,RocheAppliedScience)wereusedaccordingtothemanufacturer’s 2 4 2 4 4 2 and10gl(cid:2)1yellowdextrin.Additionof2.5mgl(cid:2)1biotin,50mgl(cid:2)1thiamine, protocol. 5mgl(cid:2)1citricacid(cid:3)1HO,5mgl(cid:2)1ZnSO (cid:3)7HO,1mgl(cid:2)1Fe(NH) TheHsClpP-specifichybridizationprobewasamplifiedbyPCRusingthe 2 4 2 42 (SO) (cid:3)6HO,2.5mgl(cid:2)1CuSO (cid:3)5HO,25mgl(cid:2)1MnSO (cid:3)1HO,50mgl(cid:2)1 oligonucleotidesHsClpP_1for(50-ATGTGGCCCGGAATATTG-30)and 42 2 4 2 4 2 NaMoO (cid:3)2HO,and50mgl(cid:2)1HBO aftersterilizationofthebasalmedium) HsClpP_2rev(50-GCGAGTAGATGTCATAGG-30)andcorrespondedto 2 4 2 3 4 andincubatedat271Cunderconstantlight.Forlifespandeterminationunderheat nucleotides124-355oftheHsClpPcDNA(GenBank:BC002956.1).ThePaClpP- stressconditions,theisolateswereallowedtogrowfor2daysat271Candthen specifichybridizationprobecorrespondedtoa634-bpPstI-fragmentcontaining transferredto371C(HeraeusBK6160climatechamber,ThermoScientific)forthe partofthePaClpPgeneandits30-untranslatedregion.ThePaIap-specific remainderoftheirlife.Theperiodoflineargrowthwasrecordedaslifespanin hybridizationprobecorrespondedtoa1287-bpNcoI-fragmentcontainingpartof days.Growthratewasmeasuredasgrowthofthemyceliaincentimetresperday. thePaIapgene.Asahybridizationprobespecificforthephleomycinresistance gene(ble),the1293bpBamHI-fragmentoftheplasmidpKO3(ref.28)wasused. Fertilityanalysis.Assessmentoffemalefertilitywasessentiallyperformedas describedpreviously17.Isolatesofwild-typeorDPaClpP,originatingfrom Westernblotanddensitometryanalysis.Mitochondrialproteinextractsfrom monokaryoticascospores,weregrownonM2agarplatesat271Cunderconstant P.anserinastrainswereisolatedaccordingtoapreviouslydevelopedprocedure29. lightfor13days.Todeterminetheabilityofwild-typeorDPaClpPtoformfruiting SeparationofproteinsbySDS–PAGEandsubsequenttransferofproteinsto bodiesafterexposuretoheatstress,thesameisolateswereallowedtogrowforeight polyvinylidenedifluoride(PVDF)membranes(Immobilon-FL,Millipore)were daysat271Candthentransferredto371C(KBW400climatechamber,BINDER) performedfollowingstandardprotocols.Blockingandantibodyincubationof for5days.Followingspermatisationatday13,allplateswereincubatedforan blottedPVDFmembraneswereperformedaccordingtotheOdyssey‘WesternBlot additionalthreedaysat271C,afterwhichthetotalnumberofperithecia Analysis’handbook(LI-COR). developingoneachplatewascounted.Themeannumberofperitheciadeveloping PrimaryantibodieswereraisedagainstaPaLON(UniProt:B2AZ54)synthetic perplateovergrownwiththewild-typestrain‘s’at271Cor371Cwassetas100% peptide([H]-CDKIGRGYQGDPS-[OH];Sigma)correspondingtoaminoacids femalefertility. 677–688(antibodydilution:1:1,500),aPaCLPP(UniProt:B2B591)synthetic peptide([Ac]-CGTMLSADAKEGKH-[OH];NEP)correspondingtoaminoacids 242–254(antibodydilution:1:400)andthePaPORIN(UniProt:B2B736)full- Measurementofgrowthrateunderstressconditions.Toassessthesuscept- lengthprotein(NEP;antibodydilution:1:5,000).ThehumanCLPPantibody ibilityofDPaClpPtovariousoxidativestressorsanddithiothreitol,monokaryotic (abcam,productcode:ab56455)wasraisedagainstanHsCLPP(UniProt:Q16740) ascosporeswereisolatedfromindependentcrossesofthewild-typeandDPaClpP recombinantfragmentcorrespondingtoaminoacids178–278(antibody andgerminatedfor2daysat271CinthedarkonBMMsupplementedwith60mM concentration:1mgml(cid:2)1). ammoniumacetate.Aftergermination,piecesoftheresulting2daysoldmycelia Inallanalyses,secondaryantibodiesconjugatedwiththeinfrareddyesIRDye wereplacedonM2agarplatessupplementedwithdifferentconcentrationsof 800CWorIRDye680CW(LI-COR)wereused(antibodydilution:1:15,000).The paraquat(0,20,80or150mM),CuSO4(0,100,200or400mM),H2O2(0,0.04,0.06 OdysseyInfraredImagingSystem(LI-COR)wasusedfordetectionand or0.1%),ordithiothreitol(0,0.5,5or10mM)andincubatedat271Cunder quantificationwasperformedusingthemanufacturer’ssoftwareasrecommended. constantlight.PlatescontainingHO werekeptinthedarktoprotecthydrogen 2 2 peroxidefromdegradation.Growthwasrecordedfor4daysandgrowthratewas measuredasgrowthofthemyceliaincentimetresperday. BluenativePAGE.BN-PAGEwasperformedaccordingtotheprotocoldeveloped byScha¨ggerandcolleagues18.Forsamplepreparation,300mgofmitochondrial proteinextractwassolubilisedusingadigitonin/proteinratioof4:1(w/w).Linear CloningproceduresandgenerationofP.anserinamutants.ThehumanClpP gradientgels(4–13%)overlaidwith3.5%stackinggelswereusedforseparationof cDNAopenreadingframewasamplifiedbyPCRusingtheoligonucleotides thesolubilisedsamples.ForwesternblottingofBN-PAGEgels,0.05%SDSwas BamHI-HsClpP_3for(50-TAGGATCCATGTGGCCCGGAATATTG-30)and addedtothetransferbufferandthetransferwasperformedfor16hat25Vand XbaI-HsClpP_4rev(50-ATTCTAGATCAGGTGCTAGCTGGGAC-30),introdu- 41C.Blocking,antibodyincubationandantibodydetectionofblottedPVDF cingBamHIandXbaIrestrictionsites(underlined).Theampliconwasclonedinto membraneswereperformedasdescribedintheprecedingsection. thepExMtterhph10backbone(BamHI/XbaIdigested)undercontrolofthestrong constitutivemetallothioneinpromoterandthemetallothioneinterminator.The resultingplasmidpHsClpPEx1wassubsequentlytransformedintoP.anserina Statisticalanalysis.Forstatisticalanalysisofwesternblotdata,two-tailedStu- DPaClpPspheroplasts.TransformantswereselectedforhygromycinBresistance dent’st-testwasused.Forstatisticalanalysesoflifespan,growthrateandfemale andverifiedbySouthernblotanalysis.Strainscontainingasingleintegrationof fertility,two-tailedWilcoxonrank-sumtestwasused.Ifnotexplicitlystated pHsClpPEx1weretermedDPaClpP/HsClpP_OEx. otherwise,therespectivesampleswerecomparedwiththeappropriatewild-type ToconstructaDPaClpP/DPaIapdoubledeletionstrain,amonokaryotic sample.P-valueso0.05wereconsideredstatisticallysignificant. DPaClpPisolatewascrossedwithamonokaryoticDPaIapisolate.Meioticoffspring containingtheconcomitantdeletionofbothgeneswereidentifiedbytheir phleomycinresistanceandverifiedbySouthernblotanalysis. References 1. Tatsuta,T.&Langer,T.Qualitycontrolofmitochondria:protectionagainst neurodegenerationandageing.EMBOJ.27,306–314(2008). Production,regenerationandtransformationofP.anserinaspheroblasts.The 2. Baker,B.M.&Haynes,C.M.Mitochondrialproteinqualitycontrolduring PaClpPdeletionstrainwasgrownonBMMat271Cunderconstantlightfor3days biogenesisandaging.TrendsBiochem.Sci.36,254–261(2011). andsubsequentlyunderthesameconditionsinliquidcompletemediumfor2days (completemedium:3.7gl(cid:2)1NHCl,2gl(cid:2)1tryptone,2gl(cid:2)1yeastextract, 3. Fischer,F.,Hamann,A.&Osiewacz,H.D.Mitochondrialqualitycontrol:an 10gl(cid:2)1glucose,1gl(cid:2)1KHPO4,0.5gl(cid:2)1KCl,0.5gl(cid:2)1MgSO (cid:3)7HO,and integratednetworkofpathways.TrendsBiochem.Sci.37,284–292(2012). 1mgl(cid:2)1ZnSO (cid:3)7HO,Fe2Cl (cid:3)4 4HO,andMnCl (cid:3)2HO;pH4 6.5).2Twenty 4. Coskun,P.etal.AmitochondrialetiologyofAlzheimerandParkinsondisease. 4 2 2 2 2 2 Biochim.Biophys.Acta.1820,553–564(2012). gramsoftheresultingmyceliumwerewashedwithTPSbuffer(5mMNaHPO, 45mMKHPO,0.8Msucrose;pH5.5)andTPSbuffercontaining20mg2ml(cid:2)14 5. Venkatesh,S.,Lee,J.,Singh,K.,Lee,I.&Suzuki,C.K.Multitaskinginthe 2 4 mitochondrionbytheATP-dependentLonprotease.Biochim.Biophys.Acta. Glucanex(Novozymes)wasaddedtoafinalvolumeof100ml.Afterchoppingthe 1823,56–66(2012). mixtureinaWaringBlendor,theresultingsuspensionwasincubatedfor1.5hat 351C.Followingfiltrationthroughgauzeandglasswool,thesuspensionwas 6. Yu,A.Y.&Houry,W.A.ClpP:adistinctivefamilyofcylindricalenergy- centrifugedfor10minat4,000rpmtopelletizethespheroplastsandthepelletwas dependentserineproteases.FEBSLett.581,3749–3757(2007). washedthreetimeswithTPSbuffer. 7. Bakala,H.etal.Changesinratlivermitochondriawithaging.Lonprotease-like Toregeneratespheroplasts,thepelletwasrecoveredinTPSbufferandthe reactivityandN(epsilon)-carboxymethyllysineaccumulationinthematrix.Eur. spheroplastswereplatedonregenerationagar(3.7gl(cid:2)1NHCl,2gl(cid:2)1tryptone, J.Biochem.270,2295–2302(2003). 4 1gl(cid:2)1yeastextract1gl(cid:2)1casaminoacids,10gl(cid:2)1glucose,342.3gl(cid:2)1sucrose, 8. Bota,D.A.,Ngo,J.K.&Davies,K.J.DownregulationofthehumanLon 1.5gl(cid:2)1KHPO,0.5gl(cid:2)1KCl,0.54gl(cid:2)1MgSO (cid:3)7HO,and1mg/ proteaseimpairsmitochondrialstructureandfunctionandcausescelldeath. 2 4 4 2 lMnSO (cid:3)1HO,FeSO (cid:3)7HO,CuSO (cid:3)5HO,andZnSO (cid:3)7HO;pH6.0) FreeRadic.Biol.Med.38,665–677(2005). 4 2 4 2 4 2 4 2 containing100mgml(cid:2)1hygromycinB.After7–10daysofgrowth,myceliaof 9. Lu,B.etal.RolesforthehumanATP-dependentLonproteasein developingculturesweretransferredtoBMMagarplates. mitochondrialDNAmaintenance.J.Biol.Chem.282,17363–17374(2007). IntegrativetransformationofP.anserinaspheroplastswasperformedas 10.Luce,K.&Osiewacz,H.D.Increasingorganismalhealthspanbyenhancing describedpreviously26. mitochondrialproteinqualitycontrol.Nat.CellBiol.11,852–858(2009). NATURECOMMUNICATIONS|4:1397|DOI:10.1038/ncomms2397|www.nature.com/naturecommunications 5 &2013MacmillanPublishersLimited.Allrightsreserved. ARTICLE NATURECOMMUNICATIONS|DOI:10.1038/ncomms2397 11.Matsushima,Y.,Goto,Y.&Kaguni,L.S.MitochondrialLonproteaseregulates 26.Osiewacz,H.D.,Skaletz,A.&Esser,K.Integrativetransformationofthe mitochondrialDNAcopynumberandtranscriptionbyselectivedegradationof ascomycetePodosporaanserina:identificationofthemating-typelocuson mitochondrialtranscriptionfactorA(TFAM).Proc.NatlAcad.Sci.USA107, chromosomeVIIofelectrophoreticallyseparatedchromosomes.Appl. 18410–18415(2010). Microbiol.Biotechnol.35,38–45(1991). 12.Adam,C.etal.BiologicalrolesofthePodosporaanserinamitochondrial 27.Lecellier,G.&Silar,P.RapidmethodsfornucleicacidsextractionfromPetri LonproteaseandtheimportanceofitsN-domain.PLoSONE7, dish-grownmycelia.Curr.Genet.25,122–123(1994). e38138(2012). 28.Hamann,A.,Krause,K.,Werner,A.&Osiewacz,H.D.Atwo-stepprotocolfor 13.Haynes,C.M.,Petrova,K.,Benedetti,C.,Yang,Y.&Ron,D.ClpPmediates efficientdeletionofgenesinthefilamentousascomycetePodosporaanserina. activationofamitochondrialunfoldedproteinresponseinC.elegans.Dev.Cell Curr.Genet.48,270–275(2005). 13,467–480(2007). 29.Gredilla,R.,Grief,J.&Osiewacz,H.D.Mitochondrialfreeradicalgeneration 14.Haynes,C.M.,Yang,Y.,Blais,S.P.,Neubert,T.A.&Ron,D.Thematrix andlifespancontrolinthefungalagingmodelPodosporaanserina.Exp. peptideexporterHAF-1signalsamitochondrialUPRbyactivatingthe Gerontol.41,439–447(2006). transcriptionfactorZC376.7inC.elegans.Mol.Cell37,529–540(2010). 15.Nargund,A.M.,Pellegrino,M.W.,Fiorese,C.J.,Baker,B.M.&Haynes,C.M. MitochondrialimportefficiencyofATFS-1regulatesmitochondrialUPR Acknowledgements activation.Science337,587–590(2012). Thisworkwassupportedbyagrant(GerontoMitoSys)oftheFederalMinistryof 16.Osiewacz,H.D.Mitochondrialqualitycontrolinagingandlifespancontrol EducationandResearch(Germany)toH.D.O.andbytheClusterofExcellenceFrankfurt ofthefungalagingmodelPodosporaanserina.Biochem.Soc.Trans.39, ‘MacromolecularComplexes’. 1488–1492(2011). 17.Weil,A.etal.Unmaskingatemperature-dependenteffectoftheP.anserina Author contributions i-AAAproteaseonaginganddevelopment.CellCycle10,4280–4290(2011). H.D.O.designedtheresearch.F.F.,A.W.andA.H.performedtheexperiments.F.F.and 18.Wittig,I.,Braun,H.P.&Scha¨gger,H.BluenativePAGE.Nat.Protoc.1, H.D.O.analysedthedataandwrotethemanuscript.Allauthorsreadandapprovedthe 418–428(2006). finalmanuscript. 19.Krause,F.Detectionandanalysisofprotein-proteininteractionsinorganellar andprokaryoticproteomesbynativegelelectrophoresis:(Membrane)protein complexesandsupercomplexes.Electrophoresis27,2759–2781(2006). Additional information 20.Botstein,D.&Fink,G.R.Yeast:anexperimentalorganismfor21stcentury SupplementaryInformationaccompaniesthispaperonhttp://www.nature.com/ biology.Genetics189,695–704(2011). naturecommunications 21.Rattan,S.I.Hormesisinaging.AgeingRes.Rev.7,63–78(2008). 22.Van,D.L.,Dembowski,M.,Neupert,W.&Langer,T.Mcx1p,aClpX Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. homologueinmitochondriaofSaccharomycescerevisiae.FEBSLett.438, Reprintsandpermissioninformationisavailableonlineathttp://npg.nature.com/ 250–254(1998). reprintsandpermissions/ 23.Kasashima,K.,Sumitani,M.&Endo,H.Maintenanceofmitochondrial genomedistributionbymitochondrialAAAþ proteinClpX.Exp.CellRes. Howtocitethisarticle:Fischer,F.etal.HumanCLPPrevertsthelongevityphenotype 318,2335–2343(2012). ofafungalClpPdeletionstrain.Nat.Commun.4:1397doi:10.1038/ncomms2397(2012). 24.Rizet,G.Surl’impossibilite´d’obtenirlamultiplicationve´ge´tativeininterrompue illimite´edel’ascomyce`tePodosporaanserina.C.R.Acad.Sci.Paris237, This work is licensed under a Creative Commons Attribution- 838–855(1953). NonCommercial-NoDerivs3.0 Unported License. To view acopy of 25.Esser,K.InHandbookofGenetics(ed.King,R.C.)531–551(Plenum,1974). thislicense,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ 6 NATURECOMMUNICATIONS|4:1397|DOI:10.1038/ncomms2397|www.nature.com/naturecommunications &2013MacmillanPublishersLimited.Allrightsreserved.