ebook img

Hubbard model calculations of phase separation in optical lattices PDF

0.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hubbard model calculations of phase separation in optical lattices

Hubbard model al ulations of phase separation in opti al latti es ∗ H. Heiselberg Applied Resear h, DALO, Lautrupbjerg 1-5, DK-2750 Ballerup, Denmark Antiferromagneti , Mott insulator, d-wave and gossamer super(cid:29)uid phases are al ulated for 2D square latti es from the extended Hubbard (t-J-U) model using the Gutzwiller proje tion method andrenormalizedmean(cid:28)eldtheory. PhaseseparationbetweenantiferromUa∼>g7n.e3tti andd-wavesuper- (cid:29)uidphasesisfoundnearhalf(cid:28)llingwhentheon-siterepulsionex eeds ,and oin ides with 9 a (cid:28)rst order transition in the double o upan y. Phase separation is thus predi ted for 2D opti al 0 latti eswithultra oldFermiatomswhereasitisinhibitedin upratesbyCoulombfrustrationwhi h 0 insteadmayleadtostripes. Ina on(cid:28)nedopti allatti etheresultingdensitydistributionisdis on- 2 tinuousanwith extendedMottplateauwhi henhan estheantiferromagneti phasebutsuppresses n thesuper(cid:29)uidphase. ObservationofMottinsulator,antiferromagneti ,stripeandsuper(cid:29)uidphases a in densityand momentumdistributions and orrelations is dis ussed. J 9 PACSnumbers: 03.75.Ss,03.75.Lm,05.30.Fk,74.25.Ha,74.72.-h 2 ] Ultra- old atomi Fermi-gasespresent a new opportu- niσ =aˆ†iσaˆiσ the density, Si = σσ′aˆ†iσ~σσσ′aˆiσ′ and hiji n UP nity to studystrongly orrelatedquantummany-parti le denotes nearest neighbours. is the on-site repulsive o t c systems and to emulate high temperature super ondu - interJa tion, the nearest-neighbour hopping parameter - tors (HT ). Opti al latti es realize the Hubbard model, and the spin-spin or super-ex hange oupling. r p when the periodi al latti e potential is strong enough so The t-J-U model allows for doubly o upied sites and u thatonlythelowestenergybandispopulated,andinter- thereby alsoMI transitions. As both areobserved in op- s a tions, densities, temperatures, et ., an be tuned. Re- ti al latti es the t-J-U model is more useful as opposed . U/t t entexperimentswithopti allatti eshavemeasuredmo- to the t-J model whi h allows neither. For large the a m mentum distributions and orrelations, and have found t-J-U and HubbardJm=od4te2ls/Uredu e to the t-J model with super(cid:29)uidphasesofBoseandFermiatoms[1,2,3℄,Mott spin-spin oupling dueto virtualhopping. At - J U d insulators (MI) [4, 5℄, and band insulators [6, 7℄. (cid:28)nite and the t-J-U model is to some extent dou- n Long range Coulomb repulsion between ele trons in ble ounting with respe t to the Hubbard model with J =0 o uprates prohibits phase separation (PS), whi h in turn . However,whenRMFTisappliedthevirtualhop- c may lead to stripes, whereas PS is allowed for atoms in ping is suppressed in the Hubbard model whi h justi(cid:28)es [ opti al latti es. The various ompeting phases an be the expli it in lusion of the spin Hamiltonian as done 2 al ulated in the 2D t-J-U model within the Gutzwiller in the t-J-U model. Also, opti al (cid:16)superlatti es(cid:17) provide v proje tion method and renormalized mean (cid:28)eld theory additional spin-spin intera tion [10℄ and thus realize the 6 (RMFT). This method approximates the strong orrela- un onstrained t-J-U model. 9 tionsandgenerallyagreeswellwithfullvariationalMonte The t-J-U model on a 2D square latti e at zero tem- 6 4 Carlo al ulations [8, 9℄. As will be shown below RMFT peraturewasstudiedforvariousonsite oJuplin0g.3and0d.e5nt- . predi ts PS at low doping between an antiferromagneti sities in Refs. [9, 11℄ but mainly for ≃ − , 1 1 (AF)Neelorderandad-wavesuperU(cid:29)>ui7d.3(tdSF) phasefor whi h is the relevant ase for uprates and organi su- 8 su(cid:30) iently strong onsite repulsion ∼ . The amount per ondu tors. In opti al latti es the Hubbard model 0 of MI, AF and dSF phases, the density distribution and anberealizedwithanyon-siterepulsionbytuningnear v: momentum orrelations in opti al latti es are quite dif- a Feshba h resonaJn =e.4Ft2o/rUstrong onsite repulsion spin- ferent from what would be expe ted from HT uprates. ex hangerequires andwewill thereforestudy i X The t-J-U model was employed by Laughlin, Zhang the t-J-U model with this parameter onstraint. How- U r and oworkers [9℄ to study AF, HT and (cid:16)gossamer su- ever, keeping in mind that for more moderate dou- a per ondu tivity(cid:17) in uprates and organi super ondu - ble ounting may o ur leading to an e(cid:27)e tive value for J tors. Both the Hubbard and t-J models are in luded in . We in lude nearest-neighbour hopping and intera - H =H +H +H U t s the t-J-U Hamiltonian or tions only and thereforethe phase diagramis symmetri n=1 n=N/M around half (cid:28)lling , where is the density H = UXi nˆi↑nˆi↓−t Xij σaˆ†iσaˆjσ + JXij SiSj, (1) orM(cid:28)lling fra tion (N is thenumber ofele tronsoratoms h i h i in latti es sites). In the Gutzwiller approximation the trial wave fun - w, here aˆiσ is the usual Fermi reation o9p,era7tor, σ40= (↑ tion|ψi=Πi[1−(1−g)nˆi↑nˆψi↓0]|ψ0iisaproje tionofthe ↓) is the two hyper(cid:28)ne states (e.g. (−2 −2) for Na), Hartrgee-Fo k wave fun tion . The variational param- eter suppresses double o upan y and varies between U 0 orresponding to no doubly o upied sites ( → ∞) (U = 0) ∗ and 1 orresponding to no orrelations . In the Ele troni address: heiselbergmil.dk Gutzwillerproje tionmethodthespatial orrelationsare 2 g t in luded onlythroughtherenormalizationfa tors and UU==4400tt U=12t gs de(cid:28)nedsu hthathHsi=gshHsi0 andhHti=gthHti0, 0.2 0.2 ψ ∆ ∆ wψ0here the expe tation values are with respe t to and ∆SC ∆SC respe tively. The renormalization fa tors are al u- m m d d lated by lassi al statisti s [12, 13℄ 0.1 0.1 2 n 2d g = − , s (cid:18)n−2n+n−(cid:19) (2) 0 0 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 for the spin term and for the hopping term UUUUUUUUUUUUU=============8888888888888ttttttttttttt UUUUUU======666666tttttt x n 0.2 0.2 gt = √gs −(x+d)+ −d ∆ ∆ (cid:20)rx+ rn+ (cid:21) ∆SC ∆SC m m x+(x+d)+ n+d . 0.1 d 0.1 d (cid:20)rx rn (cid:21) (3) − − d n =n/2 m Here isthe doubleo upan y, ± ± the meamn 0 0 0.1 0.2 0.3 0.4 0 0 0.1 0.2 0.3 0.4 upanddowno upationnumbers foramagnetization x = 1 n x = 1 n at ea h site, − the doping, and ± −g2±=. x = 1−n J/t = The doubleo upan y proje tionfa torisgiven by 4Fti/gUure=10:.1O,1rd/3er,0p.5a,ra2m/3eters vs. doping for d(x+d)/(x+x n+n gs) in RMFT for the2D t-J-Umodel. − − . The resulting energy is by Gutzwiller proje tion E =MUd+gt Ht 0+gs Hs 0. for the pairing gap, hopping averageand density h i h i (4) 1 1 1 ∆ = η2∆ + , The RMFT equations for the t-J-U model in the 8M Xk k d(cid:18)Ek+ Ek−(cid:19) (9) Gutzwiller proje tion method have been derived [11℄ in 1 ǫ ξ µ˜ ξ +µ˜ terms of the order parameters for d-wave pairing, hop- χ = γ k k− + k , ping average and staggerqed=m(aπg,nπe)tization (with om- −8M Xk kξk (cid:18) Ek+ Ek− (cid:19) (10) mensurate nesting ve tor , in units where the 1 ξ µ˜ ξ +µ˜ k k latti e on∆stainjt i=s unaˆitiyaˆ)jde(cid:28)naˆeidaˆajs 0 = ∆, x = 2M Xk (cid:18) E−k+ − Ek− (cid:19) . (11) h i h ↓ ↑− ↑ ↓i ± (5) m χ = haˆ†i↑aˆj↓+aˆ†i↓aˆj↑i0, (6) The gap equationsthatddetermines the magnetization m = (−1)ihaˆ†i↑aˆi↓+aˆ†i↓aˆi↑i0/2, (7) athnedrddeonuobrmleaoli z autpioann fya to[r1s1℄gsaraenmdogrtea losmo pdleip aetneddosnin me (+/ ) and . respe tively. The − in (5)ij orresponds to a di(cid:27)er- The resulting order parameters for the t-JJ-U=m4to2/dUel en e(xb/eytw)een neighbour sites h i of one latti e unit in onstrainedtotheHubbardoUr/tt-J=modellimit the dire tion respe tively. are presented in Fig. 1 for 40, 12, 8 and 6 orre- J/t= The resulting variational energy is [11℄ sponding to 0.1, 1/3, 0.5 and 2/3 respe tively. At 1 half (cid:28)lling (x=0) we (cid:28)nd a(cid:28)rst orderphase transitionin E/M = Ud−µ˜x− 2M Ek++Ek− whi h theJdoub0l.e55ot uUpan 7y.3jtumps from zero to a (cid:28)nite Xk (cid:0) (cid:1) value for ≥ ( ≤ ) similar to Refs. [9, 11℄. 3 + g J(∆2+χ2)+2g Jm2. The ground state remains an AF for smaller U without s s 4 (8) anydSF.Thisisinagreementwithexpe tationforthe2D Hubbard model but in ontrast to the results for a (cid:28)xed J =t/3 U 7t Here, the AF and dSF ouples four band energies Ek± = [11℄,Uwhe5re.3ttheAFvanishesfor ≥ andadSF pǫ (=ξk∓(gµ˜)t2++3g(∆Jdχη/k8))2γanγd −=E2k±(,cowsikth+ξkco=skq)ǫ2k+∆η 2af=, 5aa.pt3pheaalrUfs/(cid:28)ftollring7≥(a (cid:16)gosssua mhetrhastupae ro(cid:29)euxidis(cid:17)t)inegxiAstFs abnedtwdeSeFn k t s k k x y k 2(cos−k cosk ) ∆ ,= 3g J∆/8 ∆ =an2dg Jm ≤ ≤ . The reJas=on4fto2r/Uthis di(cid:27)eren e tra esba k x y d s af s − . and tothelargervaluefor inour al ulationwhi h are the dSF and AF order parameters. The Lagrange stabilizestheAFphaseanddestabilizesdSFbe ausethe µ˜ multiplier di(cid:27)ers from the hemi al potential be ause orresponding two order parameters ompete. The (cid:28)rst the renormalization fa tors depend on density as will be ordertransitionin the doubleo upan y is, however,ro- dis ussed later. bustinthesensethatitisdrivenbytheon-siterepulsion F(∆,χ,m,d,µ˜)=E µ˜N U 7 9t Varyingthefreeenergy − with Jand remains at a riti al value ∼ − Jev=en4wt2h/eUn respe ttoits(cid:28)veparametersleadstothe(cid:16)gap(cid:17) equations is allowed to vary independently from the 3 Near half (cid:28)lling the hemi al potential de reases with 0.6 ∆ =.02t in reasing density in the AF phase i.e. the energy de- SC AF penden e on density is on ave. This is unphysi al and PS signals PS to an AF phasexat<h0a.1lf4(cid:28)lling oexisting with 0.4 a dSC phase at a density | |∼ shown in Fig. 2 that / t is determined by the Maxwell oJnstru0 t.5io5nt. UThe P7S.3tis J found to terminate at oupling ≃ ( ≃ ) 0.2 wherethedoubleo upan yundergoesa(cid:28)rstoJrd=er4ttr2a/nU- sion from zero to a (cid:28)nite value. Relaxing the onstraintdoesnot hangethephasesorPSqualitatively ex ept for gossamer dSF. 0 Whereas PS is prohibited in uprates by long range 0 0.1 0.2 0.3 Coulomb repulsion between ele trons, PS is permitted x=1-n fortheneutral atoms trapped in opti allatti es where it n(r) leads to dis ontinuities in the density distribution r Figure 2J:=Ph4at2s/eUdiagram for the t-J-U m|oxd|el under the on- vs. trap radius . For a large number of trapped atoms straint . AF and PS o ur for below∆SreCsp≥e 0t.i2vte in a shallow on(cid:28)ning potential, the Thomas-Fermi ap- urves. Abovedotted urvethedSFgapex eeds . proximation applies (see, e.g. [14℄). The total hemi al At halfJ(cid:28)≥lli0n.g55tthe (cid:28)rst order transition to double o upan y potential is then given by the lo al hemi al potential above is omplementaryto PS(see text). µ(n) = dE/dN V2r2 and the trap potential, whi h is on the form in most experiments, onstraint. The ase J = 0.5t (U = 8t) isd lose to the µ(n)+V2r2 =µ(n=0)+V2R2. (14) riti al ouplingandwe(cid:28)ndatransitionin atlowdop- ing as shownmin Fig∆. 1 that also a(cid:27)e ts the other order Thesummustbe onstantoverthelatti eandR anthere- parameters and SC. fore be set to its value at the edge or radius of o u- The gap depends sensitively on oupling, magnetiza- pied latti e sites, whi h gives the r.h.s. in (14). The m = d= 0 tion and do∆ub=leχo = upan y.coIfs2k +cos2kth/e(2g√ap2Meq)ua- hemi al potential µfo(rnt=he0d)i=lute4lattti e gas in the 2D 0ti.o3n39gives Pkp x y ≃ Hubbard model is µ(n =− 1)w=her0eas justUbe=low0 at half (cid:28)lling. At low densities th∆e gap=eq0uation half µ(cid:28)(llnin=g i1t)l=ies4btetweenU = when simpli(cid:28)es be ause there is no AF order af . The and when ∞. Correspondingly the ge8nagteptr/ge3yqgusraJat)tioio≃n 23d∆Jep/d4e/tnǫkdi=ss0tohn=e teh(cid:27)Vee∆ pt,iavierwinphgaeriretionVgqu oa≡usip-p1lia/nr(gtχid +lie- tarlnoedu,dltihesesiznbeu,emtwNwbheeeer=nnoPRπfSRctr2a≤oprpRaedM≤pIa2prRthica ,sleewshaNeprpe=eaR2rcπs =Rin0R2tnhp(ert)/ reVdn2r-, vided by the bandwidth. Also the Fekrm=i s√ur2faπ ne be- is of order c c. When more parti les are added F µ ˜o=me(skF2 i−r u4l)a(rgtw+it3hgsFJerχm/8i)m. oTmheenrt.uhm.s. of the gap eqaunad- athMe I hpelmatie aaul fpoortmenstiianlthheas eantgraep(s∆eeµFiagt. h3a)lfbe(cid:28) llaiunsge. tion (9) an then be al ulated analyti ally to leading This gap and the hemi al potential above half (cid:28)lling logarithmi orderinthe e(cid:27)e tive ouplingandtoleading an be found from parti le-hole symmetry whi h implies E( x)=E(x)+MUx µ( x)=U µ(x) orders in the density. The resulting gap be omes − ,su hthat − − . We U ∆µ 1 4 1 ∆= V√nexp(cid:20)−πn2(V −c0−c1n−c2n2)(cid:21) . (12) e(cid:28)vnedntthhaotuagsh thdee droeuabselessoo duopeasn y ubnudteirtgroeemsaain(cid:28)srs(cid:28)tnoitre- dertransitionto a(cid:28)nite value, i.e. theMIJrem=a4int2s/aUlong Thehigherorcd0er 0o.r2r7e tci1onsi0n.5d7ensityc2 an0b.e09 al ulated with the AF phase. The approUximation is, numeri ally: ≃ , ≃ and ≃ . however, only a valid for large and the onstrained t- The AF order parameter is de(cid:28)ned as the eψxpe - J-U mJodel maynot des ribethe Hubbardmodel well for tation valψue0as in Eq. (5) but for the w.f. | i in lNar>geNc∆. µT/hte MIplateau remainsin the trapR >ent∆reµu/nVt2il stead of | i . It therefore also attains a renormaliza- ∼ orresponding to a trap size ∼ . tion fa tor mAF = √gsm [11℄. Likewise the dSF or- In reasing the number of trapped parti les fuprther en- d√egrs(p[araxm−e(xte+r ids)r+enornm−adli]z2e+d[∆SxC+(=x+g∆d∆)+withn+gd∆]2=) for es doubnly=o2 upied sites and eventually a band insu- 2 qx+ qn+ qx− qn− , lator with in the entre as seen in Fig. 3. The density distributions and MI plateaus have been and is shown in Fig. 1. We expe t that the dSF riti al measured experimentally for Bose atoms in opti al lat- temperature is similar. ti es by, e.g., di(cid:27)erentiating between singly and doubly Sin e the renormalization fa tors depend on density µ = dE/dN o upied sites [2℄. A similar te hnique applied to Fermi d U 7.3t the hemi al potential di(cid:27)ers from the La- µ˜ atoms might observe the transition in at ≃ . grange multiplier by Re entlyS hneideret al. [5℄havemeasured olumnden- ∂g ∂g µ=µ˜+ Ht 0 t + Hs 0 s . sitiesforFermiatomsinopti allatti esand(cid:28)ndeviden e h i ∂n h i ∂n (13) forin ompressibleMottandbandinsulatorphases. Even 4 oddintegers. JustasfortheAFphasewe aninastripe 2 U=12t phase expe t harge and spin orrelations as in low en- ergymagneti neutrons attering[16℄atin ommensurate q = 2π(0, 2x) q = π(1,1 2x) ± and ± respe tively, ob- 1 5 10 servedasdips at these wave-numbers. However, be ause x n 1 the doping varies in the trap, the Bxragg dips are dis- tributed over the range of values for and are therefore 0.5 harder to distinguish from the ba kg1r/o8und.xIf, 1h/o4wever, thefourstripeperiodi ityo ursfor ≤ ≤ asin uprates, we an expe t novelBragg dips for harge or- q=(0, π/2) q=( π/2,0) 0 relationsat ± and ± andforspin 0 1 2 3 q = π(1,1 1/4) q = π(1 1/4,1) orrelations at ± and ± . r/R c Pairing leads to bun hing between opposite momenta k = k ′ − and s-wave pairing has been observed near Figure 3: Density distributions of FermiUato=ms12int aJn =optti/ 3al the BCS-BEC ross-over[3℄. If dSF is enhan ed or sup- latti e on(cid:28)ned by a harmoni traNp/fNorc = ( ) pressed by stripes, the bun hing due to dSF should be (cid:28)lled with the numberof parti lesn ≃ 1.14 0.5, 1n, 5≃, a0n.8d610. orrelated orrespondinglywith stripe anti-bun hing. The densitny=dis1 ontinuities from and to the MI at due to PS between dSF and AF are absent 3D opti al latti es do not have a van Hove singu- for stripe phases (see text). larity at the Fermi surfa e at half (cid:28)lling as the 2D ∆ k Hubbard model, and the 2D d-wave symmetry ∝ (cosk cosk ) x y − does not generalize to 3D. Thus we do lowertemperaturesarerequiredforobservingtheAFand not expe t any signi(cid:28) ant dSF but by generalizing the dSF phases and the density dis ontinuities due to PS. RMFT equations to 3D we (cid:28)nd MI, AF and PS for the Spin and harge density waves in form of stripes are same reasonsthat they appear in 2D. not in luded in the above RMFT al ulations. Stripes are observed in several uprates [16℄ whereas numeri al In on lusion,t-J-UmodelRMFT al ulationspredi t al ulations are model dependent. Long range Coulomb phaseseparationanddensitydis ontinuUit>ie7s.3ntearhalf(cid:28)ll- frustration an explain why PS is repla ed by stripes ingin2Dand3Dopti allatti eswhen ∼ oin iding and an AF phase at very low doping [14℄ as observed with a (cid:28)rst order transition in the double o upan y at in uprates. Cold atoms in opti al latti es an dis rim- half (cid:28)lling. Observation of phase separation would indi- inate between the PS and stripe phases sin e the latter ate that long range Coulomb frustration is most likely does not have density dis ontinuities. the auseforspinand hargedensitywavesandstripesin Bragg peaks have been observed for bosons in 3D [2℄ uprates. Contrarily, if no PS is observed but instead a and 2D [4℄ opti al latti es, and dips for 3D fermions in stripe phase near half (cid:28)lling in 2D and probablyalso3D [7℄. The Bragg peaks and dips o ur in momentum or- opti al latti es, then Coulomb frustration is not respon- C(k,k) ′ relation fun tions when the relative momentum sibleforstripesin uprates. Ineither aseopti allatti es q k k = π(n ,n ) n ,n ′ x y x y is ≡ − , where are even in- not only emulate strongly orrelated systems, Hubbard tegers [15℄. In an AF phase the periodi ity of a given type models and an determine the ground state phases spin is two latti e distan es and dips also appears for su h as MI, AF, PS, gossamer and dSF but an even determine more subtle e(cid:27)e ts from Coulombfrustration. [1℄ T. Stöferle et al., Phys. Rev. Lett. 96, 030401 (2006). [10℄ A.KleinandD.Jaks h,Phys.Rev.A73,053613(2006). [2℄ S. Fölling et al., Nature 434, 481 (2005). [11℄ Q. Yuan, F. Yuan, C. S. Ting, Phys. Rev. B 72, 054504 [3℄ J.K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, (2005); F. Yuan, Q. Yuan, C.S. Ting, and T.K. Lee, C. Sanner,K.Xu,W.Ketterle, Nature 443, 961 (2006). arXiv: ond-mat/0409596. [4℄ I.B.Spielman,W.D.Phillips,andJ.V.Porto,Phys.Rev. [12℄ T. Ogawa, K. Kanda, and T. Matsubara, Prog. Theor. Lett. 98, 080404 (2007). Phys. 53, 614 (1975). [5℄ U. S hneider et al., S ien e 322, 1520 (2008) [13℄ D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984). [6℄ M.Köhl,H.Moritz, T.Stöferle,K.Gunter,T.Esslinger, [14℄ H. Heiselberg, Phys. Rev. A 74, 033608 (2006); ond- Phys.Rev. Lett. 94, 080403 (2005). mat/0802.0127. [7℄ T. Rom, Th. Best, D. van Oosten, U. S hneider, S. [15℄ I. Blo h, J. Dalibard, and W.Zwerger, Rev. Mod. Phys. Foelling, B. Paredes, I. Blo h, Nature 444, 733 (2006). 80, 885 (2008); E. Altman,E. Demler, and M.D. Lukin, [8℄ See e.g., B. Edegger, V.N. Muthukumar, C. Gros, Ad- Phys. Rev. A 70, 013603 (2004). B.M. Andersen and van es in Physi s 56, 927 (2007), and Refs. therein. G.M. Bruun, Phys.Rev. A 76, 041602(R) (2007) [9℄ R.B. Laughlin, arXiv: ond-mat/0209269; F.C. Zhang, [16℄ J.M. Tranquada et al., Phys. Rev. B 54, 7489 (1996). Phys. Rev. Lett. 90, 207002 (2003); J.Y. Gan, F.C. Zhang, Z.B. Su,Phys. Rev. B 71, 014508 (2005).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.