ebook img

How the Polyakov loop and the regularization affect strangeness and restoration of symmetries at finite T PDF

0.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How the Polyakov loop and the regularization affect strangeness and restoration of symmetries at finite T

How the Polyakov loop and the regularization affect strangeness and restoration of symmetries at finite T M. C. Ruivo∗, P. Costa∗, C. A. de Sousa∗, H. Hansen† and W. M. Alberico∗∗ ∗CentrodeFísicaComputacional 0 DepartamentodeFísica,UniversidadedeCoimbra,Portugal 1 †Univ.Lyon/UCBL,CNRS/IN2P3,IPNL,69622VilleurbanneCedex,France 0 ∗∗DipartimentodiFisicaTeorica,UniversityofTorinoandINFN,SezionediTorino,viaP.Giuria1,I-10125 2 Torino,Italy n a Abstract. TheeffectsofthePolyakovloopandof aregularizationprocedure thatallowsthepresenceof highmomentum J quarkstatesatfinitetemperatureisinvestigatedwithinthePolyakov-loop extendedNambu-Jona-Lasiniomodel. Thechar- 8 acteristictemperatures,aswellasthebehavior ofobservablesthatsignaldeconfinement andrestorationofchiralandaxial 1 symmetries, areanalyzed, paying special attentiontothebehavior of strangeness degrees of freedom. Weobserve that the cumulativeeffectsofthePolyakovloopandoftheregularizationprocedurecontributetoabetterdescriptionofthethermody- ] namics,ascomparedwithlatticeestimations.Wefindafasterpartialrestorationofchiralsymmetryandtherestorationofthe h axialsymmetryappearsasanaturalconsequenceofthefullrecoveringofthechiralsymmetrythatwasdynamicallybroken. p TheseresultsshowtherelevanceoftheeffectsoftheinterplayamongthePolyakovloopdynamics,thehighmomentumquark - p satesandtherestorationofthechiralandaxialsymmetriesatfinitetemperature. e h Keywords: PNJLmodel,Restorationofchiralsymmetry,Deconfinement,UA(1)anomaly PACS: 11.10.Wx,11.30.Rd,12.38.Aw,12.38.Mh,14.65.Bt,25.75.Nq [ 1 v INTRODUCTION 2 7 ThestudyoftheQCDphasediagraminthe(T−m )-planeandthesearchforsignaturesofthequark-gluonplasmahave 0 attractedanintensiveinvestigationoverthelastdecades.Theoutputofthisresearchisexpectedtoplayanimportant 3 . roleinourunderstandingoftheevolutionoftheearlyuniverseandofthephysicsofheavy-ioncollisionsattheBNL 1 andatLHC(CERN). 0 PhasetransitionsassociatedtodeconfinementandrestorationofchiralandaxialU (1)symmetriesareexpectedto 0 A 1 occurat highdensityand/ortemperatureand the investigationof observablesthatsignalsuch criticalbehaviorsis a : challenging problem. As an approach complementaryto first-principle lattice simulations, we consider an effective v model that can treat both the chiral and the deconfinementphase transitions, the Polyakov loop extended Nambu– i X Jona-Lasinio(PNJL)model[1,2,3,4,5].ThismodelhastheadvantageofallowingtointerpretfairlythelatticeQCD r resultsandtoextrapolateintoregionsnotyetaccessibletolatticesimulations. a AnontrivialquestioninNJLtypemodelsisthechoiceoftheregularizationprocedure.Infact,forsomeintegrals thethreedimensionalcutoffisonlynecessaryatzerotemperature,thedroppingofthiscutoffatfiniteTallowsforthe presenceofhighmomentumquarkstates, leadingto interestingphysicalconsequences,as ithasbeenshownin[6], wheretheadvantagesanddrawbacksofthisregularizationhavebeendiscussed,intheframeworkoftheNJLmodel. We will enlarge the use of this procedure to the PNJL model and discuss its influence on the behavior of several relevantobservables.Let us notice that the choice of a regularizationprocedureis part of the effective modelingof QCDthermodynamic.Indeedthepresenceofhighmomentumquarksisrequiredtoensurethattheentropyscalesas T3athightemperature. Moreover,weshallinvestigatetheroleoftheU (1)anomalywhich,asiswellknown,isresponsiblefortheflavor A mixing effect that removes the degeneracy among several mesons and for the non zero value of the topological susceptibility, hence the restoration of axial symmetry should have relevant consequences on the behavior of these observables.TheimplementationofthenewcutoffprocedureintheNJLmodel[6]lowersthecriticaltemperaturefor thephasetransition,andshowsthatrestorationofchiralandaxialsymmetriescanalsobeaphenomenonrelevantin thestrangesector. Infact,the dynamicallybrokenchiralsymmetryiscompletelyrecovered,inboththestrangeand nonstrangesectors,leadingtotherestorationoftheaxialsymmetryataboutthesametemperature:thequarkmasses gotothecurrentvalues,thequarkcondensatesandtopologicalsusceptibilityvanish,themixinganglesgototheideal valuesandtheU (1)chiralpartnersconverge. A On theotherhand,we found[5]thatthe presenceofthe Polyakovloopbringsthecriticaltemperatureto a better agreement with the most recent results of lattice calculations, and deconfinement and partial restoration of chiral symmetryoccuratveryclosetemperatures.TherestorationofchiralsymmetryisfasterinthePNJLmodelthaninthe NJL one, leading to several meaningful effects: the meson-quark coupling constants show a remarkable difference in both models, there is a faster tendency to recover the Okubo-Zweig-Iizuka rule, and, finally, the topological susceptibility nicely reproducesthe lattice results around T/T ≈1.0. Moreover,due to the strange components of c some mesons, the behavior of the strange quark mass (that decreases faster due to the Polyakov loop) is important for their properties, as well as for other observables related to the axial anomaly (as noticed in [7] the topological susceptibilityisstronglyinfluencedbythestrangesector). TheaimofthispaperistoinvestigatethecumulativeeffectsofthePolyakovloopandoftheinfinitecutoffatfinite temperature,havinginmindtoanalyzetheinterplayamongtheU (1)anomaly,thePolyakovloopdynamics,thehigh A momentumquarkstatesandtherestorationofchiralsymmetry,payingspecialattentiontothebehaviorofthestrange quark degrees of freedom. In this concern, the characteristic temperatures, the spectrum of scalar and pseudoscalar mesonchiralpartnersandthetopologicalsusceptibilitywillbeanalyzed. MODELAND FORMALISM WeperformourcalculationsintheframeworkofanextendedSU (3)PNJLLagrangian,whichincludesthe’tHooft f instanton induced interaction term that breaks the U (1) symmetry; moreover quarks are coupled to a (spatially A constant)temporalbackgroundgaugefieldrepresentingthePolyakovloop[8,9,10]: LPNJL = q¯(ig m Dm −mˆ)q+1gS (cid:229) 8 [(q¯l aq)2 + (q¯ig5l aq)2] 2 a=0 + g {det[q¯(1+g )q]+det[q¯(1−g )q]}−U F [A],F¯[A];T . (1) D 5 5 (cid:0) (cid:1) Here q=(u,d,s) is the quark field with three flavors (N =3) and three colors (N =3), mˆ =diag(m ,m ,m ) is f c u d s the currentquark mass matrix and l a are the flavor SU (3) Gell–Mann matrices (a=0,1,...,8), with l 0= 2I. f 3 The covariant derivative is defined as Dm =¶ m −iAm , with Am =d m A0 (Polyakov gauge); in Euclidean noqtation 0 A0=−iA .ThestrongcouplingconstantG isabsorbedinthedefinitionofAm (x)=G Am (x)la,whereAm 4 Strong Strong a 2 a isthe(SU (3))gaugefieldandl arethe(color)Gell–Mannmatrices. c a The Polyakov loop field F appearing in the potential term of (1) is related to the gauge field through the gauge covariantaverageofthePolyakovline: 1 b F (~x)=<<l(~x)>>= Tr <<L(~x)>>, with L(~x)=Pexp i dt A (~x,t ) . (2) c 4 Nc (cid:20) Z0 (cid:21) ThePolyakovloopisanorderparameterfortherestorationoftheZ (thecenterofSU (3))symmetryofQCD and 3 c is related to the deconfinementphase transition: Z is broken in the deconfined phase (F →1) and restored in the 3 confined one (F →0). Several effective potentials for the field F are available in the literature. Here we use the followingpotential[11],whichisknowntogivesensibleresults: U F ,F¯;T a(T) =− FF¯ +b(T)ln[1−6FF¯ +4(F¯3+F 3)−3(FF¯ )2] (3) (cid:0) T4 (cid:1) 2 with: T T 2 T 3 0 0 0 a(T)=a +a +a , b(T)=b , (4) 0 1 2 3 (cid:18)T (cid:19) (cid:18)T (cid:19) (cid:18)T (cid:19) where:a =3.51,a =−2.47,a =15.2,b =−1.75and T =270MeV. The parameterset used for the pure NJL 0 1 2 3 0 sectoristhesameasin[7]. ConcerningthevalueofT ,somecommentsareinorder.Sinceoneofthepurposesofthepresentpaperistomake 0 a comparativestudy of the effects of two types of regularization,we choose to plot the quantities under study on a relative temperature scale T/T, where T is a characteristic temperature. As noticed by [4] the dependence of the c c results on T is mild and in this contextthe physicaloutcomesare notdramaticallymodifiedwhen one changesT . 0 0 ThechoiceT =270MeVappearstobethebetteroneforthisworkbecauseitensuresanalmostexactcoincidence 0 betweenchiralcrossoveranddeconfinementatzerochemicalpotential,asobservedinlatticecalculations.Themean field equations are obtained by minimizing the thermodynamicalpotential W , which now depends on Fermi-Dirac distributionfunctionsmodifiedbythePolyakovloop,withrespecttothequarkcondensateshq¯qiandtothefieldsF i i andF¯.Themesonmassspectrumiscalculatedusingthesameproceduredescribedin[5]andreferencestherein. RESULTS AND DISCUSSION Westartouranalysisbyidentifyingthecharacteristictemperatureswhichseparatethedifferentthermodynamicphases inthePNJLmodel[4],withtworegularizationproceduresatfinitetemperature: (i) RegularizationI,wherethecutoffisusedonlyintheintegralsthataredivergent(L →¥ intheconvergentones). (ii) RegularizationII,wheretheregularizationconsistsintheuseofthecutoffL inallintegrals. T 600 1.0 ¶/ 7 fi ¥ 7 500 M s 0.8 ¶T, 6 ¶ /¶ T 6 M (MeV)q 340000 M i Teff / Tc 00..46 ¶¶T, <ss>/ 345 ¶¶¶ <<us/s¶u> >T//¶¶ TT 345 ¶¶ / T 120000 fi ¥ 0.2 ¶ uu>/ 12 12 = const < ¶ 0 0.0 0 0 0.0 0.5 1.0 1.5 2.0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 T/T T/T c c FIGURE1. Leftpanel:comparisonofthequarkmassesinPNJLmodelwithregularizationI(solidlines)andregularizationII (dashedlines)asfunctionsofthereducedtemperatureT/Tc;thePolyakovloopcrossoverisalsoshown.AtTeff =1.6Tc,Mi=mi. Rightpanel:derivativesofthequarkcondensatesandofthePolyakovloopfieldF ,withregularizationI. TABLE1. Characteristictemperatures. c F Tc Tc Tc [MeV] [MeV] [MeV] I:L →¥ 222 210 216 II:L =const. 258 234 246 Let us analyze the comparative effects of the two regularizationson the quark masses and the field F . The critical temperature related to the “deconfinement”1 phase transition is TF and the chiral phase transition characteristic c c temperature, T , signals partial restoration of chiral symmetry. These temperatures are given, respectively, by the c inflexionpointsofF andofthechiralcondensateshq¯qi,andT isdefinedastheaveragevaluebetweenTF andTc . i i c c c ThemaineffecttobenoticedisthatregularizationIlowersthecharacteristictemperatures(seeTable1)anddecreases F c the gap T −T (24MeV→12MeV), leading therefore to better agreement with lattice results. It is interesting to c c notice (Fig.1, right panel) that the inflexion points of F and of the strange quark condensate are almost coincident 1 Theterminology“deconfinement”inourmodelisusedtodesignatethetransitionbetweenF ≃0andF ≃1. andslightlyseparatedfromtheinflexionpointofhq¯q i.Asalreadyshownin[5],thePolyakovloopleadstoafaster u u decreaseofthequarkmassesaroundT .HereweseethatregularizationIenhancesthiseffectandatT =1.6T,it c eff c leads to the completerecoveringof the chiralsymmetry that was dynamicallybroken:the quarkmasses go to their currentvaluesandthequarkcondensatesvanish.Weremarkthattheeffectofallowinghighmomentumquarkstates isstrongerforthestrangequarkmass.2 0 0 fi ¥ 1200 f = const f V) 1000 0’ 0’ Teff / Tc e 800 a a M ( 600 M M 400 200 0 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 T/T T/T c c FIGURE2. Comparison of the pseudoscalar and scalar mesons masses inPNJLwithregularization I andregularization II as functionsofthereducedtemperatureT/Tc. Since in our model chiral symmetry is explicitly broken by non zero current quark masses, chiral symmetry is realizedthroughparitydoublingratherthanbymasslessquarks.Theeffectiverestorationofchiralsymmetryshould besignaledbythedegeneracyofmesonchiralpartners.InFig.2weplotthemassesofscalarandpseudoscalarmesons withthetworegularizations.OnenoticesthatwithregularizationIIthechiralpartners(s ,p )and(a ,h )degenerate, 0 butnotthechiralpartners(f ,h ′).Theanalysisofthescalarandpseudoscalarmixinganglesshowsthattheyexhibita 0 tendencytogototheiridealvaluesandthats andh mesonsbecamelessstrange,whiletheh ′becomesmorestrange. TheU (1)partners(p ,h )and(a ,s )becomeclosebutdonotconverge.Inconclusion,chiralsymmetryiseffectively A 0 restoredinthenonstrangesectorandaxialsymmetryisnotrestored.ThesituationchangeswhenregularizationIis used:(s ,p )and(a ,h )degeneratefasterands andh becamepurelynonstrange,while(f ,h ′)almostconvergeand 0 0 h ′ becomespurelystrange.TheU (1)chiralpartnersconvergeatT =1.6T andthemixinganglesattaintheideal A eff c values.So,chiralandaxialsymmetriesareeffectivelyrestoredbothinthenonstrangeandinthestrangesectors. TABLE2. Motttemperatures. T s p h Mott/Tc PNJL:L →¥ 1.004 1.050 1.004 PNJL:L =const. 0.963 1.085 1.000 NJL:L =const. 0.820 1.086 0.920 Asitiswellknown,attheMotttemperaturethemesonsdissociateintoqq¯pairsandceasetobeboundstates.The Polyakovloop has the effect of increasing the Mott temperature (see [5]) of the mesons whose strangeness content decreases,like the s and theh . We foundthatregularizationI enhancesthis effect(see Table 2),whichmeansthat thesemesonssurviveasboundstatesfortemperaturesslightlyhigherthanthecriticaltemperature.Finallyweanalyze the topological susceptibility (Fig.3). We notice that with both regularizations the topological susceptibility has a sharp decrease around T and there is a nice adjustment to the first lattice points. This effect is mainly due to the c 2 WeremarkthataboveTeff =1.6Tcthequarkmassesbecomelowerthattheircurrentvaluesandthequarkcondensateschangesign.Toavoidthis unphysicaleffectweusetheapproximationofimposingbyhandtheconditionthat,aboveTeff,Mi=miandhq¯iqii=0. 200 PNJL NJL )150 V e M (100 4 1/ 50 fi ¥ fi ¥ = const = const 0 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 2.0 T / T T / T C C FIGURE3. Thetopologicalsusceptibility,ascomparedwithlatticeresults,inPNJLandNJLmodels,withtworegularizations. Polyakovloop,whichisdominantaroundT ;asthetemperatureincreasesregularizationIleadstoasharperdecrease c ofthetopologicalsusceptibility,thatvanishesatT =1.6T,thetemperatureatwhichthedynamicallybrokenchiral eff c symmetryiscompletelyrestored.Acloseconnectionbetweentherestorationofchiralandaxialsymmetriesisfound. Indeed,theinflexionpointofthetopologicalsusceptibility,c ,coincideswiththeoneofhq¯q iandisveryclosetothe u u oneofhq¯q i(seeFig.1,rightpanel)andthevanishingofthesequantitiesoccursimultaneouslyatT =1.6T (when s s eff c M =m).ItcanbenoticedthatthecomparativeeffectofthetworegularizationsisqualitativelysimilarinPNJLand i i NJLmodel(Fig.3,leftpanel).ThePolyakovloopfastentheeffectsobservedinNJLmodelandleadstoanicefitto thefirstfourlatticepoints. Inconclusion,weobservethat,whiletheeffectsofthePolyakovlooparedominantaroundthecriticaltemperature, therelevanceofthepresenceofhighmomentquarkstatesisseenalsoathighertemperaturesandinfluencesmainly thestrangesector.By combiningbotheffects,we geta betterdescriptionofthethermodynamics,ascomparedwith lattice estimations; we find a faster partial restorationof chiral symmetryand the restorationof the axial symmetry appearsas a naturalconsequenceof the fullrecoveringof the chiralsymmetry thatwas dynamicallybroken.These resultsshowtherelevanceoftheinterplayamongU (1)anomaly,thePolyakovloopdynamics,thehighmomentum A quarkstatesandtherestorationofthechiralsymmetryatfinitetemperature. ACKNOWLEDGMENTS WorksupportedbyprojectCERN/FP/83644/2008,FCT. REFERENCES 1. P.N.MeisingerandM.C.Ogilvie,Phys.Lett.B379163(1996) 2. R.D.PisarskiPhys.Rev.D62,111501(R)(2000). 3. C.Ratti,M.A.Thaler,andW.Weise,Phys.Rev.D73014019(2006). 4. H.Hansen,W.M.Alberico,A.Beraudo,A.Molinari,M.Nardi,andC.Ratti,Phys.Rev.D75065004(2007). 5. P.Costa,M.C.Ruivo,C.A.deSousa,H.Hansen,andW.M.Alberico,Phys.Rev.D79,116003(2009). 6. P.Costa,M.C.Ruivo,andC.A.deSousa,Phys.Rev.D77,096009(2008). 7. P.Costa,M.C.Ruivo,C.A.deSousa,andYu.Kalinovsky,Phys.Rev.D70,116013(2004);71(2005). 8. Wei-jieFu,Z.Zhang,andYu-xinLiu,Phys.Rev.D77,014006(2008). 9. M.Ciminale,R.Gatto,N.D.Ippolito,G.Nardulli,andM.Ruggieri,Phys.Rev.D77,054023(2008). 10. K.Fukushima,Phys.Rev.D77,114028(2008). 11. S.Roessner,C.Ratti,andW.Weise,Phys.Rev.D75,034007(2007).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.