ebook img

How supernova feedback turns dark matter cusps into cores PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How supernova feedback turns dark matter cusps into cores

Mon.Not.R.Astron.Soc.000,000–000(0000) PrintedJanuary27,2013 (MNLATEXstylefilev2.2) How supernova feedback turns dark matter cusps into cores Andrew Pontzen1,2,3(cid:63), Fabio Governato4 1KavliInstituteforCosmologyandInstituteofAstronomy,MadingleyRoad,CambridgeCB30HA,UK 2EmmanuelCollege,StAndrew’sStreet,Cambridge,CB23APUK 3OxfordAstrophysics,DenysWilkinsonBuilding,KebleRoad,OxfordOX13RH,UK 4AstronomyDepartment,UniversityofWashington,Seattle,WA98195,USA 2 Accepted—.Received—;inoriginalform— 1 0 2 ABSTRACT n We propose and successfully test against new cosmological simulations a novel analytical a descriptionofthephysicalprocessesassociatedwiththeoriginofcoreddarkmatterdensity J profiles.Inthesimulations,thepotentialinthecentralkiloparsecchangesonsub-dynamical 0 timescalesovertheredshiftinterval4>z>2asrepeated,energeticfeedbackgenerateslarge 2 underdense bubbles of expanding gas from centrally-concentrated bursts of star formation. ] Themodeldemonstrateshowfluctuationsinthecentralpotentialirreversiblytransferenergy O into collisionless particles, thus generating a dark matter core. A supply of gas undergoing C collapseandrapidexpansionisthereforetheessentialingredient.Theframework,basedona novelimpulsiveapproximation,breakswiththerelianceonadiabaticapproximationswhich . h areinappropriateintherapidly-changinglimit.Itshowsthatbothoutflowsandgalacticfoun- p tainscangiverisetocusp-flattening,evenwhenonlyafewpercentofthebaryonsformstars. - Dwarfgalaxiesmaintaintheircoretothepresenttime.Themodelsuggeststhatconstantden- o r sitydarkmattercoreswillbegeneratedinsystemsofawidemassrangeifcentralstarbursts t orAGNphasesaresufficientlyfrequentandenergetic. s a [ 1 INTRODUCTION 2008)stronglysupportedthenotionofstellarfeedbackandenergy transferfrombaryonstodarkmatterasthegeneratorofcores,but 2 Over the last two decades, galaxies formed in numerical simula- didnotfullyexplainthephysicalmechanismbehindthistransfer v tionsbasedontheinflationaryΛCDMparadigmhavesufferedfrom orfollowtheevolutionofdwarfgalaxiestoz=0toensurethatthe 9 anumberofwell-documentedmismatcheswithobservedsystems. coreswerelong-lived. 9 One of the most prominent of these has been the rotation curves 4 ofdisk-dominateddwarfgalaxies(e.g.Moore1994;Flores&Pri- Recently,simulationswereabletoproducerealistic,present- 0 . mack1994;formorerecentupdatesseeSimonetal.2005,Ohetal. daycoreddwarfgalaxieswithinafullycosmologicalcontext(Gov- 6 2011b and references therein). The observed kinematics imply a ernatoetal.2010,henceforthG10).Thesesimulationsresolvein- 0 constantdensitycoreofdarkmatterinteriorto1kpc,whereassim- dividualstarformation‘clumps’atthedensityofmolecularclouds 1 plephysicalargumentsandsimulationssuggestthatthecolddark leading to galaxies that are additionally realistic because, like 1 matter density should be increasing roughly as ρ ∝r−1 to vastly manyobserveddwarfs(Dutton2009),theyhavenobulge–acon- : v smallerradii(e.g.Dubinski&Carlberg1991;Navarroetal.1996b). sequence of preferentially expelling low-angular-momentum gas i Sincesomeoftheearliestworkondarkmatterprofilesithas fromtheprogenitorsvianaturallyoccurringgalacticwinds(Brook X been suggested that sufficiently violent baryonic processes might etal.2011;seealsoBullocketal.2001andvandenBoschetal. r a be responsible for heating dark matter cusps into cores (Flores 2001).Ohetal.(2011a)confirmedthattheseeffectsbringthesim- & Primack 1994). The proposed mechanisms identified in these ulationsintoexcellentagreementwithobservationalconstraintson papers fall in two broad categories: supernova-driven flattening stellar and HI content as well as those on overall mass distribu- (Navarroetal.1996a;Gelato&Sommer-Larsen1999;Binneyetal. tion.Bytestingagainstdark-matter-onlyruns,G10providedstrong 2001; Gnedin & Zhao 2002; Mo & Mao 2004; Read & Gilmore supporttoamodelwherethecoreflatteningisgeneratedbybary- 2005;Mashchenkoetal.2006,2008),anddynamicalfrictionfrom oniceffects,inparticularbyrapidgasmotions;moreover,asuite infallingbaryonicclumpsordiskinstablities(El-Zantetal.2001; ofcomparisonsimulationsrevealedthattheseeffectsonlybecome Weinberg & Katz 2002; Tonini et al. 2006; Romano-D´ıaz et al. significantifstarsformindenseclumps(∼100amucm−3),sug- 2008, 2009; Pasetto et al. 2010; Goerdt et al. 2010; Cole et al. gestingthatenergyinjectionhastobeconcentratedinlocalpatches 2011). Within the former category, most early works focused on (seealsoCeverino&Klypin2009). asingle,explosivemass-lossevent.Itthenbecameclearthateven withextremeparameters,suchaneventtransferredinsufficienten- Thecomparisonofsimulationswithrecentobservations(Oh ergytodarkmatterparticles(Gnedin&Zhao2002).Ontheother etal.2011a)highlightedthatfeedbackmustoccurinnumerousrel- hand, Read & Gilmore (2005) showed that several more moder- ativelymildeventstoallowthindiskstoform.Howevergiventhe atelyviolent burstscouldbeeffective increatingacore. Increas- lackofanalyticframeworkforunderstandingthemicrophysicsof ingly sophisticated numerical work by Mashchenko et al. (2006, thisprocess,theprecisemechanismofsupernova-drivencuspflat- (cid:13)c 0000RAS 2 A.PontzenandF.Governato teningwasnotfurtherelucidatedinG10.Providingsuchaframe- Saitohetal.2008).Inparticular,onlyathighformationthresholds workistheaimofthepresentwork. exceeding∼10cm−3 willsupernovafeedbacknaturallygiverise The remainder of this paper describes how to model the ef- tobulkgasmotionsandoutflows(Ceverino&Klypin2009).This fects of small, central starbursts which create pockets of rapidly followsbecauseindividualhigh-densityclumpsareefficientincon- expandinggasandstrongfluctuationsinthelocalpotential.Over vertinggastostars,ultimatelyleadingtovastoverpressurizationof time these repeated processes gradually transfer energy from the theclumpfromthehighlocaldensityofsupernovae.Theparticular gastothedarkmattercomponent.Thishasmuchincommonwith thresholdvalueof100cm−3forHTischosenforconsistencywith theviewofMashchenkoetal.(2006,2008)butplacesmoreem- G10,inwhichitwasarguedthatthisisthehighestdensitywhich phasis on disrupting clumps as opposed to pushing them around, canbeconsideredphysicalatourpresentresolution.Wehavealso and clarifies that resonance1 is not required. Because our picture verified that when H physics is consistently included in simula- 2 canbemodelledmathematically,weareabletovalidateitagainst tions(Christensenetal,submitted;Governatoetal,submitted)star thesimulations,showingthattheenvisionedprocessindeedcreates formation indeed proceeds only at high densities even in the ab- coreswithintheG10simulations. senceofanexplicitthreshold. Thispaperisorganizedasfollows.Section2introducesim- By contrast, LT’s threshold of 0.1cm−3 represents an ap- provedsimulationsbasedonthoseofG10,anddiscussesthechar- proximate historical norm for galaxy formation simulations (e.g. acteristicsofthesesimulationswhichpredictcusp-flattening,thus Navarro&White1993;Katzetal.1996)broadlycompatiblewith motivating a study of orbits in rapidly changing potentials (Sec- theobservedcut-offinstarformationatlowcolumndensitiesaver- tion3).Theinitialdiscussionis,forsimplicity,limitedtopower- agedover∼kpcscales(e.g.Kennicuttetal.2007).Untilrecently law potentials but Section 4 removes this restriction, presenting LTwouldhavebeenthemostmotivatedchoice;however,withthe moregeneralequationstoexplainthedetailedsimulationresults. additionofmetal-linecoolingatincreasingresolutionwenowpre- We relate our work to the wider literature and conclude in Sec- fertheHTsimulations,usingLTasareferencetounderstandwhy tion5,alsodiscussingtherealismoftheunderlyinghydrodynami- oldersimulationsdidnotproducetheeffectsofinteresthere. calevolutionwithinthesimulatedgalaxies.Inacompanionpaper As expected following G10, LT remains cusped, unlike HT (Governato et al, in prep) we will discuss the scaling of the dark whichdevelopsa1kpcdarkmattercoreatz=0inbothofitstwo mattercoreswithgalaxymasses. mostmassivehalos.Inallcasesthecodeconsistentlyfollowsthe feedbackeffectsofthestellarpopulations(Stinsonetal.2006)so that,afteradelayof∼10Myr,significantamountsofthermalen- 2 THESIMULATIONS ergy are deposited into the surrounding gas. By z=2, when HT has developed a stable core, LT and HT runs have formed an al- Thesmoothedparticlehydrodynamics(SPH)simulations,runus- mostidenticalmassofstars(7×107M(cid:12))andthereforethesame ing the Gasoline code (Wadsley et al. 2004), are closely related quantity of supernova energy has been released (7×1056ergs).2 toandimproveuponthosedescribedinmoredetailbyG10.The The failure of LT to lose its cusp thus reflects a difference in the emphasisofthepresentworkisoninterpretingdynamicaleffects, couplingmechanism,notintheabsoluteenergydeposition. ratherthandiscussingthenumericalmethodsindepth;howeversee Figure 1 gives immediate insight into the difference be- Section5forbriefcommentsoncomputationalaccuracy.Ournew tween HT (cusp-flattening) and LT (cusp-preserving) simulations runsoutputmoreregulartimestepsandincludetheeffectsofmetal- byshowingtheirspherically-averagedhalodensityprofilesshortly linecoolingaccordingtotheprescriptionofShenetal.(2010).The beforethecuspbeginstoflatteninHT,atz=4.Solid,dashedand simulations in this paper focus on the region hosting the galaxy dottedlinesindicaterespectivelydarkmatter,gasandstellarden- denoted‘DG1’inG10.The‘zoom’technique(e.g.Katz&White sity;thickredandthinbluelinesrepresenttheHTandLTrunsin 1993)allowsforahighmassresolutionofMp=3×103M(cid:12) (for turn.IntheLTrun,thegasdensitycannotexceedthethresholdof gasparticles)andMp=1.6×104M(cid:12)(darkmatter)withasoftening 0.1cm−3:starsareabletoformanddepositsupernovaenergy,pre- of86pcinafullΛCDMcosmologicalcontext.Weconductedanal- ventingfurthercooling.IntheHTrun,bycontrast,thegasdensity ysisonthetwomostmassivesystemswithinthisregion:DG1itself risesmonotonicallytowardsthecentrebecausemostofthegasis (Mvir =3.7×1010M(cid:12) at z=0) and a somewhat smaller galaxy noteligibletoformstars.Theresultisthatthecentralgasdensity (Mvir =1.3×1010M(cid:12) at z=0). Most results will be presented slightlyexceedsthatofthedarkmatter.Itisnaturaltosupposefrom forthelattercase,becausetheformerundergoesamajormergerat thisthatthehalowillhaveaqualitativelydifferentreactiontothe z=3. Although our model does predict the correct flattening for presenceofbaryonsinthetworuns.(Thisworkfocusesonexpan- DG1,itsvolatilemergerhistorywouldintroduceunduecomplexi- sionofdarkmatterorbits,butweverifiedthatthesameprocesses tiesintoourdiscussion. operate on the similarly collisionless star particles in the simula- In the first run, denoted HT (“high threshold”), stars are al- tion,theinterestingimplicationsofwhichareleftforfuturestudy.) lowedtoformonlyathydrogendensitiesexceeding100cm−3.The FocusingontheHTsimulation,Figure2(upperpanel)shows secondrun,LT(“lowthreshold”),isidenticaltothefirstexceptthat thebaryonicmassenclosedwithin0.2,0.5and1.0kpcasafunction itallowsstarstoformatdensitiesexceeding0.1cm−3. oftime.Fromaround1.7Gyrafterthebigbang,thedensitynearthe Adopting the higher threshold for star formation is strongly centreundergoesorder-of-magnitudefluctuations.First,gasflows motivatedbyobservationalevidencethatmolecularcloudsformat in,coolsandcondensesnearthecentreofthepotentialwell.Then, such densities (Bigiel et al. 2008; Tacconi et al. 2010). HT thus asthedensityofclumpsrisesabovethe100cm−3 threshold,star exhibits more realistic behaviour of the interstellar medium (e.g. formationisallowedtoproceed. 1 AlthoughMashchenkoetal.(2008)describedtheirmodelas‘resonant’, theyhavesincestatedthattheydidnotmeantoinvokeaformalresonance, 2 Note,however,thatbyz=0theLTsimulationforms4×109M(cid:12)instars butratherthenotionofchangesinthepotentialoccurringonroughlythe comparedagainsttheHTsimulation’s5×108M(cid:12).OnlytheHTsimulation dynamicaltimescale(Wadsley,pri.comm.). formsarealisticdwarfgalaxy(Ohetal.2011a). (cid:13)c 0000RAS,MNRAS000,000–000 Howsupernovafeedbackturnsdarkmattercuspsintocores 3 Figure1.Sphericallyaveragedhalodensityprofilesforhighstar-formation threshold(HT,thickredlines)andlowthreshold(LT,thinbluelines)simu- lationsatz=4,shortlybeforethedarkmatterprofilestartstoflatteninthe high-thresholdmodel.Solid,dashedanddottedlinesshowrespectivelydark matter,gasandstellarcontent.Inthelowthresholdcase,darkmatterdom- inatesbyordersofmagnitudeateveryradius.Inthehighthresholdcase, thegasreachesacomparabledensitytothecollisionlessmatterinthecen- tralregions.Gaseousprocessescanthereforecauseheatingofcollisionless components(darkmatterandstars)inHTbutnotLTruns. Figure2.(Upperpanel)Thebaryonicmassinteriorto,fromtoplinetobot- tom,1kpc,500pcand200pc(HTsimulation).Burstycentralstarformation coupledtostrongsupernovafeedbackcausescoherent,rapidoscillationsin Oncesupernovaenergyisdumpedintothegas,thermalexpan- thepotentialinteriorto1kpc.Theorbitaltimeoftypicaldarkmatterparti- sionformsanunderdensebubbleofuptoseveralkiloparsecsdiam- clesinteriorto1kpcis∼>25Myr.Bycontrastthesimulatedsupernovabub- eter(lowerpanel,Figure2).Theenergyisinitiallydepositedwithin blescanencompasstheinnerkiloparsecinaround3Myr,fartoorapidlyfor asmallvolume(aconsequenceofthehighstarformationthreshold) theadiabaticapproximationtobevalid.Thelowerpanelshowsthedisk- whichthenreachestemperaturesof∼108K.Thegasisvastlyover- planedensityduringthestarbursteventatt=2.56Gyr,z=2.67.Alarge pressurizedrelativetoitssurroundings,soexpandsatclosetothe underdensebubblehasformedatthecentreofthediskthroughthermalex- thermal velocity (typically reaching ∼300km/s(cid:39)0.3kpc/Myr). pansionofgasheatedbymultiplesupernovaexplosions.Thecrossmarks Comparedtotheorbitaltimescales,whichare∼>25Myr,thebub- thehalocentre. bleformationiseffectivelyinstantaneous. Theadiabaticcoolingfromtheexpansionisincluded,butthe 3 ANALYTICALMODEL bubblesnonethelessremainhot(∼106K)bythetimetheyreach rough pressure equilibrium with the remainder of the disk. They ThisSectiondiscusseshowtheenergyofasingledarkmatterpar- are then sufficiently underdense (∼10−2cm−3) that the radiative ticle(orstar)changesinresponsetoafluctuatingpotentialsourced coolingtimescaleisupto100Myr;thebubblecanthereforepersist bygassubjecttoprocessesdescribedabove.Tworestrictionsonthe forthislengthoftime,afterwhichitcoolsbackintothediskifithas calculationareimposedthroughoutthepaper: notactuallyescapedinagalacticwind.Therapid,repeatedfluctua- (i) thepotentialisassumedtobesphericallysymmetric; tionsinthecentralmasscontentofthesimulatedgalaxyaresimilar (ii) thetracerparticlesareassumedtobemassless,i.e.thepo- tothoseshowninFigure3ofMashchenkoetal.(2008).However tentialisalwaysexternal. wehaveverifiedthat,inourcase,thisisduetothegasbeingheated and expanding outward rather than remaining in rapidly-moving The latter condition represents a decision to focus on the micro- coherentclumpsassuggestedbyMashchenkoetal.(2008). physical mechanism via which particles gain energy, rather than The overall picture for the dark matter is insensitive to the the subsequent evolution of the self-gravitating system. The first ultimatedestinationofthegas,requiringonlytheintermittentvari- conditioncouldinfutureberelaxed,butmakescalculationsmuch ations explained above; the present work makes no assumptions simplerbecauseparticlesorbitinthe1Deffectivepotential aboutmassloss.Note,however,thatsignificantwindsdoexistin j2 the simulations; the final baryon fraction in the galaxies is only V (r;j,t)=V(r;t)+ , (1) eff 2r2 25%ofthecosmicvalue(G10)andonly3%ofthebaryonshave beenturnedintostars.Thewindshavebeenshowntobeimportant whereV(r;t) is the time-dependent physical potential and j is a inmatchingthestarformationrates,distributionofstarsandfinal conservedangularmomentum. baryonfractionsofthedwarfgalaxies(seeMcGaughetal.2010; Forsimplicitywewilltemporarilyimposetwofurtherrestric- Brooketal.2011;Ohetal.2011a). tionswhichwilllaterberemovedinSection4: (cid:13)c 0000RAS,MNRAS000,000–000 4 A.PontzenandF.Governato (iii) onlythenormalizationofthepotentialchanges,i.e.itsfunc- initialblowoutandeventualrecollapsepredictable(thisaperiodic- tionalformisfixed; ityisillustratedbyFigure2).ByTaylorexpanding,wefindthatthe (iv) thefunctionalformofthepotentialisapowerlaw. expectedfinalenergyoftheorbitisgivenby Togethertheseimplythattheunderlyingpotentialin(1)isspecified (cid:18)∆V (cid:19)2 2n byV(r;t)=V0(t)rn.Someusefultestcasesfallintothisexactform: (cid:104)Ef(cid:105)=E0+(cid:104)∆E1+∆E2(cid:105)(cid:39)E0+ V00 (2+n)2E0, (6) aKeplerianorbithasn=−1whileaharmonicoscillatorimplies whichisalwaysanenergygainforboundorbitssinceE <0for n=2. The final case will be of particular interest chiefly for its 0 n<0.Theenergygainissecondorderinthepotentialchange∆V , analyticsimplicity,butwealsonotethatitcorrespondstoassuming 0 butlinearintheenergy.Onemayverifythat,ifthepotentiallyfirst aspatiallyconstantdensityofmatter. changessuddenlybutthengradually(i.e.adiabatically)relaxesto The rate of change of the total energy of a particle orbit- itsoriginalstate,wewillalsoseeanincreaseinexpectedfinalen- ing within the potential, dE/dt, is given by the partial derivative ergy of the same magnitude. The essential point is for the initial ∂V/∂t| , where r(t) denotes the solution to the equations of r(t) changetoberapid;theenergyshiftwillthenfollow. motion. In the limit of an instantaneous change in the potential Thespecialcaseoftheharmonicoscillator(n=2)ishelpful V →V+∆V occurring at time t, the total energy of the particle thereforechangesby∆E=∆V(r(t))=∆V r(t)n. indemonstratingtheoriginofthisenergyshift,becauseitsdynam- 0 ics are especially simple. The potential is separable in Cartesian Assuming we have no prior knowledge of the phase of the coordinateswhichmeansthatwecanassumetheone-dimensional particle, the virial theorem (e.g. Goldstein et al. 2002) states that subcase without loss of generality. Then, for the case of sudden theexpectedpotentialenergyis discretejumps,theanalyticformofthesolutioniswritten 2E (cid:104)V(cid:105)= 0 , (2) 2+n x(t)=Acos(ωt+ψ), (7) whereE0 isthetotalenergyoftheparticleandtheresultisinde- where ω2(t)=2V0(t) while A(t) and ψ(t) specify the amplitude pendentof j.Thisandfollowingequationsarealsothereforevalid and phase of the oscillation, which change discontinuously with intheone-dimensional(j=0)subcase. the potential. The new values of A and ψ after any jump can be If suddenly V0 →V0+∆V0, the energy after the potential determinedeitherthroughenergyargumentsasaboveorbyrequir- changeisE0+∆E1,where ingcontinuityofbothxandx˙.Withoutlossofgenerality,weletω (cid:104)∆E1(cid:105)=∆V0(cid:104)rn(cid:105)= 22+E0n∆VV0. (3) cthheanjugmepfr,oAm1,ωis0gtoivωen1abtytt=he0e.xTphreesasmiopnlitudeofthetrajectoryafter 0 (cid:34) (cid:35) Thefiducialadiabaticlimitcanbeattainedfromherebyassuming ω2−ω2 ∆V0and∆E1tobeinfinitesimalandintegratingoveraseriesofsuch A21=A20 1+ 0ω2 1 sin2ψ0 , (8) 1 changestakingV smoothlytoV .Thisyieldsafinal,finitechange 0 f inenergy: whichisexplicitlydependentontheorbitalphaseψ0atwhichthe discontinuityoccurs.Thecorrespondingchangeofenergyis (cid:18)V (cid:19)2/(2+n) f Ef,adiabatic=E0 V0 . (4) ∆E1=−E0ω02ω−2ω12sin2ψ0. (9) Asexpectedintheadiabaticlimit,equation(4)impliesnoenergy 0 shift,regardlessoftheintermediatestates,ifthefinalpotentialis Wecannowanalyzethechangesinasingletrajectorywhich thesameastheinitial.Thisisthecentralproblemoftheadiabatic leadustorecovertheexpectedgaininorbitalenergyunderasingle approximation.Figure2showsthatthefinaldistributionofgaswill blowout-recollapsecycle,equation(6).Figure3(thickline)shows indeedbeverysimilartotheinitial,andthereforethattheadiabatic an example orbit for which ω2 =10ω2. The initial amplitude is 0 1 prediction will be for no change in the final distribution of dark unityuntil,atacertaintime,thepotentialflattensoutasmassislost matter. frominsidetheorbit.Intuitively,orfromequation(9),thismustal- HoweverSection2showedthatpotentialchangesinthesim- waysinvolvealossofenergyfortheparticle(sinceω2>ω2);see 0 1 ulationstakeplaceontimescalesmuchshorterthanthedynamical also panel 1 at the top of Figure 3. However, according to equa- time,becausetheexpansionspeedsofthesupernova-inducedbub- tion (8), the new potential is sufficiently flattened that the orbital bles are much larger than the local circular velocity. As the gas amplitudeisnowlargerthanunity(panel2).Thisiscrucialbecause expandsandleavesthegalaxycentre,thepotentialundergoesase- theenergygainmadewhenthepotentialchangeislaterreversed(ω riesoflarge,instantaneousjumps,invalidatingtheadiabaticresult returnsfromω1toω0)willbeaccordinglylarger,scalingwith(cid:104)x2(cid:105) givenbyequation(4). (panel3).Applyingequations(8)and(9)forthereversejump(i.e. Insteadofintegrating,oneshouldthereforerecursivelyapply withω1 andω0 exchanged)allowthispicturetobedirectlyveri- equation (3) to each finite change. If, for instance, the potential fied. switchesimmediatelybacktoitsoriginaldepth,thesecondshiftin This makes more concrete the assertion of equation (6) that energyisgivenby one always expects to gain energy during a series of potential changes.Yetseenfromanotherperspective,suchaclaimstillneeds 2(E +(cid:104)∆E (cid:105)) −∆V (cid:104)∆E (cid:105)= 0 1 0 , (5) tobereconciledwiththeunderlyingdynamicswhicharefullytime- 2 2+n V +∆V 0 0 reversible.Forinstance,thetime-reverseofFigure3(viewingthe wheretheangularbracketsindicateaveragingovertheorbitalphase figure from right to left) represents an equally valid trajectory of ofourchosentrajectoryduringboththeinitialandfinalinstanta- theforwardsdynamicsandyetlosesenergy. neous potential jumps. These conditions are justified because the Under time-reversal, the blowout phase maps onto the rec- initialblowoutisnotcausallyconnectedtothelocationofasingle ollapse phase and vice-versa. The irreversibility thus arises not tracerparticle,noristheexactfractionalnumberoforbitsbetween fromdynamicaldifferencesbutstatisticaldifferencesbetweenthe (cid:13)c 0000RAS,MNRAS000,000–000 Howsupernovafeedbackturnsdarkmattercuspsintocores 5 qualitativelydifferentresultstobeexpectedfromgradualvariation asopposedtosuddenjumps. V(x ) V(x ) V(x ) ΔE> |ΔE| 2 1 ΔE 4 VALIDATINGTHEANALYTICMODELAGAINST 1 x x x SIMULATIONS 1. Small energy loss 2. Orbit expands in 3. Large energy gain shallow potential Totestthepictureexpoundedabovewestartbygeneratingatime- dependenteffectivetoypotentialfromthesimulations(Section2). Thisisgivenbyequation(1),withV(r;t)calculatedfromthespher- icallyaverageddensityprofile.ThestartingenergyE andthevalue 0 nt x of jcanbedeterminedbyspecifyinginitialorbitalparameters.The e angularmomentumisnecessarilyconservedbecauseofthespher- m e icalsymmetryofthemodelling(restriction1ofSection3).Inthe c a pl simulationsthechangesinpotentialarenotexactlysymmetric(e.g. s Di lowerpanelofFigure2);howeverwewillseebelowthat,forthe e blowout recollaps pawpueprlprl.ooxseimsaotfiocnalwcuhliacthinegnfroearcl-esspcaocnesdtaenntsijtyacpturoafilllyesw,othrkesseyxmtrmemeterliyc Asbefore,theenergyshiftforonejumpisgivenbyaveraging Figure3.Themechanismforinjectingenergyintothedarkmatterorbits, over possible orbital phases. However the potential Vsphere is no illustratedbytheexactsolutionforatime-varyingharmonicoscillatorpo- longeranexactpowerlaw,sothecalculationrequiredis tential.Thelowerpanelshows(solidline)asolutiontotheequationsof motionwhereω2=1(blue)atearlyandlatetimes,whileatintermediate (cid:104)∆E(cid:105) = (cid:82)∆Veff(r(t))dt timesω2=0.1(red)mimickingbaryonicblowoutandrecondensation.The (cid:82)dt changesinpotentialoccurinstantaneously;inthiscasethefinalamplitude (cid:44) (cid:90) ∆V (r)dr (cid:90) dr oftheoscillationisapproximatelytwicethatoftheinitialorbit.Thedashed = eff , (12) (cid:112) (cid:112) lineshowsthesolutionwhenthepotentialchangessmoothlyoverseveral E−Veff(r) E−Veff(r) orbitalperiods;thisgivesadiabaticbehaviour,sothatthefinalorbitregains where the time integrals are evaluated over an orbital period; af- theinitialamplitude,demonstratingthenecessityforrelativelysuddenpo- terchangingvariablestorthiscorrespondstointegratingoverthe tentialjumps.Theinsetfigures(top)illustratehowthepost-blowoutorbit regionwheretheintegrandisreal.Equation(12)agreeswithequa- expansionimpliesthatthelate-timeenergygaindominatesovertheinitial energyloss. tion(3)forthespecialcaseofpower-lawpotentials. TheremainderofthisSectionappliesexpression(12)recur- sivelytoatime-seriesofpotentialsfromtheHT(cusp-flattening) forwards-blowout and reverse-recollapse pictures. In particular a simulation, at each step updating ∆V, E andVeff appropriately3. uniformpriorontheorbitalphasebeforeatransitionisalwaysas- Theenergygainisevaluatedateverystoredsimulationtimestep; sumed, 2πp(ψ0)=1. On the other hand the phase ψ0(cid:48) after the therelevantoutputsarewritteneveryδt(cid:39)27Myr.Thuschanges transitionisdeterminedby occurringontimescales(cid:54)δtwillimplicitlybeclassifiedas“rapid” (composed of one jump) whereas those occurring on timescales tanψ0(cid:48) = ωω10 tanψ0, (10) m(cid:29)anδyt swmilalllasutteopms)a.tiWcahlliylebtehetrbeoautenddaarsy“baedtiwabeeantict”he(sceomlimpoitssedcaonf- and,accordingly,theprobabilitydistributionfunctionofψ(cid:48) is not be uniquely defined, the change in behaviour must occur at 0 aroundtheorbitalperiodforaparticle,whichisindeed∼25Myr. 2πp(ψ(cid:48))=(cid:18)ω0cos2ψ(cid:48)+ω1sin2ψ(cid:48)(cid:19)−1. (11) We verified by running checks with only every second timestep 0 ω1 0 ω0 0 (δt(cid:39)54Myr)thattheresultspresentedareinsensitivetothepre- cisetime-slicing. The precise functional form (11) is not crucial, only that p(ψ(cid:48)) 0 ThesolidlinesinFigure4showtheresultingmeanradius(cid:104)r(cid:105) cannotbetakentobeuniform.Afterthesuddenbaryonicblowout, oforbitsasafunctionoftime,where collisionlessparticlesentertheirneworbitinaspecialphase–pref- (cid:44) erentiallynearpericentre–sothattheysubsequentlymigrateout- (cid:90) rdr (cid:90) dr (cid:104)r(cid:105)= . (13) wardsinunison. (cid:112)E(t)−V (r;j,t) (cid:112)E(t)−V (r;j,t) eff eff It is this difference in knowledge of phases before and after suddenchangesthatallowsirreversibilityintherealuniversetoap- Thevaluesof jandE0 foreachorbitarechosenbyrequiringthe pearinthemodel.Onlyifallcollisionlessparticleswereneartheir initial motion to be circular at a range of different radii. As time pericentre just before the baryons returned would the statistical progresses, the orbits starting interior to 1kpc migrate outwards, propertiesofthereversedpicturematchthoseoftheactualmodel. reflectinganetgaininenergy.Orbitsoutsidethisradiusarelargely Whilethisisdynamicallypossible,itisstatisticallyunlikely. Finally note that if the changes in potential are introduced 3 BecauseE takesarandomwalk,amoreaccurateresultisinprinciple gradually, the process should become adiabatic and hence re- attainablebykeepingtrackofitsevolvingdistributionfunctionratherthan versible. The dashed line in Figure 3 shows a numerical solution justitsexpectedvalue.Ourapproachhereisakintotakingthefirsttermin forwhichω changessmoothlyoverseveralorbitaltimesfromω0 aFokker-Planckanalysisandwillbeanexcellentapproximationbecause to ω1, then back to ω0. As expected from equation (4), the final theenergyshiftsareapproximatelylinear,ascanbeshownbygeneralizing orbital amplitude is the same as its initial value, confirming the equation(3). (cid:13)c 0000RAS,MNRAS000,000–000 6 A.PontzenandF.Governato Redshift 4.23.9 3.6 3.3 3.0 2.7 2.4 2.1 100 c p k / fi bit or r › 10-1 1.5 2.0 2.5 3.0 3.5 t/Gyr Figure4.Usingthesphericallyaveragedpotentialfromthesimulations, Figure5.Thesphericallyaverageddarkmatterdensityasafunctionofra- wemodeltheexpansionoforbitsoftestparticlesatdifferentinitialradii dius,measuredatz=2whenthecorehasformedintheHTsimulations (solidlines).Orbitsstartingsignificantlywithintheinnerkiloparsecmigrate (thick dotted line). The solid line shows the density profile at this time outwardsoverseveralgigayears,whereasthosestartingoutsideakiloparsec accordingtoourmodel(seetextfordetails);thisisseentobeinexcel- do not feel the rapid potential variations and so remain near their initial lentagreementwiththeHTsimulation.Theadiabaticmodel(dashedline) radius.Ourmodelthusexplainstheflatteningofcentraldensitycuspsinto failstocorrectlymodelthecuspflattening,demonstratingtheneedforthe kiloparsec-scalecoresinsmallgalaxiesthroughradialoutwardsmigration. improvedmodellingpresentedhere.TheLTcomparisonsimulation(dash- Asexpectedthereversible,adiabaticmodel(illustratedfortheinnermost dottedline)alsoremainscuspedasexplainedinSection2. orbitbythedashedline)doesnotcorrectlymodeltheheatingeffectofvery rapidpotentialvariationsintheinnerpartsofthehalo. distributionforeachparticle, 1 p(r;E,j)∝ , (15) unaffected.IntheLTrun,bycontrast,notracerparticlesgainen- (cid:112) E−V (r;j) eff ergy;thosethatstartoncircularorbits,forinstance,arepredicted toremainatthesameradiusfortheentirerun. wascalculatednumerically.Thesumofthenormalizedprobability Figure2impliesthatthecentralbaryonicpotentialreturnsto distributionsforallparticlesthenimpliesadensityprofileaccord- its approximate original shape at the end of each starburst cycle, ingto because the gas affected by the supernovae has cooled back into 1 thedisk(orhasflowedout,replacedbyfreshgas).Intheadiabatic ρmodel(r)∝ r2∑p(r;Ei,ji), (16) limit, where all potential changes occur slowly, the final orbital i parametersshouldreturntotheirinitialvalues.Indeedbymaking where the sum is over all tracer particles. Time evolution of ∆Veffinfinitesimalandintegrating(12)oneobtains ρmodel(r)arisesfromupdatingVsphereandeachEiateverytimestep according to equation (12); or, for comparison, by solving equa- (cid:90) (cid:112) E(t)−V (r;j,t)dr=constant, (14) tion(14)toderivethebehaviourintheadiabaticlimit. eff Starting at z=4, the distribution function is evolved in this where again the integral is taken over the real region of the inte- way to z=2; the resulting density profiles are illustrated in Fig- grand.Thisisthegeneralizationofequation(4),andisexactlythe ure5.Thethicksolidlineshowsourmainmodel[i.e.itisderived adiabaticinvariantderivedthroughtheaction-angleapproach(e.g. fromequation(12)],andisseentobeinexcellentagreementwith Binney&Tremaine1987).ItimpliesthatE =E ifthepo- the output of the simulation (dotted line). The dotted line shows final initial tentialreturnstoitsinitialformviaaseriesofslowchanges. theresultsofmodellingthebaryoniceffectsusingtheadiabaticap- Demandingtheadiabaticinvariant(14)isconstantyieldsthe proximation[i.e.equation(14)];thecuspremains,contrarytothe orbital migration in the ‘gradual outflows’ scenario. The dashed resultsofthesimulation.Thisreaffirmsthattheadiabaticapproxi- lineinFigure4showsthattheresultderivedinthislimitisasex- mationdoesnotcaptureimportantaspectsoftheimpactofbaryons pected:althoughtemporarychangesintheorbitalradiusdooccur, onthedarkmatter.Finally,thedash-dottedlineshowstheprofile they do not persist over time. This underlines the difference be- fromtheLT(lowstarformationthreshold)simulationwhich,asex- tweenournewmodel(whereatracerparticlepicksupenergyfrom plainedinSection2,retainsitscuspandisthereforeinapproximate baryons)andtheolderadiabaticcalculations(wheretheenergyof agreementwiththeadiabaticallyevolvedcase. atracerparticleisconserved). Thecalculationdescribedbyequation(12)involvescalculat- AlthoughFigure4showsthatorbitsgainenergy,itcannotbe ingtheparticledistributionfunctionforeveryintermediatestep.It useddirectlytoinferthefinalinnerprofileofthedarkmatter.To is possible, therefore, to monitor the rate at which the cusp flat- drawconclusionsabouttheevolutionoftheslope,weevolvedthe tens and compare it against the simulations. Figure 6 shows the energyof∼90000orbitscorrespondingtoalldarkmatterparticles timeevolutionofthemeasuredlogarithmicslopeat500pcforboth in the halo at z=4. At each timestep, the full radial probability themodeldensityprofile,equation(16),andthesimulateddensity (cid:13)c 0000RAS,MNRAS000,000–000 Howsupernovafeedbackturnsdarkmattercuspsintocores 7 Redshift ergy transfer is inherently irreversible. The G10 simulations do 4.23.9 3.6 3.3 3.0 2.7 2.4 2.1 exhibit galactic-scale outflows which remove 75% of baryons by z=0.Theseoutflowshaveotherimportanteffects(e.g.Brooketal. 0.2 2011), yet the mass involved is only around a third of the mass involvedinthecentralblowout-recollapsecycle.Therelationbe- c) 0.4 tweenthegalacticoutflowsandthelocalfeedbackwillbethefocus p 0 offuturework. 0 The picture is related to the more established view that re- 5 0.6 (r movalofbaryonsthroughgalacticsuperwindscouldcausethecen- g traldarkmatterprofiletoflatten(e.g.Navarroetal.1996a;Gnedin o 0.8 l & Zhao 2002; Read & Gilmore 2005). However, our model con- d / firms that extreme, violent mass-loss events are not necessary, as ρ 1.0 g suggestedby(Mashchenkoetal.2006,2008).Thisisimportantbe- o l causethemoremoderateheatingeventsallowretentionofbaryons d 1.2 andtheformationofathinstellardisk. Model Dynamical friction from infalling baryonic clumps (El-Zant 1.4 Simulation et al. 2001; Mo & Mao 2004; Romano-D´ıaz et al. 2009; Goerdt 1.5 2.0 2.5 3.0 3.5 etal.2010)doesnotappeartoplayadominantroleinoursimu- t/Gyr lations.IntheLTsimulations,nocoresform;thereforeeffectsof dynamicalfrictionareruledoutexceptfromthedensestclumpsin Figure6.Theevolutionofthelogarithmicslopeofthehalointherawsim- HT.IntheHTsimulations,anydenseinfallingclumpsaretypically ulationdata(dottedline)andaccordingtoourmodel(solidline),measured disrupted long before they reach the inner kiloparsec. To test the at500pcinbothcases.Values∼<−1indicateaconventionalNFW-style effectofdynamicalfriction,onewouldfirstneedtoremovetheex- cusp;shallowerprofilesareindicatedbyvaluesclosertozero.Theflatten- plosiveeventsassociatedwithfeedback.Howeverasthefeedback ingoftheprofileinthesimulationshaspreviouslybeendemonstratedto energyisdecreased,denseclumpsstarttopileupingalaxiesuntil agreewithobservationaldata(Ohetal.2011a).Ourphysicalmodelforthe originoftheflatteningisinexcellentagreementwiththedetailedsimulation timeintegrationbecomescomputationallyunfeasible,atthesame results. time creating an unrealistic dense central bulge. Additionally we do not have the resolution to produce star clusters (Goerdt et al. 2010)whichcouldbemorerobusttodisruptionthangasclumps. profile.Astimeprogresses,boththesimulatedandmodeldensity Asaresultwearenotrulingoutdynamicalfrictionasanagentfor profiles gradually flatten out, with the value rising from <−1.0 weakeningcuspsexceptfortheparticularsimulationsinusehere. (cusped)to∼−0.4,consistentwithobservations(Ohetal.2011a). TheDG1case(whichundergoesmajormergersatz=3and Toconclude,theanalyticmodelpresentedherepredictsflat- z=1;seeSection2)hasaverysimilarcusp-flatteninghistoryto teningoftheslopeatthesamerateasseenintheHTsimulation the galaxy described in this work. The mergers themselves have (Figures 5 and 6); whereas the adiabatic approximation does not no measurable effect on the halo slope and, as expected through predictanysignificantflattening(Figure5).Wefurtherverfiedthat argumentsbasedonLiouville’stheorem,coresremainpresentafter the new model did not predict a change in slope for the LT run themerger(Kazantzidisetal.2006).InGovernatoetal(inprep.) inwhichthegasdensityremainstoosmalltogeneratesignificant we show that cores form in the large majority of dwarf galaxies, fluctuationsinthepotential.Overall,thenewmodelaloneprovides irrespectiveoftheirassemblyhistory. aconvincingexplanationfortheflatteningprocessesseenbyG10. Themodelisreminiscentoftheviolentrelaxationenvisioned byLynden-Bell(1967),althoughouranalysisdoesnotattemptto generatethegravitationalpotentialself-consistently.Itwouldthus bedesirableinthefuturetoworkthemicrophysicsintoabroader, 5 CONCLUSIONS analyticaldescriptionoftheevolutionofaself-consistentdarkmat- Wehaveproposedanewanalyticmodelthataccountsfortheflat- ter distribution function. We would further like to investigate the tening of dark matter cusps into cores. Energy is transferred into importanceofdeparturesfromexactsphericalsymmetry.Thesim- dark matter particle orbits through repeated, rapid oscillations of ulated supernova explosions are rarely exactly on the axis of the thecentralgravitationalpotential.Theseoscillationsarecausedby disk, so even axisymmetry is violated. This will lead to the non- recurrent,concentratedburstsofstarformationwhichinducerapid conservationofangularmomentum,whichmustbeunderstoodbe- expansion of gas through supernova feedback heating. We veri- forewecaninvestigatetheimpactoftheprocessontheanisotropy fiedthatthisprocessquantitativelyaccountsforcusp-flatteningin oftheorbits(Toninietal.2006). anovelsetofsimulationssimilartothoseinG10.Thesimulations Stars,likedarkmatterparticles,arecollisionlessandtherefore includetheeffectsofmetal-linecooling,butlikethoseinG10form should be subject to the same migratory processes outlined here. thin stellar disks and have a galactic star formation efficiency of Stars forming near the centre of the HT galaxies indeed migrate onlyafewpercent.Acomparisonsimulation(LT)withlowerstar outwards;itcouldbenaturalinthiscontextthatthescale-lengthof formationdensitythresholddoesnotformacore,despiteforming thedarkmattercoresandthestellardisksareapproximatelyequal, tentimesasmanystarsbyz=0.Themodelcorrectlypredictsno anobservationalrelationnotedbyGentileetal.(2009).Indeedthe cusp-flatteninginthiscase(Figure6)confirmingourinterpretation scale-lengthsofbothstellardiskanddarkmattercoreofthedwarf thatforcorestoformthesupernovaenergymustbeinjectedina galaxiesdiscussedhereareapproximately1kpc(G10;Brooksetal. concentratedregion(Figure1). 2011).Tomakethislinkconvincingwillrequireamoresystematic The baryons do not have to escape the system completely, studyofscalingwithmass(Brooksetalinprep). but only temporarily vacate the central regions, because the en- Whiletheanalyticmodelwehavedescribedisindependentof (cid:13)c 0000RAS,MNRAS000,000–000 8 A.PontzenandF.Governato the detailed gas dynamics, to obtain results the simulated hydro- Bullock,J.S.,Dekel,A.,Kolatt,T.S.,Kravtsov,A.V.,Klypin, dynamicsareusedasaninput.Thecusp-flatteningeffectisthere- A.A.,Porciani,C.,&Primack,J.R.2001,ApJ,555,240 foreonlyachievedinrealityiftherapidgasmotionspredictedby Ceverino,D.,&Klypin,A.2009,ApJ,695,292 the SPH code are reproduced. Mesh-based codes (Teyssier 2002; Cole,D.R.,Dehnen,W.,&Wilkinson,M.I.2011,MNRAS,416, O’Shea et al. 2004; Springel 2010) highlight potential shortcom- 1118 ings of traditional SPH such as its poor handling of instabilities Dubinski,J.,&Carlberg,R.G.1991,ApJ,378,496 related to sharp density contrasts (Agertz et al. 2007; Bauer & Dutton,A.A.2009,MNRAS,396,121 Springel 2011). In future we intend to address the sensitivity of El-Zant,A.,Shlosman,I.,&Hoffman,Y.2001,ApJ,560,636 ourresultstotheseinaccuraciesthroughcomparisonwithalterna- Flores,R.A.,&Primack,J.R.1994,ApJ,427,L1 tive codes and use of forthcoming improvements to the Gasoline Gelato,S.,&Sommer-Larsen,J.1999,MNRAS,303,321 SPHenginethatreduceartificialsurfacetension(seealsoRead& Gentile, G., Famaey, B., Zhao, H., & Salucci, P. 2009, Nature, Hayfield2011).ThroughdirectcomparisonofvariouscodesScan- 461,627 napieco et al. (2011) conclude that, for most practical purposes, Gnedin,O.Y.,&Zhao,H.2002,MNRAS,333,299 thechoiceofsub-gridmodelapproximation(viawhichsupernova Goerdt, T., Moore, B., Read, J. I., & Stadel, J. 2010, ApJ, 725, energy is coupled to the gas) is more critical than the numerical 1707 technique. It will be of interest to determine whether other feed- Goldstein,H.,Poole,C.,&Safko,J.2002,ClassicalMechanics, back mechanisms and numerical methods can reproduce our re- 3rdedition(AddisonWesley) sults.IndeedrecentlyMartizzietal.(2011)reportedtheformation Governato,F.,etal.2010,Nature,463,203 ofdarkmattercoresinAMRsimulationsthroughgasfluctuations Katz,N.,Weinberg,D.H.,&Hernquist,L.1996,ApJS,105,19 verysimilartoours,butdrivenbyAGNactivityinclusters. Katz,N.,&White,S.D.M.1993,ApJ,412,455 We are currently investigating how the cores scale for Kazantzidis,S.,Zentner,A.R.,&Kravtsov,A.V.2006,ApJ,641, 109M(cid:12) <Mvir <1012M(cid:12) (Governato et al, in prep). At higher 647 massestheresultswilldependonadetailedinterplaybetweenthe Kennicutt,Jr.,R.C.,etal.2007,ApJ,671,333 deepeningdarkmatterpotential,increasedstarformationrates,and Lynden-Bell,D.1967,MNRAS,136,101 thenatureofAGNfeedback(Martizzietal.2011). Thechallenge Martizzi,D.,Teyssier,R.,Moore,B.,&Wentz,T.2011,MNRAS, ofrunningsuitablesimulationstotacklethemostmassivesystems submitted,arXiv:1112.2752 atsufficientresolutionisformidable,butonethatwehopetotackle Mashchenko, S., Couchman, H. M. P., & Wadsley, J. 2006, Na- induecourse. ture,442,539 Mashchenko,S.,Wadsley,J.,&Couchman,H.M.P.2008,Sci- ence,319,174 McGaugh,S.S.,Schombert,J.M.,deBlok,W.J.G.,&Zagursky, M.J.2010,ApJ,708,L14 Mo,H.J.,&Mao,S.2004,MNRAS,353,829 ACKNOWLEDGEMENTS Moore,B.1994,Nature,370,629 Navarro,J.F.,Eke,V.R.,&Frenk,C.S.1996a,MNRAS,283, Wethanktheanonymousrefereeforhelpfulcomments.APthanks L72 Steven Gratton for many helpful discussions and James Wadsley, Navarro,J.F.,Frenk,C.S.,&White,S.D.M.1996b,ApJ,462, Justin Read, Jorge Pen˜arrubia, Alyson Brooks, Fergus Simpson, 563 HiranyaPeiris,GaryMamonandMaxPettiniforcommentsona Navarro,J.F.,&White,S.D.M.1993,MNRAS,265,271 draftversionofthepaper.FGacknowledgessupportfromaNSF Oh,S.,Brook,C.,Governato,F.,Brinks,E.,Mayer,L.,deBlok, grantAST-0607819andNASAATPNNX08AG84G. W.J.G.,Brooks,A.,&Walter,F.2011a,AJ,142,24 The analysis was performed using the pynbody pack- Oh,S.-H.,deBlok,W.J.G.,Brinks,E.,Walter,F.,&Kennicutt, age(http://code.google.com/p/pynbody).Simulations Jr.,R.C.2011b,AJ,141,193 andanalysiswereperformedusingtheDarwinSupercomputerof O’Shea,B.W.,Bryan,G.,Bordner,J.,Norman,M.L.,Abel,T., theUniversityofCambridgeHighPerformanceComputingService Harkness,R.,&Kritsuk,A.2004,inAdaptiveMeshRefinement (http://www.hpc.cam.ac.uk),providedbyDellInc.using –TheoryandApplications,ed.T.Plewa,T.Linde,&V.Weirs StrategicResearchInfrastructureFundingfromtheHigherEduca- (Springer Lecture Notes in Computational Science and Engi- tionFundingCouncilforEngland. neering) Pasetto,S.,Grebel,E.K.,Berczik,P.,Spurzem,R.,&Dehnen,W. 2010,A&A,514,A47+ Read,J.I.,&Gilmore,G.2005,MNRAS,356,107 References Read, J. I., & Hayfield, T. 2011, MNRAS, submitted, Agertz,O.,etal.2007,MNRAS,380,963 arXiv:1111.6985 Bauer, A., & Springel, V. 2011, MNRAS, submitted, Romano-D´ıaz,E.,Shlosman,I.,Heller,C.,&Hoffman,Y.2009, arXiv:1109.4413 ApJ,702,1250 Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Romano-D´ıaz,E.,Shlosman,I.,Hoffman,Y.,&Heller,C.2008, Madore,B.,&Thornley,M.D.2008,AJ,136,2846 ApJ,685,L105 Binney,J.,Gerhard,O.,&Silk,J.2001,MNRAS,321,471 Saitoh,T.R.,Daisaka,H.,Kokubo,E.,Makino,J.,Okamoto,T., Binney, J.,& Tremaine, S. 1987,Galactic dynamics (Princeton, Tomisaka,K.,Wada,K.,&Yoshida,N.2008,PASJ,60,667 NJ,PrincetonUniversityPress,1987,747p.) Scannapieco, C., et al. 2011, MNRAS submitted, Brook,C.B.,etal.2011,MNRAS,415,1051 arXiv:1112.0315 Brooks,A.M.,etal.2011,ApJ,728,51 Shen,S.,Wadsley,J.,&Stinson,G.2010,MNRAS,407,1581 (cid:13)c 0000RAS,MNRAS000,000–000 Howsupernovafeedbackturnsdarkmattercuspsintocores 9 Simon,J.D.,Bolatto,A.D.,Leroy,A.,Blitz,L.,&Gates,E.L. 2005,ApJ,621,757 Springel,V.2010,MNRAS,401,791 Stinson, G., Seth, A., Katz, N., Wadsley, J., Governato, F., & Quinn,T.2006,MNRAS,373,1074 Tacconi,L.J.,etal.2010,Nature,463,781 Teyssier,R.2002,A&A,385,337 Tonini,C.,Lapi,A.,&Salucci,P.2006,ApJ,649,591 vandenBosch,F.C.,Burkert,A.,&Swaters,R.A.2001,MN- RAS,326,1205 Wadsley,J.W.,Stadel,J.,&Quinn,T.2004,NewAstronomy,9, 137 Weinberg,M.D.,&Katz,N.2002,ApJ,580,627 (cid:13)c 0000RAS,MNRAS000,000–000

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.