Mon.Not.R.Astron.Soc.000,000–000(0000) Printed20February2015 (MNLATEXstylefilev2.2) How to bend galaxy disc profiles: the role of halo spin J. Herpich1(cid:63)†, G.S. Stinson1, A.A. Dutton1, H.-W. Rix1, M. Martig1, R. Roškar2, A.V. Macciò1, T.R. Quinn3, J. Wadsley4 5 1 1Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany 0 2Research Informatics, Scientific IT Services, ETH Zurich, Weinbergstrasse 11, 8092 Zurich, Switzerland 2 3Astronomy Department, University of Washington, Box 351580, Seattle, WA 98195-1580, USA 4Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1, Canada b e F 9 20February2015 1 ] A ABSTRACT The radial density profiles of stellar galaxy discs can be well approximated as an G exponential. Compared to this canonical form, however, the profiles in the majority . h ofdiscgalaxiesshowdownwardorupwardbreaksatlargeradii.Currently,thereisno p coherent explanation in a galaxy formation context of the radial profile per se, along - withthetwotypesofprofilebreaks.Usingasetofcontrolledhydrodynamicsimulations o of disc galaxy formation, we find a correlation between the host halo’s initial angular r t momentum and the resulting radial profile of the stellar disc: galaxies that live in s haloes with a low spin parameter λ (cid:46) 0.03 show an up-bending break in their disc a [ density profiles, while galaxies in haloes of higher angular momentum show a down- bendingbreak.Wefindthatthecaseofpureexponentialprofiles(λ≈0.035)coincides 2 with the peak of the spin parameter distribution from cosmological simulations. Our v simulationsnotonlyimplyanexplanationoftheobservedbehaviours,butalsosuggest 0 that the physical origin of this effect is related to the amount of radial redistribution 6 of stellar mass, which is anti-correlated with λ. 9 1 Key words: hydrodynamics–methods:numerical–galaxies:spiral–galaxies:struc- 0 ture. . 1 0 5 1 : 1 INTRODUCTION ponentials. They found that only ≈10% of their sample of v late-typegalaxieshavepureexponentialprofilesthatextend i In his landmark work, Freeman (1970) found that most X allthewayouttotheobservationalsurfacebrightnesslimit. spiral galaxies share a uniform stellar surface brightness Themeasuredabundancesofdown-andup-bendingprofiles r profile which is well fitted by an exponential, µ (R) ∝ a (cid:63) are ≈60% and ≈30%, respectively. exp(−R/R ). Subsequent deeper imaging of a wider vari- d ety of disc galaxies has shown some variation in the func- Using numerical simulations, Debattista et al. (2006) tional form of the radial profile. For example Pohlen et al. explain down-bending disc breaks with stellar angular mo- (2002) observed galaxies that exhibit two distinct exponen- mentum redistribution induced by the formation of a bar. tial profiles. In addition to an inner profile just as observed A study by Roškar et al. (2008) that also employed numer- by Freeman (1970), they found a steeper outer exponen- ical simulations predicted ‘U-shaped’ stellar age profiles for tial profile such that the overall profile appeared to have a down-bendingdiscbreaksandthatthepositionsofthemin- “break”. In barred S0-Sb galaxies Erwin et al. (2005) found ima of the age profiles coincide with the break radius. This profiles with an outer exponential slope which is shallower prediction was confirmed by observations (Yoachim et al. than the inner part. Pohlen & Trujillo (2006) compiled a 2010). sample of galaxies that included all three types of profiles. Therearemanyanalyticalmodelsintheliteraturethat They called them pure, down-bending and up-bending ex- study the physical origin of the exponential radial profile of stellar galaxy discs (e.g. Fall & Efstathiou 1980; Lin & Pringle 1987; Dalcanton et al. 1997; Mo et al. 1998; van den Bosch 2001). A common assumption of all these mod- (cid:63) Email:[email protected] † Member of the International Max Planck Research School for els is that the distribution of specific angular momentum Astronomy and Cosmic Physics at the University of Heidelberg, of baryons is conserved during the evolution of galaxies. IMPRS-HD,Germany. Dutton (2009) found that low angular momentum material (cid:13)c 0000RAS 2 Herpich et al. needs to be removed in order to prevent centres of galaxies Thegravitationalsofteningis(cid:15)=227pc.TheSPHsmooth- from becoming too dense. He suggested that stellar feed- inglengthisvariableandsetsuchthatthekernelcovers50 back is a viable mechanism to redistribute angular momen- particles. tum. Cosmological simulations of galaxy formation confirm Theinitialconditionsweresetupinfoursteps.Firstwe this mechanism and find that this ejected low angular mo- createdanequilibriumNFWDMhalo(Navarroetal.1997) mentumgascanbereaccretedwithhighangularmomentum followingtherecipefromKazantzidisetal.(2004)including viathegalacticfountain effect(e.g.Brooketal.2011,2012; anexponentialcutoffoutsideR .Inthenextstepthemass 200 Marinaccietal.2011;Übleretal.2014).However,currently ofeachDMparticlewasreducedbyafactoroff ,thebaryon b there is no coherent explanation for the existence of pure, fraction,andagasparticlewasaddedatthesameposition, down- and up-bending radial profiles. accounting for the mass difference between the old and the InthisLetterwepresentthefirstattemptatidentifying new DM particle. physicalquantitiesthatdeterminetheprofileofstellardiscs Thisgassphereisthenrotatedbysomerandomanglein at large radii. We use a suite of smoothed particle hydro- ordertopreventgasandDMparticlesfromsharingidentical dynamic (SPH) simulations of disc galaxies in an isolated positions. set-up. We show that the type of disc profiles depends on Tosetthegasvelocities,weestablishacylindricalcoor- the initial angular momentum of the galactic baryons. In dinatesystem(v ,v ,v )suchthatthegasorbitsaboutthe R c z Section 2, we describe the simulation set-up followed by a z-axis.Thevelocitiesaresettoobeytheangularmomentum presentation of the results in Section 3 and our conclusions profile for DM haloes as found by Bullock et al. (2001) in in Section 4. cosmological Nbody simulations2: M(<j) j/j =µ max , (1) M j/j +µ−1 200 max 2 SIMULATIONS whereM(<j)isthemassofallmaterialthathaslessangu- larmomentumthanj,µistheshapeparameterandj is max InthisLetterwepresenttheresultsofasuiteofsimulations the maximum specific angular momentum in the halo. j max of disc galaxy formation from idealized and isolated, yet dependsonthevalueofµandisproportionaltothespinpa- cosmologicallymotivated,initialconditions.Weuseamodi- rameterλ. Whileλsimplyscalesthegasparticles’angular fiedversionofthepubliclyavailabletreeSPHcodeChaNGa momentum, µ sets the actual mass distribution of j/j . (Jetley et al. 2008, 2010; Menon et al. 2014) 1. The simu- max We use the definition of the spin parameter from Bullock lations are evolved for 8 Gyr. This corresponds to z ∼ 1.5, et al. (2001): whenthelastmajormergererawascomingtoanend(Zent- (cid:12) ner & Bullock 2003). Examinations of cosmological simula- J (cid:12) λ= √ (cid:12) (2) tionsshowthattheybehavesimilarlytoisolatedspheresaf- 2MVR(cid:12) R=R200 tertheirlastmajormerger(Zentner&Bullock2003,Obreja Here J and M are the halo angular momentum and mass etal.,inpreparation).Insection2.1wepresentadetailedde- inside a sphere of radius R and V is the halo circular ve- scriptionofourcosmologicallymotivatedinitialset-upwhile locity at that radius. Radial and vertical velocities were set we will only briefly outline the implementation of hydrody- to v = v = 0. Tangential velocities are a function of the namics in section 2.2. R z axisymmetric radius only (v (R,φ,z) = v (R)). However, Our initial set-up is motivated and indeed very simi- t t theDMhalodoesnotrotateinoursimulations.Finally,the lar to that in Roškar et al. (2008). We deliberately chose gas temperatures were calculated such that the gas obeys a simplified and controlled set-up in order to be able to hydrostatic equilibrium. link observed properties to their physical origin more eas- Here we explore the effects of varying λ at a fixed ily. This level of control comes at the expense of neglecting µ = 1.3 on the radial profile of the resulting stellar disc. asymmetric influences from the cosmological context, such We explore the range 0.02 (cid:54) λ (cid:54) 0.13. The simulation pa- as merging of galaxies. However, stellar feedback helps to rameters are summarized in Table 1. break the symmetry in the initial conditions. 2.2 Baryonic physics 2.1 Initial conditions TheChaNGacodeisderivedfromthetreeSPHcodegaso- We set up isolated haloes with the following properties: line. It uses a modified version of SPH which employs M = 1012M ,R = 206kpc,f = 0.1,c = 10. M a pressure averaged force calculation (Ritchie & Thomas 200 (cid:12) 200 b 200 andR arethevirialmassandradius.f isthefractionof 2001; Hopkins 2013; Keller et al. 2014). ChaNGa includes 200 b baryonsintheinitialset-upandcisthehaloconcentration. stochastic star formation (Stinson et al. 2006, c = 0.1) (cid:63) f islowerthanthecosmologicalbaryonfractionbecauseour basedonaKennicut-Schmidtlaw,radiativemetallinecool- b set-up does not account for high redshift outflows that are ing,metaldiffusionandpresupernovastellarwindfeedback ejectedfromthehalo.Darkmatter(DM)particlemassesare 1.1×106M andinitialgasparticlemassesare1.2×105M . (cid:12) (cid:12) 2 These calculations were done assuming that the DM and the gassharethesameangularmomentumprofile. 3 Wedidnotexplorelowervaluesofλbecausethecomputational 1 http://librarian.phys.washington.edu/astro/index.php/ effortincreasessignificantlyasλdecreasesduetodensergaseous Research:ChaNGa discsandanincreasedamountofstarformation. (cid:13)c 0000RAS,MNRAS000,000–000 Halo spin bends galaxy disc profiles 3 Table 1. Overview of all simulations and their properties. λ is 8 Gyr the initial spin parameter, Mgas and M(cid:63) are the amount of gas andstarsinthediscregion(R<30kpc,|z|<3kpc)at8Gyr. ¸=0:1 ¸=0:04 ¸=0:06 ¸=0:035 λ Mgas M(cid:63) ¸=0:055 ¸=0:03 (1010 M(cid:12)) (1010 M(cid:12)) ¸=0:05 ¸=0:02 ¸=0:045 0.02 0.34 3.14 0.03 0.56 2.91 0.035 0.67 2.64 0.04 0.95 2.53 0.045 1.13 2.42 0.05 1.24 2.36 0.055 1.31 2.30 0.06 1.34 2.25 0.1 1.44 1.96 ) (early stellar feedback; Stinson et al. 2013). The feedback ⋆ § follows Dalla Vecchia & Schaye (2012) in which the energy ( g output from supernova explosions of a stellar population is o l released at one time altogether. The energy released per supernova is E = 1.5×1051erg. Further details on the SN implemented physics in ChaNGa will be presented in up- comingpapers(Kelleretal.2014,Stinsonetal.,inprepara- tion). First tests of this implementation produced realistic disc galaxies in cosmological simulations. 3 RESULTS 3.1 Disc profiles After evolving the simulations for 8 Gyr, we extracted the stellar surface density in axisymmetric radial bins Σ (R). (cid:63) These stellar surface density profiles include all stars up to 0 5 10 15 20 25 30 3kpcaboveandbelowtheplaneandinsideacylinderwitha R [kpc] radiusof30kpc.Wefittheseprofileswithasuperpositionof a ‘broken exponential disc’ Σ surrounding an exponential d Figure 1. The radial stellar surface density profiles. Presented bulgewhichisaverygoodparametrizationofthedata(see isthestellarsurfacedensityasafunctionofaxisymmetricradius Fig. 1): of the individual haloes at t=8 Gyr. The errors are estimated (cid:18) R (cid:19) asPoissonnoise.Theindividualprofilesareoffsetby1dex(i.e. Σ(cid:63)(R)=Σkexp −R +Σd(R) (3) one tick mark) each for clarity as we are not interested in the k normalization. The grey data points correspond to radial bins where with nine or less star particles which were ignored in the fitting (cid:16) (cid:17) procedure. The coloured lines show the model for 100 sets of Σd(R)=Σ0×eexxpp(cid:16)−−RRRib(cid:17)exp(cid:16)−R−Rb(cid:17) ieflsRe <Rb pfraormamtheteeMrsCwMhiCchawlgeorreitrhamnd.oFmorlythcehouspe-nbefrnodmintghdeisPcDpFroofibletsa,inthede Ri Ro dashed lines are an extrapolation of the inner exponential part (4) (Σ0exp(−R/Ri)) to make the break in the profile more easily HereΣk andΣ0 arenormalizationfactorsforthebulgeand visible.Thefigurequalitativelyshowsthatthereisatrendfrom disccomponent,respectively.R andR representtheinner up-bending disc profiles for galaxies in low spin haloes to down- i o and outer disc scale-length and R the radius of the break. bendingprofilesinhighspinhaloes. b The probability distribution function (PDF) of the fit pa- rameters for the given surface density profiles was obtained using the Monte Carlo Markov chain (MCMC) algorithm 3.2 Disc breaks emcee(Foreman-Mackeyetal.2013)4.Fig.1showsthestel- Fig. 1 shows that the type of the disc profiles changes with larsurface density profiles(black points)for all simulations λ.Inthelowestspinsimulations(λ(cid:54)0.03)theprofileisup- at 8 Gyr overplotted by 100 models sampled from the ob- bending, i.e. R >R. The models with high spin parame- tainedPDF(colouredlines).Thegreydatapointsshowdata o i ters (λ(cid:62)0.045) clearly show a down-bending break. Fig. 2 forradialbinswithnineorfewerstarparticles.Thesepoints quantifies these trends in terms of the fit parameters. The were omitted in the fitting procedure. middlepanelshowsthefittedinnertoouterscale-lengthsas a function of λ. The inner scale-length R increases linearly i 4 Wedidnotuseastandardχ2 minimizationprocedurebecause with λ. The outer scale-length Ro has a high value for low itgaveunstableresults. λanddecreaseswithλuntilitapproachesaconstantlower (cid:13)c 0000RAS,MNRAS000,000–000 4 Herpich et al. 8 Gyr 104 22 103 20 c] 102 p 18 ] k radii [k 111462 2 [M pc¡¯111000-011 a ⋆ re 10 § 10-2 B 8 10-3 ¸=0:03 6 10-4 3.5 104 c] Ri Ro 103 p 3.0 gths [k 2.5 2pc]¡ 110012 n ¯100 e 2.0 M e l [ 10-1 Scal 1.5 §⋆10-2 ¸R=(t0=:086Gyr) 1.0 10-3 Rform 2.5 10-4 s 0 5 10 15 20 25 30 h R/R gt i o R [kpc] n 2.0 e e l Figure 3. Comparisonofstellarsurfacedensityprofilesrelative al 1.5 tothecurrentpositionofstarparticles(black)andtheirposition c s atthetimeofformation(red).Thetopandbottompanelsshow f downbending o theresultsforλ=0.03and0.06,respectively.Thefigureclearly o 1.0 shows that the amount of radial redistribution of stellar mass is ati upbending muchmorepronouncedforthecasewithsmallλ. R 0.5 0.00 0.02 0.04 0.06 0.08 0.10 ¸ breaks (8-10 kpc) for other spin parameters. In such cases, the definition of R and the distinction between R and R b i o are ill-defined. In the λ = 0.04 case, the best fit for R is Figure 2. Systematic variation of the parameters for the bro- b attheendofthedisc.Therefore,thefittedbreakradiusex- ken exponential disc profile (equation (4)) as a function of λ. Thetoppanelshowsthebreakradii.Theestimatesforthebreak ceeds the otherwise linear relation with λ as can be seen in radiusforλ=0.035,0.04areplottedingreysincetheyaresome- themiddlepanelofFig.2.Intheλ=0.035case,thebestfit whatill-definedinthesecases(seesection3.3).Themiddlepanel for R is at a minor wiggle in the profile. The result is that b shows the estimated inner (black) and outer (red) scale radii. R does not fit the relation with λ either but this time it b The bottom panel shows the ratio of the inner and outer scale- falls short. This is not surprising given that the model pa- lengths. The horizontal dashed line indicates unity, that is the rameters are degenerate for pure exponential profiles where separation between the up- (below the line) and down-bending R andthedistinctionbetweenR andR havenophysical regime (above). The error bars indicate the range between the b i o meaning. This phenomenon is reflected by the larger error 16-th and the 84-th percentile. The figure shows a clear trend bars. fromup-todown-bendingprofilesasλincreasesandatransition atλ≈0.035. 3.4 Radial mass redistribution value for λ (cid:38) 0.04. The bottom panel of Fig. 2 shows the Inthissectionwebrieflylayoutapossiblemechanismthat ratiosoftheinnertoouterscale-lengthsR/R asafunction i o may be the cause for systematic changes of the disc pro- of λ. There is a transition from up-bending (R/R <1) to i o file with λ. Fig. 3 compares the final stellar surface density down-bending (R/R >1) disc breaks at λ≈0.035. i o profiletothedensityprofileofstarsatbirth,irrespectiveof ThetoppanelinFig.2showstheestimatedbreakradii their actual time of birth. Hereafter, we will refer to these R as a function of λ. Except for the λ=0.035,0.04 cases, b as the final and formation profiles respectively. R shows a linear dependence on λ. b The two panels in Fig. 3 show profiles for two different simulations, one with a spin parameter below the transi- tion region between up- and down-bending discs (λ=0.03, 3.3 The pure exponential case top panel) and one above (λ=0.06, bottom panel). In the In the region between the up- and down-bending regime λ=0.03 case we see that stars are formed with a very con- (λ = 0.035−0.04), the disc profiles are purely exponen- centrated profile that has a core in the centre. This core tial over a range that exceeds the typical position of disc might be artificial due to centring issues. What is evident (cid:13)c 0000RAS,MNRAS000,000–000 Halo spin bends galaxy disc profiles 5 without doubt is that practically all stars formed in the in- Rechenzentrum in Garching. The authors greatly appreci- ner ≈ 8 kpc of the disc, while the final profile extends all ate the contributions of these computing allocations. JH, the way out to ≈30 kpc. GSSandHWRacknowledgefundingfromtheEuropeanRe- The figure shows that in the range 2kpc (cid:46) R (cid:46) 5kpc searchCouncilundertheEuropeanUnion’sSeventhFrame- the formation profile significantly exceeds the final profile. work Programme (FP 7) ERC Advanced Grant Agreement Insideandoutsidethatrangetheoppositeisthecase.Thisis no. [321035]. GSS, AAD and AVM acknowledge support because the integrated masses of the current and formation through the Sonderforschungsbereich SFB 881 ‘The Milky profilesareidentical.Itfollowsthatasubstantialamountof WaySystem’(subprojectA1)oftheGermanResearchFoun- stellar redistribution has occurred from 2kpc (cid:46) R (cid:46) 5kpc dation(DFG).MMacknowledgessupportfromtheAlexan- outwards as well as inwards. der von Humboldt Foundation. For λ = 0.06, we observe the same qualitative effect buttherearetwostrikingdifferenceswithimportantimpli- cations. First, star formation extends to much larger radii REFERENCES (≈13kpc).Secondly,despitethesamequalitativetrendthe differencesbetweentheformationandfinalprofilesaremuch BrookC.B.,GovernatoF.,RoškarR.,StinsonG.,Brooks smaller.Thefinalprofilecloselyfollowstheformationprofile A. M., Wadsley J., Quinn T., Gibson B. K., Snaith O., outto≈10kpcandthereisnocentralcoreintheformation PilkingtonK.,HouseE.,PontzenA.,2011,MNRAS,415, profile. Atlargeradiithereisasteeplydecliningtailofstars 1051 that have reached large radii, leading to the down-bending BrookC.B.,StinsonG.,GibsonB.K.,RoškarR.,Wadsley profile. Therefore the amount of stellar redistribution that J., Quinn T., 2012, MNRAS, 419, 771 took place in this ‘high-spin’ case is much less than that Bullock J. S., Dekel A., Kolatt T. S., Kravtsov A. V., in the ‘low-spin’ case. For clarity, we only presented these KlypinA.A.,PorcianiC.,PrimackJ.R.,2001,ApJ,555, two cases. The intermediate cases show a monotonic trend 240 between those shown in Fig. 3. DalcantonJ.J.,SpergelD.N.,SummersF.J.,1997,ApJ, 482, 659 Dalla Vecchia C., Schaye J., 2012, MNRAS, 426, 140 DebattistaV.P.,MayerL.,CarolloC.M.,MooreB.,Wad- 4 CONCLUSIONS sley J., Quinn T., 2006, ApJ, 645, 209 Dutton A. A., 2009, MNRAS, 396, 121 Using numerical models of disc galaxy formation, we found Erwin P., Beckman J. E., Pohlen M., 2005, ApJ, 626, L81 a correlation between the initial spin of the host halo and Fall S. M., Efstathiou G., 1980, MNRAS, 193, 189 the shape of the radial profile of the stellar disc. Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., We find that galaxies with an initial spin parameter 2013, PASP, 125, 306 λ(cid:46)0.035formanup-bendingdiscprofilewhilelargervalues Freeman K. C., 1970, ApJ, 160, 811 ofλyielddown-bendingdiscs.Pureexponentialdiscsoccur Hopkins P. F., 2013, MNRAS, 428, 2840 onlyrightatλ≈0.035 whichcoincidesapproximatelywith Jetley P. Wesolowski L., Gioachin F., Mendes C., Kale themedianofthe λdistributionincosmologicalsimulations L. V., Quinn T. R., 2010, In Proceedings of the 2010 (λ = 0.031; Macciò et al. 2008). Thus, our model explains ACM/IEEE International Conference for High Perfor- why only some late-type galaxies exhibit pure exponential manceComputing,Networking,StorageandAnalysis,SC discprofiles, whilethe majority ofthemshowbreaks inthe ’10 outerdiscprofiles.Asthetransitionbetweenup-anddown- JetleyP.,GioachinF.,MendesC.,KaleL.V.,QuinnT.R., bending disc profiles (λ = 0.035) in our model coincides 2008,ProceedingsofIEEEInternationalParallelandDis- with the median of the λ distribution, we expect roughly tributed Processing Symposium 2008 equal abundances of up- and down-bending profiles which KazantzidisS.,MagorrianJ.,MooreB.,2004,ApJ,601,37 are comparable but not equal to observational results (30 Keller B. W., Wadsley J., Benincasa S. M., Couchman % and 60 %; Pohlen & Trujillo 2006). A possible cause for H. M. P., 2014, MNRAS, 442, 3013 thisdiscrepancybetweenourmodelandobservationsisthat Lin D. N. C., Pringle J. E., 1987, ApJ, 320, L87 gasincosmologicalsimulationsgenerallyhaslargerangular Macciò A. V., Dutton A. A., van den Bosch F. C., 2008, momentum than the DM (Stewart et al. 2013). MNRAS, 391, 1940 Nevertheless the model qualitatively reproduces all MarinacciF.,FraternaliF.,NipotiC.,BinneyJ.,CiottiL., types of observed disc profiles. In a follow-up paper we will Londrillo P., 2011, MNRAS, 415, 1534 furtherexplorethiseffectincosmologicalzoomsimulations. Menon H., Wesolowski L., Zheng G., Jetley P., Kale L., Quinn T., Governato F., 2014, arXiv:1409.1929 MoH.J.,MaoS.,WhiteS.D.M.,1998,MNRAS,295,319 NavarroJ.F.,FrenkC.S.,WhiteS.D.M.,1997,ApJ,490, ACKNOWLEDGEMENTS 493 The authors thank Frank van den Bosch for his very help- Pohlen M., Dettmar R.-J., Lütticke R., Aronica G., 2002, ful comments on setting up the simulations. The analysis A&A, 392, 807 was performed using the pynbody package (Pontzen et al. Pohlen M., Trujillo I., 2006, A&A, 454, 759 2013).ThesimulationswereperformedontheTHEOclus- Pontzen A., Roškar R., Stinson G., Woods R., , 2013, ter of the Max-Planck-Institut für Astronomie and the Hy- pynbody:N-Body/SPHanalysisforpython,Astrophysics dra supercomputer of the Max-Planck-Gesellschaft at the Source Code Library (cid:13)c 0000RAS,MNRAS000,000–000 6 Herpich et al. Ritchie B. W., Thomas P. A., 2001, MNRAS, 323, 743 Roškar R., Debattista V. P., Stinson G. S., Quinn T. R., Kaufmann T., Wadsley J., 2008, ApJ, 675, L65 Stewart K. R., Brooks A. M., Bullock J. S., Maller A. H., DiemandJ.,WadsleyJ.,MoustakasL.A.,2013,ApJ,769, 74 Stinson G., Seth A., Katz N., Wadsley J., Governato F., Quinn T., 2006, MNRAS, 373, 1074 Stinson G. S., Brook C., Macciò A. V., Wadsley J., Quinn T. R., Couchman H. M. P., 2013, MNRAS, 428, 129 ÜblerH.,NaabT.,OserL.,AumerM.,SalesL.V.,White S. D. M., 2014, MNRAS, 443, 2092 van den Bosch F. C., 2001, MNRAS, 327, 1334 Yoachim P., Roškar R., Debattista V. P., 2010, ApJ, 716, L4 Zentner A. R., Bullock J. S., 2003, ApJ, 598, 49 (cid:13)c 0000RAS,MNRAS000,000–000