ebook img

How the Societal Metabolism-Labour Nexus Changes from Agrarian to Industrial Societie PDF

21 Pages·2017·6.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How the Societal Metabolism-Labour Nexus Changes from Agrarian to Industrial Societie

sustainability Article More Energy and Less Work, but New Crises: How the Societal Metabolism-Labour Nexus Changes from Agrarian to Industrial Societies WilliHaas1,*andHailemariamBirkeAndarge2 1 InstituteofSocialEcology,AlpenAdriaUniversitaet,1070Vienna,Austria 2 DepartmentofGeographyandEnvironmentalStudies,DebreBerhanUniversity, 445DebreBerhan,Ethiopia;[email protected] * Correspondence:[email protected];Tel.:+43-1-522-4000-422 Received:30January2017;Accepted:4June2017;Published:26June2017 Abstract: The scientific finding that humanity is overburdening nature and thus risks further ecological crises is almost uncontroversial. Main reason for the crises is the drastic increase in the societal metabolism, which is accomplished through labour. In this article, we examine the societalmetabolism-labournexusintwoenergyregimes: avalleyintheEthiopianhighlands,typical ofanagrariansociety,andavillageinAustria,typicalofanindustrialsociety. IntheEthiopianvillage, thesupplyoffooddemandsalmosttheentirelabourforce,thuslimitingthecapacitytofacilitate materialflowsbeyondfoodprovision.IntheAustrianvillage,fewerworkinghours,lowerworkloads but50timeshigherusefulenergyallowtoaccumulatestockslikebuildings70timeshigherthan theEthiopiancase. Withfossilenergy, industrialsocietiesdecisivelyexpandtheirenergysupply andreducelabourhoursatthecostofhighcarbonemissions,whicharealmostnon-existentinthe Ethiopiancase. Toovercometheresultingecologicalcrises,thereisacalltodrasticallyreducefossil fuelconsumption. Suchanabandonmentoffossilfuelsmighthaveasfarreachingconsequencesfor thesocietalmetabolism-labournexusandconsequentlyhumanlabourastheintroductionoffossil fuelshashad. Keywords: labour;sociometabolictransition;energyregimes;primaryenergy;exergy 1. Introduction: HumanLabourandtheSociometabolicTransition Globalecologicalcrisessuchasclimatechangeortheprogressivelossofspecieshavealready crossedtheplanetaryboundariesforasafeoperatingspaceforhumanity[1]. Scientificanalyseseven gosofarastocharacterizemankindasageologicalfactorinthenewly-definedAnthropocene[2]. Inthisepoch,humanshavebecomethedominantinfluenceonbiological,geologicalandatmospheric processesoftheearthsystem. Theinsightthatthisincreasinghumandominanceoftheearthsystem isduetotherapidlygrowingsocietalmetabolism,globalsociety’smaterialandenergeticexchange withnature,becomesmoreandmoreaccepted[3]. Maindriverofthisdevelopmentareespecially industrializedandemergingeconomies. Thegrowingsocialmetabolismhasbecomepossibleduetoanenergytransition,namelyashift away from the biomass-based energy regime of agrarian societies to fossil fuel-based industrial societies [4,5]. In this article, we want to show that such energy transitions go hand in hand with atransitionofhumanlabouritself. Thisisimportant,sinceintensifyingglobalecologicalcrises,sooner orlater,requireanewtransitionawayfromtheuseoffossilfuelswhichisexpectedtohaveasmany and equally far-reaching implications for human labour as the previous transition to a fossil-fuel basedindustrialsocietyhad[6]. Thus,itseemstoberewardingtobetterunderstandtheinterplay betweenmaterialuse,energyconsumption,andlabourinthecontextofthedifferentenergyregimes. Sustainability2017,9,1041;doi:10.3390/su9071041 www.mdpi.com/journal/sustainability Sustainability2017,9,1041 2of21 Toinvestigatewhatwecallthesocietalmetabolism-labournexus,wemakeuseofasociometabolic perspective. Tothisend,inafirststep,wedevelopasimpleanalyticalschemeinthefollowingsection (Section2). Inasecondstep,beforepresentingtwocasestudies,webrieflyintroducemethodsand describe surveys as well as data generation for the cases (Section 3). In a third step, we apply the schemetotwolocalcases, oneasillustrationforanagrarian(Section4)andoneasillustrationfor aruralvillageinanindustrialsociety(Section4). ThefirstlocalcaseisinEthiopia,inavalleyinthe highlands. Thelocalagrariancommunityisbasedonbiomassastheprimaryenergysourceanduses fossilenergycarriersonlytoaminorextent. ThesecondcaseisanAustrianvillagewhichispartofan industrialsocietybasedontheuseoffossilenergy. Afteradetailedpresentationofthetwocases,in aforthstep,wecontextualisetheresultsonthesocietalmetabolism-labournexuswithaveragedata takenfromliteratureandcomparethetwocaseswitheachotherforbetterunderstandingthesocietal metabolism-labournexus(Section5). 2. TheSocialMetabolism-Labour-Nexus Societychangesnaturebothinanintentionalandanunintentionalway,andthechangesinturn affectsociety. Thesesociety-natureinteractionsareanalysedwiththeconceptsofsocialmetabolism, society’smaterialandenergeticexchangewithnature,andthecolonizationofnature[7–11]. Basedon theideaofthemetabolismdevelopedbyMarx[12],theconceptwasfurtherdevelopedanalogouslyto theeconomicperspectiveinthenationalaccounts. Itisnotsimplyhumans,takenontheirown,who aredependentandhaveanimpactonnature,butthesocietalmodeofproductionandconsumption whichwecallsociometabolicregime. Keytometabolicregimesistheenergyavailabilityquantitatively across space which on the one hand largely determines the capacity of humans to change nature andtoremove,transportandprocessresourcesandontheotherhandmakesabigdifferenceforthe societalconditionse.g.,howmuchtimeremainsforotheractivitiesthanfoodprovisioning. Inthe historyofmankind,severalsociometabolicregimescanbedistinguishedwithdistinctivetransitions betweenthem,oftenreferredtoasrevolutions. TheNeolithicrevolutionmarksthetransitionfromthe regimeofhuntingandgatheringtotheagrariansociety,andtheindustrialrevolutionthetransition fromtheagrariantotheindustrialregime. Apartfromveryfewexceptions(e.g.,smallislandstates wherewindasdriveenergyforsailingboatsusedfortradingandfishingcouldmakeupasignificant shareinthesocietalenergysupply),biomassisbyfarthemostimportantsourceofenergyuntilthe industrialrevolution. Asarule,biomassprovidesabout99%oftheprimaryenergyinpreindustrial societies. Foodandfeedforhumansandanimalscomprisesbyfarthelargestshareofthisenergy input. Byusingbiomass,humansmakeuseofsolarenergyflowsthroughlandmanagement. The GermanenvironmentalhistorianRolfPeterSieferle[4]calledthisthecontrolledsolarenergysystemof agriculturalsocieties. Workofapopulationonagiventerritoryisinvestedtotransformecosystems andtoincreasetheamountofusablebiomassthatcanbeharvestedperunitofarea. Aminimum prerequisiteforthelong-termfunctioningofsuchanenergysystemisthattheharvestedbiomass at least provides the necessary energy for human and animal work in the form of food and feed. The higher the surplus, the more complex societal structures are possible. However, in agrarian societies,thissurplusisquitelimitedandisaroundten%inaverageyears[6]thuslimitingthenumber ofpeoplewhoarenottiedtoworkforsociety’sfoodprovision. Thestillongoingindustrializationofagriculturesincethe16thcentury[3]hasledtoamassive transformationoftheagriculturallandscape,whichhastobemademachine-friendly. Largefields have been created, from which all the species-rich field margins with ditches and shrubs, and landmorphologicalobstacleshavebeenremoved. Workingwithheavyequipmentpromotedsoil compaction and erosion. Large-scale monocultures require a high use of agrochemicals [13–15] Consequently,theroleofagriculturewithinsocietychangeddramaticallyduringthetransitionfrom an agrarian to an industrial society. While agriculture in agrarian societies is mainly an energy supplierbyprovidingfoodandanimallabour,industrializedagricultureconsumesmoreenergythan isultimatelyobtainedfromit[16–18]. Thisismadepossiblebyfossilfuels,whichcanbeminedin Sustainability2017,9,1041 3of21 largequantitiesofdepositsasrequired. Further,fossilfuelshaveveryfavourablefeatureslikethe combinationofeasyportabilitywithtrucksandpipelines,andahighenergydensitywhichisabout threetimesashighastheoneofbiomass. Thus,accesstofossilfuelsenableshighenergyavailability almostanytimeandanywhere. Today,halfoftheworld’spopulationstilllivesundermoreorlessagrarianconditions[3],and whatisusuallycalleddevelopmentorprogresscanbeunderstoodasatransitionfromtheagrarianto anindustrialregime[19]. Todiscusstheinterplaybetweenwork,energyandmaterialmorespecifically inthetwodifferentregimes,weintroducetwoempiricalcases: anagrariancommunityinavalley oftheEthiopianhighlandsandanindustrializedAustrianruralvillage. Thesetwoexamplesserve asillustrativecasesforthetworegimes. Inagrariansocieties,therearenotabledifferencesbetween localcaseswithvariationsinsoilfertility,climaticconditions,agriculturalpractices,favouredplants, importance of livestock, population density and others. The same can be stated for rural cases in industrialsocieties. However, despitetheseremarkabledifferencesintheirmetabolicrates, thisis materialandenergyusepercapita,variationswithininoneenergyregimearenotassignificantasthe differencesfromonetoanotherenergyregime[3,4,20,21]. Further,despitethedifferencesbetween casesofoneandthesameenergyregime,theydisplaynoteworthycommunalitieshowtheychangein thetransitionlikethebuildingupofgrowingstocks,theincreaseduseoftechnologyhandinhand withlessandlessmanpowerneededtosupplysocietieswiththenecessaryfood,feedandtechnical energy. Therefore, our analysis is less concerned about differences within one energy regime, but focussesonthemorefundamentaldifferencesintherelationbetweenwork,energyandmaterialin twocasesillustrativefortwodifferentenergyregimes. Toinvestigatethesedifferences,weuseasimpleanalyticalschemeconsistingofthefollowing dimensions[6,22]: (A) Societal stocks: human population, domesticated animals, colonized land and man- madeartefacts. (B) Sociometabolicmaterialflowslikeextraction,tradeflowsandmaterialconsumption. (C) Primaryenergyandusefulenergyrelatedtohumanlabour,animallabourandtechnology. Basedonthisschemeandthemethodsdescribedinthefollowingsection,wediscussthesocietal metabolism-labournexusintwocases,oneinanagrarianandoneinanindustrialsociety. 3. MethodsUsedandDataSources ThetwocasestudiesfollowstandardMaterialFlowAccountingprinciples. Therefore,wepresent hereonlyasummaryandprovideanoverviewofthereferencesused. Inthisdescription,wepay specialattentiontoissuesespeciallyrelevantforthecasesorwherethecasesslightlydeviatefrom thestandards. Further,wedescribethesurveysperformedtogeneratethesedataandgivereferences for more detailed information on the case studies. Further, we provide some background on the methodologyforcalculatingusefulenergyandprovidethereferences,wherethesemethodisdiscussed inmoredetail. Finally,webrieflydescribehowcarbonemissionsareestimatedforthetwocases. 3.1. MaterialFlowAccounting(MFA) Thebaseoftheanalysisreliesontheconceptualframeworkandthesystemboundariesapplied ineconomy-widematerialflowaccountingatnationallevel(MFA)[9,11,23–25]. Theguideandfurther referencesconsistentlyprovidedetailedinformationrelevantforaccounting. 3.1.1. MethodologicalandConceptualConsiderations Societalmetabolismisbasedonthepremisethatanysocialsystemreproducesitselfbiophysically throughaconstantflowofmaterialsandenergywithitsnaturalenvironmentaswellaswithother socialsystems. Thus,sizeandcompositionofflowsareintricatelylinkedtothebiophysicalstocksof thesocialsystem;therefore,weareespeciallyinterestedinstocks. Tomeasurethebiophysicalflow Sustainability2017,9,1041 4of21 characteristic,weusedomesticmaterialconsumptionasakeyindicator,whichismaterialextraction plusimportsminusexportswithinayear. Thisindicatorincludesnotjusttheconsumptionofpeople, butalsothefeedforlivestockandallmaterialstomaintainorexpandsocietalstocksaswellasalllosses occurringduringtheprocessingofmaterials. Further,flowsinthetwocasesarebrokendowninto mainmaterialgroupsinaccordancewithmaterialflowaccountingconventions(cf.[25]). Weusually distinguishintobiomass(likecereals,grass,wood,etc.),mineralmaterials(non-metallicmineralslike sand,gravel,stones,cementetc. mainlyforconstructionandmetals)andfossilenergycarriers(likeoil, gas,coal). Practically,flowsaremeasuredintonnesforaspecificyearandallflowslikebiomassare reportedinfreshweight. Standardmoisturecontentsareprovidedintheguide. Biggestuncertainties existforconstructionmineralssincethesematerialsareconsumedinlargequantitiesbutinirregular intervals. Thus,accountingannualflowsinsmalllocalcommunitiesviasurveysorobservationsmight provideanaccuratebutmisleadingresult,especiallyifmainconstructionworkwasperformedjustin thestudiedyearor,incontrast,inmanyyearsbutnotinthestudiedyear. Inourcases,weprovide anaveragepictureandthereforeaskedpeopleaboutstockchangesinthepreviousyearsandestimated anannualaverageofadditionstostocks,whichstillhashigheruncertaintiesthanotherflowdata. Insocialmetabolismresearchboundariesarenotterritorialonesbutfunctionalones. Whilethis issueisofminorrelevancefortheeconomy-widematerialflowaccounting,thisbecomesquiteatricky issueatthelocallevel. Toaccountforthis,furtherstandardswereappliedasdiscussedinthelocal studies manual [26]. In order to follow a functional understanding of system boundaries in both cases,wefirstdefinedwhobelongstothecommunityorvillageinaccordancetopoliticaloreconomic membershipaswellassimplybyfactualpresence.Thus,people,astockofthesocialsystem,isdefined. Iftheboundariesarefunctionalandnotterritorial,itneedstobeclarifiedwhichland,anothersocietal stock,belongstothesocialsystem. Thelandunderconsiderationisthelandthatisunderlegitimate controlofthemembersofthecommunity. Inourtwospecificcases,landwasinvolvedwhichwas positionedsotosayoutsidetheterritorybutunderlegitimatecontrolofmembersofthecommunity. InBahskuritoutsidetheterritorymeansoutsidethevalleyrespectivelythewatershedandinTheyern outsidemeansoutsidethepoliticalboundariesofthevillage. Thus,flowsrelatedtothislandunder legitimate control of the Bashkurit Valley were accounted for. Consequently, land and its related flows under legitimate control of persons not belonging to the respective local society but within thepoliticalbordersofTheyernorthegeographicboundaryofBashkuritValleywasnotconsidered. Asocialsystem’slivestockisdeterminedbybelongingtopeopleofthesocialsystemorwhentheir reproductionlikefeeding,healthcareandbreedingiscontrolledbylocalpeople. Analogous,whether artefactsbelongtoasocialsystemornotisdefinedviabelongingtoormaintenancebyamemberof thesocialsystem. These are in brief the principles applied in these studies to identify societal stocks and flows forthetwocases. Allthesedecisionstoidentifyasocialsystem’sstockisdiscussedinmoredetail in manuals for the national as well as the local level, also including practical conventions such as definitionswheretheboundarybetweensocietyandnatureisdrawn[23–26]. 3.1.2. SurveysandData Whileeconomy-widematerialflowaccountingatthecountrylevelcanrelymainlyonstatistical data,thelocallevelmostlycan’tuseanystatisticalinformationsincetheyarenotaccurateenough orsimplyarenotavailableatall. Therefore, inbothlocalcasestudiespresentedhereasurveyfor generatingprimarydatawasperformed. InBashkuritValleythesurveywasdoneduringaoneyear fieldtrip. Basedonthedatarequirementsfortheanalysisofland,material,energyandtimeuse,the researcherandhisresearchassistantapplieddifferentsurveymethods. Basedonexistingmapsfrom previousstudiesaninspectionofthelandwasperformedtoestablishthedifferenttypesoflanduse. Thisinformationwaslaterverifiedingroupdiscussions. Numberoflivestockwasestablishedduring ahouseholdsurveyandcattlenumberswereverifiedbycountinganimalsinstables. Extractionof harvestandfirewoodwasestimatedbyweighingthebundlestypicallyputtogetherbyinhabitants. Sustainability2017,9,1041 5of21 Incombinationwithresultsfromhouseholdsurveysaboutthenumberofbundlesproducedduring ayear,harvestandfirewoodamountswerecalculated. Thiswascross-checkedwithyieldfactors fromthelocaluniversityinGondar. Grazingamountswereestimatedbyfeedrequirementsperhead ofthedifferenttypesofdomesticanimalsminusthefodderprovidedbythefarmers. Information on the later was gathered during the household survey. Time use data were obtained by a mix of in-depth participatory observations of a variety of different persons (representing different age groups,gender,familysizesandwealth),householdsurveysandgroupdiscussions. Thedataonthe householdpossessionswasgainedduringthehouseholdsurveybyweighingthetypicalartefactsin somehouseholdsandbycountingnumberofartefactsinallsurveyedhouseholds. Weightofbuildings wascalculatedbyestimatingtheweightofeachmaterialcomponent(wood,grass,metal,stone,clay, bricksandcement)usedfortwodifferenttypesofhouses(rectangulartin-roofhousesandcircular thatched-roofhouses). Tin-roofhousesaremainlyusedasresidentialhouses, whilethatched-roof houses are mainly used as kitchen buildings and stables. Detailed information is documented in Andarge[27]. InTheyerndataweremainlygainedbyhouseholdsurveysandmethodsanddatadescribedin detailinHaasandKrausmann[28]. About80%ofthehouseholdswereinterviewedandalmostallof themwereverycollaborative. Eachinterviewwasperformedbytwointerviewerswhowerepartof aresearchteamwithverygoodknowledgeonthemethodofmaterialflowaccounting.Sinceanofficial mapwithdemarcationlineswaspreparedintheyearbeforetheinterview,itwasusedtodiscusswith eachhouseholdwhichlandisundertheircontrolandwhatistheactuallanduse(incaseoffields farmedcropswereinquired). Severaldataonthebuildingslikesquaremeters,floors,rooftype,key materialsusedanddateofconstructionwerecollected. Thisinformationwascross-checkedwithaerial photographs. Weightofbuildingswasestimatedbyusingafactorrelatedtothehabitableareaofthe buildings[29]. Dataonvehiclesliketypeandbrandofvehicle,mileageperyear,fuelconsumptionper 100kmwascollected. Withthesefiguresandstandardfactorsforvehicleweightstheoverallstocksof vehiclesaswellastheannualfuelconsumptionwasestimated. Estimatingthehouseholdpossession wasadifficulttask,sinceavastnumberofartefactswerepresentinthehouses. Thus,possessionswere establishedbyachecklistcontainingdifferentproductgroups,withheavierproductsbeinglistedin moredetail. Electricitybillswereanalysedtogetherwiththeintervieweestoobtainthekilowatthours peryear. Harvestdatafromagriculturalfieldsaswellasthelocalforestswerewellknownbyfarmers andthusdatacollectionwassimple. Cross-checkingwithtypicalyielddataconfirmedtheinformation. Localconsumptionoflocallyproducedfoodwassurveyedaswell. Foodrequirementsforthelocal populationwasestimatedonthebaseofaveragenutritiondataincludingaveragefoodwastelosses forAustria. Thus,importsoffoodwereestimatedbydeductingtheconsumedfoodlocallyproduced fromthefoodrequirements,sincethiscanbeassumedtobepurchasedelsewhere. Regardingtime useonlytimespentforeconomicactivitieswasinquired(employment,farming,assistanceinfarming activities). In principle time use was surveyed on an annual base, this means that weekly and seasonal differencesincludingholidays(inthecaseofAustria)werespecificallyaskedfortoestimatetheannual timespentforlabour. Thedailytimeuseforlabourwasthenthedivisionoftheannualtimespent by365. 3.2. PrimaryandUsefulEnergy Inprinciple,themethodappliedherefollowsthedetaileddescriptionpresentedinatwo-part articlebyHaberl[20,30]. Inadditiontomaterials,thebiophysicalreproductionofsocialsystems(and thusit’ssocietalstocks)requiresacontinuoussupplywithenergy,whichcanbeprovidedbymaterials intheformofmaterialenergycarrierslikebiomassorfossilfuelsorbyelectricity,whichflowswithout material. Inourstudy,wedistinguishbetweenprimaryenergyandusefulenergy. Primary energy is defined as the energy in the form in which it is extracted from the natural environment,forexample,extractedenergy-richmaterials(biomass,fossilfuels),harnessedflowsof Sustainability2017,9,1041 6of21 mechanicalenergy(hydropower,windpower,etc.),nuclearenergytransformedtoheat,orradiant solarenergyusedtoproduceheatorelectricity[30]. Tohighlighttwocase-specificexamples: primary Sustainability 2017, 9, 1041 6 of 21 energyistheenergeticvalueoffirewoodforcooking/heatingorofcerealsforhumannutritionat tphoeinpto oinf tetxhterarcetsiopnec, teivveene nife ritg yis ciamrrpyoirntgedm. aFtoerr ieaxlsamarpelceo, lilne cttheed cfarosem offo lroecsatsl eolrehctarrivcietsyt ecdonfrsoummpfiteilodns,. Wweh ecnonwsiedaecrc tohuen rtefloartepdr ipmraimryareyn eerngeyrginy ohuarrntwesosecda siens ,aw heyadlrwopayoswceorn psliadnetr othre thene eorigl yexcotrnatcetnedta ftrothme pnoatiunrteo wfehxitcrha cwtiaosn u,seevde ntoi fpirtoidsuimcep eolertcetrdi.ciFtyo rine xaa tmheprlme,ailn ptohweecra spelaonft.l o calelectricityconsumption, wecoUnsseifduelr etnheergreyl a(“teedxeprgriym”)a risy tehnee erngeyrhgyar tnheasts iesd uilntimaahtyedlyr oupsoedw oerr pavlaaniltaobrlet htoe sooiclieextytr a(scetee dFifgruomre n1)a.t Tuhreisw rehfiecrhs wtoa tshues aecdtutoalplyro udsuecfuele wleoctrrki csiutychin aas mthoervminagl ap opwilee ropf lsaanntd. from one place to another or the pUhysesficualle dnreirvgey p(“oewxeerr gpyu”l)liinsgth ae pelnoeurgghy ftohra tai cseurlttaiimna dteislytaunsceed, oorr tahvea tihlaebrlmeatol esnoeciregtyy t(hseaet hFiegautsr eth1e). Tfohoids rienf etrhset ocothoekiancgtu paollty. uSosecfieutliewso drkispsuocshe aosvmero uvsinefgual epnileergofy sdaneldivferroemd obnye hpulamceantos, adnoomtheesrtiocrattehde panhiymsiaclasl adnrdiv teepchonwoelropgyu.l lTinhgesaep dloifufegrhenfot rtyapceesr toafi nwdoirskt atnakcee,no trotgheeththeer,r mwael ceanlle srgoyciethtaalt uhseeaftuslt ehneefrogoyd. iOnft shpeeccoiaolk iinntgerpeostt. iSs ohcoiewti emsudcishp uosseefouvl eernuersgeyfu ilse innevregsytedde lbivye hreudmbaynsh uinm tahnes f,odromm oefs thicuamteadna lnaibmoualrs. aUnsdeftuelc hwnoorlko giny.clTuhdeisnegd hifufemreannt atnypde asnoifmwalo rlakbtoaukre nast owgeeltlh aesr, wwoercka pllesrofcoiremtaeldu sbeyf utelcehnnerogloy.gOiefs scpaenc ibael iqnutaenretsittaitsivheolwy rmecuocrhdeuds eifnu jloeunlee r[g3y1,i3s2i]n. vIne satdeddibtiyonh,u hmuamnasnin latbhoeufro rsmpeonft hinu tmhae neclaobnooumr.icU ssyesftuelmw loikrke ifnocr laugdriincgulhtuurme aonr wanadgea nlaimboaulrl acbaonu brea esxwperellsasesdw ionr akvpeerrafgoer mhoeudrbs ywtoerckhendo lpoegri epsecrasonnb aenqdu danatyi t[a2t6iv].e Ilny rpercaocrtdiceed, ianlljo huoleu[r3s1 ,a3n2]n.uInalalyd dwitoiornk,ehdu mina na lalobcoaul rcsopmenmtiunntihtye eacroen osmurivcesyyestde manlidk edfoivriadgerdic ublytu troetoarl wpoapguellaatbioonu rancadn 3b6e5 edxapyrse. sTshede uinseafvuel reangeerghyo uprrsowviodrekde dbyp heurmpearnsos nisa tnhdend tahye [p2r6o].dIunctp oraf chtoicuer,sa wllohrokuerds aanndnu thalel yavweorarkgee dwionrak lloocaadl pcoerm hmouurn (itJy/haoruers) u[2rv0]e.y edanddividedbytotalpopulationand365days. TheuTseecfhunliecnaellryg, yusperfouvli edneedrgbyy ihs uthmea rnesmiasitnhienng tehneerpgryo dauftcetr oafllh coounrvsewrsoiornk elodsasensd atrhee daevdeurcatgeed wfroormk ltohaed ppriemrahroyu ern(eJ/rghyo uarn)d[ 2t0h]e. conversion efficiency is the ratio between useful to primary energy. Figure 1. (a) Conversion from primary energy as extracted from nature to societal useful energy at Figure1. (a)Conversionfromprimaryenergyasextractedfromnaturetosocietalusefulenergyat point of societal use by type of useful energy delivered and conversion efficiency as output to input pointofsocietalusebytypeofusefulenergydeliveredandconversionefficiencyasoutputtoinput ratio [20,30]; (b) Alternative view of societal useful energy by the three converters humans, animals ratio[20,30];(b)Alternativeviewofsocietalusefulenergybythethreeconvertershumans,animals and technology to deliver useful energy and indication of human labour as sub-category of societal andtechnologytodeliverusefulenergyandindicationofhumanlabourassub-categoryofsocietal useful energy (schematic sketch presents conceptual relations but no real flow proportions). usefulenergy(schematicsketchpresentsconceptualrelationsbutnorealflowproportions). In the case of human labour in Bashkurit Valley (agrarian society) the assumptions are that Technically,usefulenergyistheremainingenergyafterallconversionlossesaredeductedfrom humans can deliver up to 100 Watt per hour in continuous work [33]. This is, however, a maximum. theprimaryenergyandtheconversionefficiencyistheratiobetweenusefultoprimaryenergy. A continuous delivery of 40–50 Watt useful power per hour may be an appropriate guess; based on In the case of human labour in Bashkurit Valley (agrarian society) the assumptions are that the 5 h of work per day in Bashkurit Valley this equals about 300 MJ per capita and year. In Theyern humanscandeliverupto100Wattperhourincontinuouswork[33]. Thisis,however,amaximum. (industrialized society), it is estimated that the continuous delivery for farming activities is about 50% Acontinuousdeliveryof40–50Wattusefulpowerperhourmaybeanappropriateguess;basedon of the one in agricultural societies and for desk work about 30% of agrarian farming; based on 2.5 h the5hofworkperdayinBashkuritValleythisequalsabout300MJpercapitaandyear. InTheyern of work per day in average in Theyern, this equals about 50 MJ per capita and year. In a similar way, the useful energy for animals in Bahskurit was calculated according to Haberl [20]. In the case of Theyern the animal labour of horses was calculated by assuming 250 Watt of useful energy per hour of horseback riding [34]. With one hour of daily riding for both horses this adds up to 5 MJ per person and year. Useful energy delivered by vehicle motors was calculated assuming an efficiency of 15% (from final energy to useful energy) [35] and the efficiency from primary to final energy was assumed Sustainability2017,9,1041 7of21 (industrializedsociety),itisestimatedthatthecontinuousdeliveryforfarmingactivitiesisabout50% oftheoneinagriculturalsocietiesandfordeskworkabout30%ofagrarianfarming;basedon2.5h ofworkperdayinaverageinTheyern,thisequalsabout50MJpercapitaandyear. Inasimilarway, the useful energy for animals in Bahskurit was calculated according to Haberl [20]. In the case of Theyerntheanimallabourofhorseswascalculatedbyassuming250Wattofusefulenergyperhourof horsebackriding[34]. Withonehourofdailyridingforbothhorsesthisaddsupto5MJperperson andyear. Usefulenergydeliveredbyvehiclemotorswascalculatedassuminganefficiencyof15% (fromfinalenergytousefulenergy)[35]andtheefficiencyfromprimarytofinalenergywasassumed with65%[20];theefficiencyofcookingwasassumedtobe6%forBashkuritvalley[36]. Inviewofthe three-stonecookingtechnologyused,thisassumptionseemstoberealistic. Ifthecookingtakesplace inthehut,thefireforcookingalsoheatsthehut. Thiscouldincreasetheefficiencyoftheenergyuseto asmuchas80%albeitonlyincoldseasons. Inthiscalculation,thiswasneglected,alsobecausethe warmthrapidlyescapesinthedraughtyhuts. Duetotheindoorpollution,hutsneedtobedraughtyto limitharmfulhealtheffects. Mainreasonfornotconsideringthewasteheatofcookinghasheating is that the heat is mainly required in the residential houses, while the warmth is generated in the kitchenhuts. ThecookingefficiencyforTheyernwasestimatedtobe30%(accordingtoHaberl). Space heatinginTheyernwascalculatedaccordingtoassumptionsmadebyHaberlbutadjustedtothelocal energy mix (biomass, oil, electricity, solar energy for hot water). In a similar way, the conversion frompetroleumtolightingintheBashkuritValleyisbasedonHaberl’sassumptionsbutadjustedto petroleumastheonlysource. 3.3. CarbonEmissions For estimating the carbon emissions a simple calculator was used [37]. The country-specific emissionsfactorsappliedhereare2.8kgCO /litregasoline,3.2kgCO /litredieselorheatingoiland 2 2 0.184kgCO /kWhelectricityforTheyern. PetroleumusedintheBashkuritValleywascalculatedwith 2 2.8kgCO /litre. Biomasswasassumedtobecarbonneutralinbothcases. 2 4. NoTime: InsightsintoanAgrarianSocietyoftheEthiopianBashkuritValley The first case is located in Ethiopia, a country that has seen fast growth in recent years, but GDPpercapitaiswith500US$(incurrentpricesfor2012)[38]oneofthelowestintheworld. The agriculturalsectoraccountsforabout47%ofnationalGDPand85%ofemployment[39]. Agriculture ismainlyrain-fed,dominatedbysmallholders(Lavers2012)andshowsduetotheverylowuseof fossilenergyandmachinerytypicalpatternsofanagrariansociety[40]. ThecasestudyareaitselfisavalleycalledBashkuritandlocatedinthenorthwestofEthiopia.Itlies northofGondar(populationapproximately200,000),thefourthlargestcityinEthiopia(seeFigure2). The closest road to Gondar is a few kilometres away and can only be reached on foot paths. The landscapeisabout2300mabovesealevel,isslightlyhillyandbarreninallseasonsexceptforsummer (June to September). The inhabitants feed themselves by means of a sophisticated system of field andlivestockfarmingandusefossilfuelsforlightingonly. Asinmanyagrariansocieties,rainisof existentialimportanceintheBashkuritValleyasitdetermineswhetherthenextharvestissufficientfor localfoodsuppliesandwhether—inthebestcase—asurpluscanbesoldinthemarket. InBashkurit, theprecipitationisayearlyaverageof1200mmperyear,muchmorethaninthelow-precipitation north-eastofAustria(450mm)androughlyattheleveloftheAustrianaverage(1100mm). However, rainfallsmoreconcentratedinashortertime,namely80%oftherainfallinfoursummermonths(June toSeptember). Inaddition,rainfallissubjecttostrongannualfluctuations,andbothsevererainfall anddroughtsoccurfrequently. ThedailytemperaturemaximumrangesfromsevendegreesCelsius inNovemberto32degreesCelsiusinApril. Inaccordancewiththisclimate,theBashkuritValleyis harvestedonceperyear. Wepreparedacomplexmaterialandenergyflowcalculationforthevalley. Forayear,thepeople inthevalleywitnessedandparticipatedinweighing,measuring,observing,countingandrecording Sustainability2017,9,1041 8of21 foradetailedstocktakingexerciseofthematerialstocks,materialandenergyflowsaswellastime use[27]. Alldatarefertotheyear2012. Sustainability 2017, 9, 1041 8 of 21 Figure 2. The Bashkurit Valley in summer (Photo: Hailemariam B. Andarge). Figure2.TheBashkuritValleyinsummer(Photo:HailemariamB.Andarge). 4.1. Societal Stocks: People, Livestocks, Land and Artifacts 4.1. SocietalStocks: People,Livestocks,LandandArtifacts In 2012, 2200 people lived in six villages of two to 13-person families (an average of seven In2012,2200peoplelivedinsixvillagesoftwoto13-personfamilies(anaverageofsevenpersons persons live in about 310 households) in the valley. The annual population growth in the valley is livbeeitnwaebeonu ttw3o1 0anhdo uthsreeheo %ld,s t)hien pthopeuvlaaltlieoyn. hTahse daonunbulaeldp ino pthuela ltaisotn 2g5 ryoewarths. iLnifteh eexvpaelcletaynicsyb aett wbiertehn itnw o andEtthhiorepeia% is, dtheesppiotep iumlaptrioovnehmaesndtso wubitlhe d61i nyetahres lsatsiltl 2lo5wy e[4a1r]s.. AL infeateioxnpaelc sttarnacteygayt fbroirmth 1i9n93E tahimiosp aiat is desap biitrethim raptero rvedemucetniotns:w foirth w6o1myeena, risnsstteilaldlo owf 7[.471, ]o.nAly n4a.0t icohnialdlrsetnra atreeg tyo fbroe mbo1rn9 9[327a]i. mBescaatuaseb oirft thhirsa te redsutrcattieogny:, fothrew Boamsheknu,riint sVteaaldleyo fh7a.s7 ,roencelynt4ly.0 sceheinld ar esnligahret tdoecbleinbeo irnn t[h2e7 ]b.iBrtehc aruastee, oinf tehfifsesctt rgarteogwyt,ht he BacsohnktuinriuteVs aalllbeeyith salsowreecre. nIntl ythsee e1n70a0 shliegchtatrdese colfi ntheei nvathlleeyb, iartbhourat toen,ein theifrfdec otfg trhoew atrheac oisn tfionruesets aanldbe it sloswcreurb.lIanntdh, eab1o7u00t ah tehcitradr easreo ffietlhdes,v aa qllueay,rtaebr oauret hoendegtehsi,r adnodf tthhee reamreaainisinfgo rreosutgahnldy esicgrhutb %la narde, raobcokuy ta thiordr uasreedfi feolrd psa,tahqs uanardt ebruailrdeinhgesd [g2e7s],. Tanhde 2th20e0r pemeoapilnei inng 2r0o1u2g hhellyd emigohret t%haanr e40r0o cokxyeno,r 9u00s ecdowfosr, 3p0a0t hs anddobnukielydsin, 1g5s0[02 s7h].eeTph aen2d2 g0o0aptse oasp wleeilnl a2s0 11020h0 eplodumltroyr aentihmaanls4. 0T0hoe xfaemn,il9i0es0 lcivoewds i,n3 o0v0edr o5n00k ehyosu,s1e5s 00 (some families had more than one house), 80% of which are covered with corrugated iron. The sheepandgoatsaswellas1000poultryanimals. Thefamilieslivedinover500houses(somefamilies remaining houses have grass roofs. 2.4 tonnes of material per person are used for houses, about half hadmorethanonehouse),80%ofwhicharecoveredwithcorrugatediron. Theremaininghouses of the material is biomass and the other half consists of minerals such as stones, clay and iron (for the havegrassroofs. 2.4tonnesofmaterialperpersonareusedforhouses,abouthalfofthematerialis corrugated iron roofs). By way of comparison, for Europe, the values are between 130 and 325 tonnes biomassandtheotherhalfconsistsofmineralssuchasstones,clayandiron(forthecorrugatediron per capita [42]. Household and personal possessions add up to about 130 kg per person in Bashkurit. roofs). Bywayofcomparison,forEurope,thevaluesarebetween130and325tonnespercapita[42]. Due to the absence of a power supply network, there are neither electric household appliances nor Household and personal possessions add up to about 130 kg per person in Bashkurit. Due to the electronic devices such as mobile phones or computers, except for a few radios. Much of the absenceofapowersupplynetwork, thereareneitherelectrichouseholdappliancesnorelectronic household items consist of kitchen utensils, furniture and agricultural tools such as pickaxes and devicessuchasmobilephonesorcomputers,exceptforafewradios. Muchofthehouseholditems ploughs. Some of the households also have petroleum lamps. Aside from clothing, personal consistofkitchenutensils,furnitureandagriculturaltoolssuchaspickaxesandploughs. Someof possession is minimal and consists mainly of school supplies for children. For adults, possession of the households also have petroleum lamps. Aside from clothing, personal possession is minimal the Bible is of high personal importance. and consists mainly of school supplies for children. For adults, possession of the Bible is of high per4s.2o.n Maleitmabpoloicr tFalnowces. of a Valley in an Agrarian Society In the Bashkurit valley, approximately 7000 tonnes of material or 3.2 tonnes per person are 4.2. MetabolicFlowsofaValleyinanAgrarianSociety extracted annually from the local environment (Table 1). These consist almost entirely of biomass, rouInghtlhye 4B0%as hofk huarritvevsatlelde yf,iealdp pcrroopxism (tahtreeley-f7o0u0rt0hsto anrne emsiollfetm, wahteeraita, lcoorrn3, .t2eftfo annnde sbapreleryp), e4r0s%on ofa re extbriaocmteadssa gnrnauzeadll ybyfr aonmimtahles laoncda l2e0n%v oirfo cnomlleecntetd(T waboloed1, )m. aTihnleys eusceodn saiss tfiarelmwooostd.e nInt iaredldyitoiofnb, ivoemrya ss, rousmghallyl a4m0%ouonftsh aorf vheosnteedy fiareel dtackreonp sfr(otmhr enea-tfuoruer. tThhsea roenmly imlleitn,ewrahlse aetx,tcraocrtne,dt eloffcaalnlyd abraer lleoyam), 4a0n%d of stones for the construction of huts (less than 1% of the extraction). Sustainability2017,9,1041 9of21 biomassgrazedbyanimalsand20%ofcollectedwood,mainlyusedasfirewood. Inaddition,very smallamountsofhoneyaretakenfromnature. Theonlymineralsextractedlocallyareloamandstones fortheconstructionofhuts(lessthan1%oftheextraction). Thelocalcommunityimports165kgofmaterialperpersonandyear. Thebulkofthis,80%,is biomassintheformofseed, feedandfood. Foodmainlyconsistsofsugarandcookingoil. Other importsaremineralmaterialssuchassalt,iron,cementandfertilizer.Aboutninekilogramsoffertilizer perpersonperyearareimported,whichamountsto35kgperhectareoffarmedland(inindustrial agriculturethisis100to200kgperhectare). Twelvekilogramsofartifacts(kitchenutensils,toolsand clothes)andaboutthreekgoffossilfuelsareimportedperpersonandyear. Exportsamounttoabout284kgperperson,accountingforjustunder10%ofthelocalextraction. Exportsareabout40%unprocessedwoodandgrain. Furthermore,strawanddriedcowdungare exportedasfuel. Quantitativelyinsignificant,butofeconomicimportance,istheexportofhoneyand mudfurnaces. Forthelatter,clayisremovedlocallyandmixedwithimportedcementandprocessed intosmallcookingstoves. Mostoftheexportedgoodsarebroughttonearbymarkets. Althoughthe incomeislow,itisnecessarytoimportgoodsortofinancehealthcareandschooleducation. Thestudyofthepercapitafoodsupplyshowsanintakebyhumansof2127kcal/cap/day[27]. AnestimateoftheenergyrequirementsbasedonFAOdataofkcal/kgbodymassfordifferentage groups[43]andthebodymassperagegroupintheBashkuritvalleyshowsthat2250kcal/cap/day are required. Thus, there is slightly too little food available compared to the requirements which constitutesasituationoffoodscarcity. Table1. Percapitamaterialflowsandconsumption(extractionplusimportsminusexports)forthe Bashkuritvalleyinkgfreshweightin2012[27]. Category Extraction Imports Exports Consumption (kgperPersonandYear) Biomass 3190 135 280 3045 Mineralmaterials 2 15 4 13 Fossilenergycarriers 0 3 0 3 Artefacts 0 12 0 12 Total 3192 165 284 3073 4.3. PrimaryEnergy,SocietalUsefulEnergyandHumanLabour Day-to-daylifeintheBashkuritValleyisextremelylabour-intensive,asisclearfromastatement fromWagaw,alocalfarmer: “Wedailystrugglewithnaturetofillourstomachsandthestomachsof ourcattle. Evenintheheatofthesunshine,wedonotinterruptourwork,butprotectourheadswith caps”([27],p. 98). Whenpeopleareaskedabouttheculturalsignificanceofwork,onequicklyfindsthatworkis closelylinkedtofoodprocurement. ThisisillustratedbythefrequentlyusedAmharicsaying“Yalsera aybla”,whichmeans“nowork,nofood”. Subjectively,workcreatestwoopposingmeaningsforthe inhabitants,dependingontheharvest. Ifthereisenoughfood,theresidentsareproudoftheirwork. Ifthefoodisnotsufficient,theyfeelitasaburden. If we examine human labour quantitatively, we base this analysis on functional time use studies[44]. Thesestudiestreathumantimeasakeyresourceofsocialsystems. Asocialsystem’s availabletimeperaveragedayischaracterizedby24hperdayandindividualmultipliedbypopulation size. Thistimeisspentforfourdifferentfunctionalsubsystems: thepersonsystem(PS),thehousehold system(HS),theeconomicsystem(ES)andthecommunitysystem(CS).Accordingtoliterature,the timeinvestedintheeconomicsystemiswhatwerefertoaslabourtime[26]. Table 2 provides some impressions of daily routines and ascribes the activities to the four functionalsubsystems. Sustainability2017,9,1041 10of21 Table2.Dailyroutinesinachronologicalorderfromgettinguptogoingtobed—Duetothelowlevel ofactivityoftheelderlytheyarenotconsideredinthisqualitativedescription(neverthelesstheirtime useisincludedintheoveralltimeuseanalysis). Hour DailyActivity Mostpeoplegetuparound5:30a.m.Womenoftenriseearlierthanmen.Aftercompletingtheirpersonal hygiene(PS),womenwalktofetchwater(HS),visitthenearbychurchtopray(CS),preparebreakfast,takecare ofchildren,grindgrainsusingstones,anddootherdomesticchores(HS).Girlshelpthewomen(HS),visita 5:30 nearbychurchtosaytheirprayers(CS),cleanthecattlepen,preparedungcake,scareawaywildanimalsfrom fieldsortraveltothemarkettosellfirewoodanddungcake(ES).Menfeedcattle,maintainfarmtools(ES),or lookafterchildren(HS).Theboysfetchwater,mindtheyoungerchildren(HS),protectcropsfromwild animals,traveltothemarketandfeedthecattleathome(ES).Theseactivitiesusuallyextendtobreakfasttime. Exceptonfastingdays,breakfastistakenfrom7:30to8.00a.m.Afterbreakfast,womenmilkcows,cleancattle pen,preparedungcakes,herdthecattle,walktothemarket,workinfarmfields,performwageworkor handcraft(ES),participateinpublicmeetings,engageincommunalworks(CS),andpreparelunch(HS).Men 7:30 workinthefields,herdcattle,undertakewageworkorhandcrafting,gotothemarket(ES),andparticipatein publicmeetingsandcommunalworks(CS).Schoolisopenintwoshifts,oneinthemorningandtheotherin theafternoon.Somechildrenattendschoolafterbreakfast(PS),whileothersworkwithparents(ES). 12:30 Lunchisusuallytakenfrom12:30to1:30p.m. Afterlunch,thewomenengageinherding,workinthefields,milkcows,performhandicraft(ES),collect firewood,fetchwater,gotogrindingmills,careforchildren,preparedinner,andotherdomesticchores(HS), visitrelativesandattendfestivals(CS).Menworkinthefields,gotothemarket,herd,undertakemaintenance work,performwagework(ES),docommunalwork,attendpublicmeetings,visitrelatives,attendfestivals(CS) 1:30 andhaveaninfrequentleisurehour(PS).Thetimeafterlunchisschooltime(PS)forsomechildren,while othersmindtheyoungerchildren,gotoagrindingmill,collectfirewood,performdomesticchores(HS),work inthefields,herdcattle,gotothemarket(ES),andperformcommunalwork,visitrelatives,playgames,and sometimesattendfestivities(CS). Mostpeoplereturnfromoutdoorworkaround6:00p.m.Darknesssetsin,lampsarelit.Womenprepare 6:00 dinner,milkcows,andbreastfeedchildren(HS),whilethegirlsstudy(PS)andsomeofthemhelptheirmothers (HS).Mencarryoutmaintenancework(ES),whileboysstudy(PS)andfeedcattleinthecompound(ES). Dinnertimeisusuallyfrom8:00to9:00p.m.(earlierforyoungerchildren).Afterthat,marriedcouplesmay takearestanddiscusstheday(PS)andprepareforthenextday(HS,ES).Womengrindgrainsusingstone 8:00 grinds,careforchildren(HS)andmakebaskets(ES).Somechildrenstudy,whileotherstakearestandhavea conversation(PS).Withtheseactivities,peopleusuallyconcludetheirday. 10:00 Peoplegotosleepbetween10:00and11:30p.m. In Bashkurit the annual average human labour time in the economic system of all persons, whetheroldoryoung,isaboutfivehoursperdayandperson,mainlyinagriculture(includingmarket walks, making baskets, and other smaller wage labour). In addition to the work in the economic system, two and a half hours are spent for household chores and a little more than two hours are spent for community affairs (work for shared infrastructure or care for neighbours, church visits andmeetings). Thisleavesabout14hforsleeping,eating,bodyhygieneandleisure. Attheageof sixyears,childrenworkfourhoursadayonaverage. Thegreatesttimedemandforwork,beitin theeconomicorinthehouseholdsystem,ison25to50-year-oldadultswithovertenhoursaday, withwomenmoreburdenedthanmen. Especiallytheagegroupof25to40-year-oldwomenhasless thantenhoursforsleeping,eating,bodyhygieneandleisure(PS),menofthesameageelevenhours. Comparedtootheragrariansocieties,thisisanextremelylowleveloftimeforpersonalreproduction (PS).InNalang(Laos),asubsistenceeconomydominatedbyrain-fedricefarming,andinCampoBello (Bolivia),aswiddenagriculturewithfishing,hunting,gatheringandraisingpoultry,theworkload intheeconomicsystem(ES)isbetween2and3h(inBashkuritfivehours)andthetimeforpersonal recreationis18h(inBashkurit14h)[27,45]. Inadditiontohumanlabour,oxenandcowsprovide workforthefarmers. Thedomesticatedanimalsareusedforploughing,sowing,harvesting,threshing andtransporting. IntheBashkuritValley,peopleprovidearound650Gigajouleofusefulenergyperyearinthe economicsystem(300Megajouleperpersonperyear;calculationisbasedonthehoursworkedand assumptionsonthephysicalworkdeliveredperhourinaccordanceto[20]),theenergyprovidedby

Description:
supplier by providing food and animal labour, industrialized agriculture consumes more energy than Springer: Cham, Switzerland, 2014.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.