marine drugs Article How Environmental Factors Affect the Production of Guanidine Alkaloids by the Mediterranean Sponge Crambe crambe EvaTernon1,*,EricaPerino2,RenataManconi3,RobertoPronzato2andOlivierP.Thomas1,4,* 1 UniversitéCôted’Azur,CNRS,OCA,IRD,Géoazur,250rueAlbertEinstein,06560Valbonne,France 2 DipartimentodiScienzedellaTerra,dell’AmbienteedellaVita,UniversitàdiGenova,CorsoEuropa26, 16132Genoa,Italy;[email protected](E.P.);[email protected](R.P.) 3 DipartimentodiScienzedellaNaturaedelTerritorio,UniversitàdiSassari,ViaMuroni25,07100Sassari, Italy;[email protected] 4 MarineBiodiscovery,SchoolofChemistry,NationalUniversityofIrelandGalway,UniversityRoad, H91TK33Galway,Ireland * Correspondence:[email protected](E.T.);[email protected](O.P.T.); Tel.:+353-(0)91493563(O.P.T.) AcademicEditor:PaulLong Received:6December2016;Accepted:12June2017;Published:16June2017 Abstract: Most marine sponges are known to produce a large array of low molecular-weight metaboliteswhichhaveapplicationsinthepharmaceuticalindustry. Theproductionofso-called specializedmetabolitesmaybecloselyrelatedtoenvironmentalfactors. Inthiscontext,assessing the contribution of factors like temperature, nutrients or light to the metabolomes of sponges providesrelevantinsightsintotheirchemicalecologyaswellasthesupplyissueofnaturalsponge products. ThespongeCrambecrambewaschosenasamodelduetoitshighcontentofspecialized metabolites belonging to polycyclic guanidine alkaloids (PGA). First results were obtained with field data of both wild and farmed specimens collected in two seasons and geographic areas of the North-Western Mediterranean. Then, further insights into factors responsible for changes in themetabolismweregainedwithspongescultivatedundercontrolledconditionsinanaquarium. Comparative metabolomics showed a clear influence of the seasons and to a lesser extent of the geographywhilenoeffectofdepthorfarmingwasobserved. Interestingly,spongefarmingdidnot limittheproductionofPGA,whileexsituexperimentsdidnotshowsignificanteffectsofseveral abioticfactorsonthespecializedmetabolomeataone-monthtimescale. Somehypotheseswere finallyproposedtoexplaintheverylimitedvariationsofPGAinC.crambeplacedunderdifferent environmentalconditions. Keywords: sponge;abioticfactors;specializedmetabolome;metabolomics;spongefarming 1. Introduction Marinespongesareknowntoproducealargearrayofsmallmoleculesalsocalledspecialized metabolitesthatarelikelytobeinvolvedinallelopathicinteractions[1–6]. Fromabiotechnological pointofview,suchmetabolitesarefrequentlyinvestigated,mostlyforpharmaceuticalapplications[7–9]. Several biotechnological approaches have been developed for the large-scale production of these high value-added marine products which include in situ and ex situ farming, primmorph or cell culture[10,11]. Farmingexplantsinsituhasbeenconsideredasoneofthemostcost-effectivewaysto guaranteesufficientsustainablebioactivemetabolites[12]. Sincespatialandtemporalvariationsin concentrationsofmajorspecializedmetaboliteshavebeendocumentedpreviously[13–15],theideal farminglocationthatpromotestheirbiosynthesisaswellastheharvestseasonhavetobeassessed. Mar.Drugs2017,15,181;doi:10.3390/md15060181 www.mdpi.com/journal/marinedrugs Mar.Drugs2017,15,181 2of15 Thenaturalvariationsintheproductionofthespecializedmetaboliteshavebeenmostlyexplained byenvironmentalandecologicalfactorslikebioticinteractions[16–19],abioticfactors[13,20–22]or morerarely,theorganism’slifecycle[15,23]aswellasphysiologicalstate[24,25]. Overall,theeffects ofabioticfactorsontheproductionofspecializedmetaboliteshaveproducedcontrastingresultsso far [20,26–29]. As highly effective filter feeders, marine sponges are able to take up a large range (<0.2–50 µm) of inorganic and organic particles from seawater [30]. Therefore, the environmental conditions,suchastheseawatertemperatureortheavailabilityofnutrients,areexpectedtoinfluence thespongemetabolism, andassessmentoftheirimpactonthebiosynthesisandconcentrationsof specializedmetabolitesisofhighrelevanceinthecontextofspongefarming. In contrast to previous studies where a targeted analysis of a small number of identified compounds was performed, comparative metabolomics allows the monitoring of environmental changes using a broader range of metabolites [31]. Metabolomics refers to the set of low molecular-weightmolecules(<1.5kDa)biosynthesizedbythecellsinassociationwithitsmetabolism, definedasthemetabolome[32]. Providingasnapshotofthemetabolicphenotypeatagiventime, metabolomicshasthepotentialtodeterminebiomarkersindicativeoftheeffectsofabioticstressors suchasnaturalandanthropogenicfactors[33]. Therefore,thecomparisonofmetabolomesforthe investigation of organism-environmental interactions using high resolution analytical technology constitutesapowerfultool. Inthisstudy,weusedametabolomicsapproachusingUHPLC-HRMSto assesstheinfluenceofseasonalityandgeographicaldistributiononthespecializedmetabolomeofthe MediterraneanencrustingspongeCrambecrambe(Porifera,Demospongiae)forwildpopulationsandin situfarms. Inasecondsetofexperimentsperformedexsitu,weinvestigatedtheenvironmentalfactors likelytoberesponsibleforthedetectedvariationsinsitu(temperature,light,andnutrientsavailability). ThespecializedmetabolomeofC.crambehasbeenwellcharacterizedduringthepastdecades.Itis composedoftwofamiliesofpolycyclicguanidinealkaloids(PGA,SupplementalinformationFigure1); the crambescins (one or two cycles) and crambescidins (five cycles) that both exhibit substantial biological activities [34–39]. From C. crambe, several crambescidins (named from their molecular weight i.e., 800, 816 and 830) have been isolated and characterized [36,40,41] together with three sub-families of crambescins A–C differing in the presence of a pyrrolidine ring (A), a spiroaminal (B)andalinear3-hydroxypropylchain(C)[37,40,42]. Werecentlyshowedthatcrambescidinsmight formachemicalshieldaroundthespongethatcontributestothesponge’sprotectionandecological success[6]. Alterationofthischemicalshieldduetochangesinenvironmentalconditionswillaffect theallelopathicinteractionsthatthespongemaintainswithitshabitat. 2. MaterialsandMethods • Collectionofwildandfarmedsponges TriplicatesofwildspecimensofC.crambewerecollectedatdifferentdepths(5,10and25m)by SCUBA diving in the Ligurian Sea (Tigullio Gulf Punta del Faro 44◦29(cid:48)84.83” N, 9◦21(cid:48)86.02” E) in April(spring)andSeptember2013(autumn)andintheSardiniaSea(PortoConteBay,40◦35(cid:48)43.69”N, 8◦12(cid:48)31.44”E)(Figure1(A-a,B-c))inApril2013(spring). Autumnandspringcorrespondrespectively totheassumedmaximumandminimumproductionofguanidinealkaloidsbyC.crambe[17]. Farmed specimensofC.crambewerecollectedbySCUBAdivingintheLigurianSea(TigullioGulf,PuntaPedale 44◦19(cid:48)15.35”N,9◦12(cid:48)57.00”E)andintheSardiniaSea(TramariglioBay,40◦35(cid:48)32.60”N,8◦10(cid:48)11.72”E) (Figure1(A-b,B-c))inAprilandSeptember2013.Aftercollection,thespongeswereimmediatelyfrozen at−20◦C,freeze-driedandmaintainedat−20◦Cuntilextraction. MaricultureofC.crambewasperformedusingthemethodologyUSAMA®[43]usingunderwater modular apparatus composed of different structures: (1) a stainless steel plant, composed of 1.5×1.5m2modulesthatcanbecombinedindifferentways(SupplementaryMaterialsFigureS2A,B). Severalpivotsareusedtosettle, atequaldistance, theropeswiththespongeexplants(necklaces); (2)aPVCmodularplant,madebyrectangularorsquareforms(SupplementaryMaterialsFigureS2C,D) anchored by ropes to structures. Pivots are inserted to anchor the sponge necklaces. The sponge Mar.Drugs2017,15,181 3of15 Mar. Drugs 2017, 15, 181 3 of 15 explants were assembled in the ‘sponge necklaces’ [44]: (i) travertine tile method, composed of m10ecthmod×, c1o0mcmpotsreadv eorft i1n0e ctmile ×s 1a0n cchmo rteradvteorttinhee triolepse asnacnhdortehde troo ptheed rroiplleesd ainndto ththee rocporen derrilolefdr oincktoy tthaeb lectosr.nTehr eosfp rooncgkeye xtapblalenttss. wTheree sppaosntegde oenxpealacnhtsti lweuersein gpaastneodn -otonx iecauchn dteilrew uatseinrgb i-ac onmopn‐otnoexnict uepnodxeyrwpauttetyr b(Siu‐cboCmopaot,nVeennte ezpiaonxiyY apcuhtttyS y(sStuembCs,oIatta,l yV)e(nSeuzpipanleim Yeancthatr ySyMsatetemrisa, lsItFaligyu) r(eSuSp2Ep)l;e(mii)ennytaloryn Mmaetsehrimales tFhiogdu,rme Sad2Ee)o; f(iai) pnoyslho-nli kmeenshet mweitthho2dc, mmamdees hoef sa fipxoesdh‐tloikreo pneest .wTihthe s2p comng meeesxhpelas nftixsewde troe reonpcelos.s eTdhein spthoenmgee eshxpesla(nStusp wpelerme eennctaloryseMd ainte trhiael smFeisghuerse (SS2uFp)p.lementary Materials Figure S2F). FFiigguurree 11.. CCoolllleeccttiioonn ssiitteess ooff CCrraammbbee ccrraammbbee iinn tthhee LLiigguurriiaann SSeeaa ((AA)) ((aa PPuunnttaa ddeell FFaarroo,, bb PPuunnttaa PPeeddaallee)); ; aanndd SSaarrddiinniiaa SSeeaa ((BB)) ((cc CCaappoo CCaacccciiaa)).. The abiotic sea parameters were obtained by the multiparameter probe ‘Idronaut’ in the Theabioticseaparameterswereobtainedbythemultiparameterprobe‘Idronaut’inthePortofino Portofino Promontory area from 0 to 35 m (Povero pers. comm.). At both the Liguria and Sardinia Promontoryareafrom0to35m(Poveropers. comm.). AtboththeLiguriaandSardiniasites,water sites, water temperatures were recorded by means of an underwater HOBO® Data Logger (Onset, temperatures were recorded by means of an underwater HOBO® Data Logger (Onset, MA, USA) MA, USA) installed in the plants and in the wild. The temperature was recorded every 6 h. Monthly installedintheplantsandinthewild. Thetemperaturewasrecordedevery6h. Monthlyaverage average temperature values were then considered. temperaturevalueswerethenconsidered. Aquarium experiments • Aquariumexperiments Crambe crambe specimens were sampled in the bay of Villefranche‐sur‐mer (20 m depth along CrambecrambespecimensweresampledinthebayofVillefranche-sur-mer(20mdepthalong the rocky coast) in October 2013 (Temperature & Light experiment) and in January 2014 (Nutrient therockycoast)inOctober2013(Temperature&Lightexperiment)andinJanuary2014(Nutrient experiment). Specimens were carefully transferred to the Observatory of Villefranche‐sur‐mer and experiment). SpecimenswerecarefullytransferredtotheObservatoryofVillefranche-sur-merand aacccclliimmaatteedd ffoorr oonnee mmoonnthth inin aqauqaurairai asuspupplpielide dbyb cyocnotinntuinouuosu sseasweaawteart eflroflwo (w2 L(2∙mLi·nm−1i)n p−u1m) ppuemd apte ad 5 m depth in the bay of Villefranche‐sur‐mer with a natural light/dark cycle as described previously at a 5 m depth in the bay of Villefranche-sur-mer with a natural light/dark cycle as described [45]. Each sponge specimen was cut into small replicates of similar size (~5 cm2) in order to perform previously[45].Eachspongespecimenwascutintosmallreplicatesofsimilarsize(~5cm2)inorder the two following sets of experiments: (1) “Temperature and Light experiment” and (2) “Nutrient to perform the two following sets of experiments: (1) “Temperature and Light experiment” and experiment” that investigated the effects of variation in those environmental parameters on the (2)“Nutrientexperiment”thatinvestigatedtheeffectsofvariationinthoseenvironmentalparameters specialized metabolism of C. crambe. Being collected from an encrusted rocky substrate, the on the specialized metabolism of C. crambe. Being collected from an encrusted rocky substrate, specimens were carefully cut into different pieces with a hammer and a chisel to produce genetically thespecimenswerecarefullycutintodifferentpieceswithahammerandachiseltoproducegenetically identical biological replicates. identicalbiologicalreplicates. 2.1. Temperature and Light Experiment 2.1. TemperatureandLightExperiment This first experiment was performed in November 2013, using a running seawater flow rate of 2 ThisfirstexperimentwasperformedinNovember2013,usingarunningseawaterflowrateof L2∙Lm·imn−in1. −T1h.eT hfievefi vfoellfoowlloinwgin tgretartematemnetsn twsewreer iemimplpelmemenetnetde:d (:i)( ic)ocnotnrtorol l(T(T == 161 6°C◦C; n;naatuturaral llilgighht tccyyccllee)), , ((iiii)) lliigghhtt 2244//2244 hh ((330000 lluuxx)),, ((iiiiii)) ddaarrkk 2244//2244 hh (0(0 luluxx)), ,((iviv)) 1144 °◦CC, ,aanndd ((vv)) 2200 °◦CC. .TThhee ccoolllleeccttiioonn ooff ssppoonnggee specimens was performed after 0, 7 and 30 days, in each aquarium and in triplicate. Water specimenswasperformedafter0,7and30days,ineachaquariumandintriplicate. Watertemperature temperature and light intensity were recorded in all aquaria by means of an underwater HOBO® Data Logger (Onset, MA, USA). The probes were set to record temperature 2 times per day (every 12 h). Mar.Drugs2017,15,181 4of15 and light intensity were recorded in all aquaria by means of an underwater HOBO® Data Logger (Onset,MA,USA).Theprobesweresettorecordtemperature2timesperday(every12h). 2.2. NutrientExperiment ThesecondexperimentwasconductedinMarch2014,usingrunningseawaterataflowrateof 0.7L·min−1. Fiveaquariaeachcontaining4spongereplicatesweresetup: 2controlaquariawith onlyrunningseawaterand3treatmentaquariawithrunningseawaterplustheadditionofanutrient mixture. ThenutrientmixturewasmadeupofMQwaterandinorganicsalts,i.e.,phosphate(KH PO ) 2 4 andnitrate(NaNO ),andwasbroughttothethreetreatedaquariabyaperistalticpumpataflow 3 rateof1mL·min−1 inordertoreachaconstantconcentrationofphosphate(PO 3− =2.5µmol·L−1) 4 andnitrate(NO − =18µmol·L−1). Theseconcentrationswerechosenastheyareconsistentwiththe 3 anthropogenizedsiteofCortiou, closetothecityofMarseilleintheNorthwesternMediterranean Sea[46]. AtT0andafter5,11,18and24days,spongereplicateswerecollectedfromeachaquarium, andseawaterwassampledfromonecontrolandonetreatedaquaria. Seawatersampleswerespiked withmercuricchlorideandkeptat+4◦C.Dissolvedinorganicsalts(PO 3−,NO −,NO − andSiOH ) 4 3 2 4 in seawater were then analyzed by a colorimetric method, using a Continuous Flow Automated AnalyzerTechniconAutoAnalyzerIIfollowingamethoddevelopedpreviously[47]. Foreachsetof experiments,spongesampleswereflash-frozenusingliquidnitrogenandmaintainedat−26◦Cuntil chemicaltreatment. • Metabolomicanalysis Methanol, acetonitrile and dichloromethane (Chromasolv®, analytical grade), formic acid (puriss.P.a. ~98%)andammoniumformate(LC-MSUltraforUHPLC-MS)werepurchasedfromSigma Aldrich(Saint-QuentinFallavier,France). UltrapurewaterwaspreparedusingaMilli-Qwatersystem (MilliporeLtd.,Billerica,MA,USA). Allspongesampleswerefreeze-driedandgroundtoobtainadrypowderwhichwasextracted threetimeswitha15mLmixtureofMeOH/CH Cl (1:1,v/v)inanultrasonicbath(35kHz)atroom 2 2 temperature. DuetotheencrustinggrowthformofthespongeC.crambe,therockysubstratewasburnt at550◦Cfor24htoobtainthespongeorganicweight(Totalweight−rockweight=spongeweight). Crude extracts were filtered through 8 µm paper filter (Whatman Grade 2V), dried using a rotary evaporatorandfurtherfractionatedbysolidphaseextractionovera500mgC18silicaSPEcartridge (Phenomenex, Torrance, CA, USA) with a step gradient of H O (20 mL), MeOH (20 mL), CH Cl 2 2 2 (20mL).ThemethanolfractionwasdriedusinganSPD111SpeedVac(Thermosavant,ModelRH12-28), concentratedto10mg·mL−1,andstoredat−26◦CuntilfurtherdilutionpriortoLC-MSanalysis. UHPLC-HRMSanalysis PriortotheUHPLC-HRMSanalysis,allsamplesweresolubilizedin1mLofMeOHandwere diluted1/1000. Inaddition,fiveQualityControl(QC)sampleswerepreparedbycombining10µLof eachsampleina2mLvialandthesepoolswereinjectedeverysevensamplestoallowchromatogram alignmentduringdatatreatment. In-lineUHPLC-UV-HRMSanalysiswasperformedusingaDionex systemUltimate3000equippedwithanautosamplerandaDionexUltimate3000diodearraydetector (210and280nmdetection),connectedtoaqToFmassspectrometerwithanelectrosprayionization interface(BrukerImpactII).Massspectrawererecordedinthepositivemode. UHPLCseparationwas achievedonananalyticalNucleodurPolarTeccolumn(100×2mm,1.8µm,MachereyNagel)using a linear elution gradient of H O/CH CN/formic acid to which was added 10 mM of ammonium 2 3 formatefrom80:20:0.1(v/v/v,isocraticfrom0to2min)to40:60:0.1(v/v/v,isocraticfrom8to10min), ataflowrate0.45mL·min−1foratotalof14min. Theinjectedvolumewassetat10µLanddetection at 280 nm. The mass spectrometer analyzer parameters were set as follows: nebulizer sheath gas, N (2.1bar);drygas,N (8L/min);capillarytemperature,200◦C;capillaryvoltage,2500V;endplate 2 2 offset,500V;collisiongas,He;collisionenergy,4eV.Datawereacquiredinthe50to1200m/zrange. Mar.Drugs2017,15,181 5of15 UHPLC-HRMSdataprocessingforuntargetedanalyses FollowingUHPLC-ESI-HRMSdataacquisition,MSchromatograms(BasePeakchromatogram—BPC) wereexportedaslinespectraandconvertedintothenetCDFfileformattoprocessthedataincentroid modewithXCMS[48]usingRsoftware(version3.2.2.). TheXCMSapproachinvolvedseveralsteps necessary to generate a final matrix: (1) Peack picking (peakwidth = c(2, 20), ppm = 10) without thresholdprefilter[49],(2)retentiontimecorrection(method=”obiwarp”),(3)grouping(bw=10, minfrac=0.3,minsamp=1),(4)Fillpeaksusingaparameterof“noiselevel”thatsetstheminimum intensityforacentroiddatapointtobeconsideredaspartofapeak(noiselevel=103),andfinally(5) reportanddatamatrixgeneration(ions/Retentiontime×sample)thatwasexportedusingMicrosoft Excel. Two successive filtering steps were applied to the matrix in R in order to suppress data of high analytical variability: (i) signal/noise ratio > 10 between variables matching in both extracts and blank samples (considers that ions are part of the noise if their mean intensity is less than 10-foldtheblankvalue)and(ii)coefficientofvariationintheintensityofthevariablesfortheQC samples<20%. Eachpeakareawasfurthernormalized(accordingtothedriftofequivalentionof pooled samples), mean-centered (the mean ion intensity of all samples was subtracted from each sampleionintensity)andfinallylog-transformedtomakeindividualfeaturesmorecomparable,using on-lineMetaboAnalyst3.0[50]. Multivariateanalysiswasconducted(Principalcomponentsanalysis (PCA)andPartialLeastSquares-DiscriminantAnalysis(PLS-DA))andPCAwasfurtherchosensince itgavethebestdiscrimination. Veryimportantpeaks(VIPs)weredeterminedaccordingtothePCA loadingplots. Metabolomictargetedanalysis Chemical identification was performed only for compounds of interest (crambescins and crambescidins, Supplementary Materials Figure S2) that have been extensively described. Thechromatogramobtainedbetween5.5and8minofretentiontimewasconsideredourmetabolomic window,andthemajorcompoundsofthisareawerethoroughlyidentifiedbycomparingtheirMS patternwithastandard(SupplementaryMaterialsTableS1)[5,37]. Becauseseveralionadductscan bedetectedforasinglecompoundwithelectrosprayionization,thefollowingmono-anddi-charged adductswerealsotakenintoaccountinthemetaboliteannotation: [M+H]+,[M+Na]+,[M+NH ]+, 4 [M + 2H]2+/2, [M + 2NH ]2+/2. They are the most commonly observed in positive electrospray 4 ionization mode with ammonium formate and formic acid as eluent modifiers. The theoretical m/z values for typical adduct species were compared with the experimental values to ensure the identification of the compounds (once per treatment and fraction and once for the QC samples). Forspectrapresentingmultipleadducts,wesummedtheareaofalladductstoobtainthetotalintensity corresponding to one compound. Analytical blanks confirmed that no memory effects or sample contaminationskewedresults. Theconcentrationofthemetaboliteswasassessedusingacalibration withstandardsofcrambescidin-816andcrambescin-A2-462,assumingallcompoundsofthesame familyhadsimilarionizationpotential. One-wayANOVAwasperformedonthedatatoinvestigate thestatisticaldifferencesbetweenconditions. 3. Results • Insitustudywithwildandfarmedsponges Toinvestigatedepth,seasonalandgeographiceffectsonthespecializedmetabolomeofC.crambe, wildspecimenswerecollectedintheLigurianSeaduringbothspringandautumnandintheSardinia Seaduringspring. Afirstmetabolomicsapproachshowedasignificanteffectoftheseasononthe metabolomeofwildspecimensofC.crambeasrevealedbythePrincipalComponentAnalysis(PCA) plot (Figure 2). Variations of the metabolic content in relation with geography or depth were not statisticallysignificant. CrambecrambewasalsofarmedintheLigurianSeausingbothmeshandtiles protocols,andsampleswerecollectedinautumnandspring. Themetabolomicsapproachshowsthat Mar.Drugs2017,15,181 6of15 thespecializedmetabolomeofspecimensfarmedarenotsignificantlydifferentfromwildspecimens, andthehighestvariabilitywasattributedtoseasonalchanges(Figure2).Ontheotherhand,thefarming protocolsdidnotshowsignificantdifferencesinthespecializedmetabolomeofC.crambe. Therefore, growingconditionsandlocationhavesmallimpactonthecontentofthespecializedmetabolitesof thesponge. Mar. Drugs 2017, 15, 181 6 of 15 m/z RT [M+H]+ 490.3373 6.90 979.6746 483.3403 6.98 963.6806 246.2087 7.05 489.4174 223.1689 4.86 445.3378 263.2011 6.18 525.4022 Figure 2. PCA plot obtained from the metabolomics study on wild (Wi) and farmed (Fa, Tile or Mesh Figure2.PCAplotobtainedfromthemetabolomicsstudyonwild(Wi)andfarmed(Fa,TileorMesh protocols) samples harvested at different locations (Sar = Sardinia, Lig = Ligurian) in both autumn protocols)samplesharvestedatdifferentlocations(Sar=Sardinia,Lig=Ligurian)inbothautumn (Aut) and spring (Sp). The table lists the five most important ions contributing to the distribution of (Aut)andspring(Sp).Thetableliststhefivemostimportantionscontributingtothedistributionof samples in the PCA plot. samplesinthePCAplot. The five most contributive ions to this PCA were identified (Table S1) using full scan Tchheromfiavteogmraomsst fcoor nvtrailbiduattiivone. iIonntesretsotintghlyis, mPCosAt owf ethree iiodnesn teilfiuetedd (bTeatwbleeenS 14).8 uasnind g7 fmuliln, scan corresponding to compounds slightly more polar than crambescins and crambescidins. None of chromatograms for validation. Interestingly, most of the ions eluted between 4.8 and 7 min, these compounds were assigned to known metabolites. Therefore, we concluded that the variability corresponding to compounds slightly more polar than crambescins and crambescidins. None of of the metabolic content is not driven by the major metabolites (i.e., crambescins and crambescidins) thesecompoundswereassignedtoknownmetabolites. Therefore,weconcludedthatthevariabilityof but rather by minor metabolites. themetaboliccontentisnotdrivenbythemajormetabolites(i.e.,crambescinsandcrambescidins)but To better investigate the variations in the concentrations of the two major families of specialized ratherbyminormetabolites. metabolites, the crambescins and crambescidins, a targeted metabolomics analysis was undertaken. TForobmet ttehrisi nsvtuedsyti,g watee othuetlivnaerdi aat iloonwseirn ctohnececnotnracteinontr aotfi obnostho ffatmheilitews odumrianjgo rsfparmingil iceosmopfasrpeedc itaol ized metabaoultiutemsn, th(3e9 craagmainbsets c3i9n1s aμnmdolc∙gra−1m sbpe, spc id=i n1s.5,5a t×a r1g0e−6t e*d**m, Letigaubroialonm siacmspalneas;l yFsiigsuwrea s3Aun).d Terhtea ken. Fromctohniscesntutrdayti,own eoof ustpleincieadlizaeldo wmeertacboonlciteens trina tiaountuomfnb owthasf asmupilpieosrtdeud rbinyg bsoptrhi ntghec ocmrapmabreesdcitno aanudtu mn (39agcarainmsbte3s9ci1diµnm faoml·igli−es1 (supp, pto= 1718.5 a5nd× 21105− μ6m**o*l∙,gL−1i gspu,r riaesnpescatmivpellye)s. ;AF isgimurilear3 Ase)a.sTonhael ctroenncde nwtarsa tion shared by farmed specimens for both the crambescins and crambescidins families (Figure 3A). Wild of specialized metabolites in autumn was supported by both the crambescin and crambescidin familiaensd( ufaprmtoed1 7s8amanpldes2 1sh5oµwmedo la·glm−1osst ps,igrnesifpiceacntti v(epl y=) .0.A065s7im) idlaifrfesreenacseosn afolrt rbeontdh wfaamsilsiehsa roefd by compounds; these differences being mostly supported by samples harvested in autumn (93 against 204 μmol∙g−1 sp for the crambescins and 169 against 284 μmol∙g−1 sp for the crambescidins). Mar.Drugs2017,15,181 7of15 farmedspecimensforboththecrambescinsandcrambescidinsfamilies(Figure3A).Wildandfarmed samples showed almost significant (p = 0.0657) differences for both families of compounds; these differencesbeingmostlysupportedbysamplesharvestedinautumn(93against204µmol·g−1spfor thecraMmabr. eDsrcugins 2s01a7n, 1d5, 116819 against284µmol·g−1spforthecrambescidins). 7 of 15 FigureF3ig.uCreo 3n.c Ceonntrceantitorantisonosf ocfr carmambbeesscciiddiinnss aanndd crcarmambebsceisncsi nins Ci.n crCam.bcer ainm μbmeoinl∙gµ−1m spo lo·bgt−ai1nesdp froobmta ined the targeted metabolomics study for (A) wild and farmed specimens, (B) Temperature and Light fromthetargetedmetabolomicsstudyfor(A)wildandfarmedspecimens,(B)TemperatureandLight experiment, and (C) Nutrient experiment (*** p < 5 × 10−4; ** p < 0.005; * p < 0.05, one‐way ANOVA). experiment,and(C)Nutrientexperiment(***p<5×10−4;**p<0.005;*p<0.05,one-wayANOVA). The spatial location of C. crambe slightly impacted the content of crambescidins since their Thcoenscpenattriaatliolnosc iant iSoanrdoinfiaC w.ecrrea smtabteistsilciagllhyt lhyigihmerp thaacnte tdhotshee inc tohne tLeingturoiafnc Sreaam (4b5e μscmidoli∙ngs−1 sspin, pc e= their concen0t.r0a3t3i8o n*)s, ai nreSsualrtd minoisatlyw seurpepsotratetids tbiyc athlley chonigchenetrratthioanns tohf ocrsaeminbetshciediLnisg. uItr iisa nnoSteewao(r4th5yµ tmhaot lt·hge− 1 sp, crambescins did not show any significant difference between the two regions (23 and 22 μmol∙g−1 sp p=0.0338*),aresultmostlysupportedbytheconcentrationsofcrambescidins. Itisnoteworthythat in Liguria and Sardinia, respectively). thecrambescinsdidnotshowanysignificantdifferencebetweenthetworegions(23and22µmol·g−1 spinLig urEiax asnitud eSxapredriimniean,trse spectively). Some experiments were also conducted in aquaria to study the variability of the specialized • Exsituexperiments metabolome of C. crambe when submitted to diverse environmental factors. So me experiments were also c onducted in aquaria to study the variability of the specialized metabolomeofC.crambewhensubmittedtodiverseenvironmentalfactors. Mar.Drugs2017,15,181 8of15 3.1. TMemar.p Derruagtsu 2r0e17a, n15d, 1L8i1g htExperiments 8 of 15 A3.1lt. hToemugpehrawtuerea atntde mLipghtte dExtpoerkimeeenptsfi xedconditionsoftemperatureinallaquaria,thiswasmade difficultbyanopenrunningseawatersystemthatisaffectedbynaturalvariations. Thetemperatureof Although we attempted to keep fixed conditions of temperature in all aquaria, this was made thecontrolaquarianaturallyfluctuatedbetween15and17◦C,andamaximumofone-degreevariation difficult by an open running seawater system that is affected by natural variations. The temperature wasroefc othred ecdonftororlb aoqtuhatrhiae ncoatnutrraolllyle dflu“c1t4ua◦tCed” b(beetwtweeene n151 3a.n5d◦ C17a °nCd, a1n4d.5 a◦ Cm)aaxnimdutmhe o“f2 o0n◦eC‐d”e(gbreeetw een 19.5◦vCaraiantidon2 0w.5as◦ rCec)oerxdpeder fiomr beontths .thLei gcohnttirnotlleends “it1y4 w°Ca”s (bseettwaete3n0 103L.5u °xC (a~n1d2 1040.5W °C/)m an2d) dthuer “in20g °tCh”e 12h ofal(ibgehtwt-deeanr k19c.5y c°lCe ainndt h2e0.5te °mC)p eexrpaeturirmeeenxtsp. eLriigmhte nintt.enFsoirtyt hweasl isgeht taet x3p00e rLiumxe (n~1ts2,0t0h We/smam2) educryinclge was maintthaei n1e2d hf oorf tah leigchotn‐dtarorkl ecxycplee riinm tehnet ,teamnpdetrhateurree seuxlptseroimftehnet. mFoert athbeo lloigmhti ceaxpnearliymseenstws, ethree csoammep ared withcaypcleer wmaasn menatinltiagihntede xfpore rthime econnttaronld exppeerrmimaennetn, tandda rtkhee xrepseurlitms oefn tth.e metabolomic analyses were compared with a permanent light experiment and permanent dark experiment. A PCA plot revealed no clear difference between control, temperature and light experiments A PCA plot revealed no clear difference between control, temperature and light experiments (Figure4). Itisnoteworthythattheinter-samplevariabilitywithinatreatmentincreasedwiththe (Figure 4). It is noteworthy that the inter‐sample variability within a treatment increased with the experimentaltimeasshownbythedistributionofthereplicates.Tobenoted,thefivemostcontributive experimental time as shown by the distribution of the replicates. To be noted, the five most ionstothePCApresentedmid-polarity,veryclosetothePGA(5.5<RT<6.5),butwerenotassigned contributive ions to the PCA presented mid‐polarity, very close to the PGA (5.5 < RT < 6.5), but were toannyokt nasoswignnemd etota abnoyl iktenso.wn metabolites. m/z RT [M+H]+ Known 251.2014 6.45 501.4028 no 273.1966 5.58 545.3932 no 260.2066 6.06 519.4132 no 256.1937 6.5 511.3874 no 265.1986 6.55 529.3972 no Figure 4. PCA plot obtained from an untargeted metabolomics study of the temperature/light Figure 4. PCA plot obtained from an untargeted metabolomics study of the temperature/light expereixmpeernimt.eCn=t. Cco =n tcroonlt,rDol,= DD =a Drka,rLk, =L L=i Lghigth,t1, 414◦ C°C= =T Teemmppeerraattuurree 1144 ◦°CC aanndd 2200 °◦CC == TeTmempepreartautruer 2e02 0◦C. °C. The table shows the five most important peaks that contribute to the distribution of samples on Thetableshowsthefivemostimportantpeaksthatcontributetothedistributionofsamplesonthe the PCA plot, along with their retention time. PCAplot,alongwiththeirretentiontime. Mar.Drugs2017,15,181 9of15 Thetargetedmetabolomicsstudyconfirmedtheabsenceofstatisticallysignificantdifferences in the concentrations of the crambescins and crambescidins of C. crambe specimens across the treatments. Thesummedconcentrationofthemajorspecializedmetaboliteswasveryclosetothe Mar. Drugs 2017, 15, 181 9 of 15 onemeasuredinsamplesharvestedinthefield,althoughtheproportionofcrambescidinrepresented up to 50–70T%he otafrgtehteedt omteatlabcoolnomteincst s(tFuidgyu croenf3irBm).edD tihfefe arbesnecneces obfe sttwatiesetincaltlrye asitgmniefincatsn,t dfoifrfeirnenscteasn ce, the in the concentrations of the crambescins and crambescidins of C. crambe specimens across the concentration of crambescidins in control at T2 (increase by a factor 2.7), were mainly driven by treatments. The summed concentration of the major specialized metabolites was very close to the inter-individualvariability. one measured in samples harvested in the field, although the proportion of crambescidin represented up to 50–70% of the total content (Figure 3B). Differences between treatments, for 3.2. NutrientExperiment instance, the concentration of crambescidins in control at T2 (increase by a factor 2.7), were mainly driven by inter‐individual variability. 3.2.1. NutrientConcentrations 3.2. Nutrient Experiment Although only nitrate and phosphate were added to the aquaria, four inorganic salts were measuredintheseawaterduringtheexperiment: nitrate,nitrite,phosphateandsilicate(SI,FigureS3). 3.2.1. Nutrient Concentrations No difference in the concentration of non-added salts was noticeable between control and treated Although only nitrate and phosphate were added to the aquaria, four inorganic salts were aquaria; those salts being most probably controlled by the sponge. The nutrient mixture was measured in the seawater during the experiment: nitrate, nitrite, phosphate and silicate (SI, Figure S3). efficientNlyo daidffdereedncteo int hthee tcroenacteendtraatqiouna orifu nmon‐aasddsehdo wsalnts bwyast hneotinceitarbaltee baetnwdeepnh coosnptrhola atendc otrneacteendt rations (23anda3quµamriao;l ·tLh−os1e astaTlt4s ,breeisnpge cmtiovste lpyr)o.bHabolwy ecvonetrr,oalltetdem bpy tethde hsopmonogge.e nTehoe unsuctroienncte nmtirxattuiroen wsians treated aquariaefwficeireentolyn aldydreeda tcoh tehde taretadteady aq1u8araifutmer aism shpoowrnta bnyt tvhea rniiatrtaioten asn(dP pOho3s−ph:a0te. 7c–o1n.c5enµtrmatoioln·Ls −(213; NO −: 4 3 6–13µmanodl ·L3 −μ1m).olT∙Lh−1i sati nTs4t, arbeislpiteyctimvealyy). bHeoewxepvleari, naettdembpytetdh ehotmecohgneniceaolusis csounecsenetnractoiounns tienr etrdeadteudr ingthe aquaria were only reached at day 18 after important variations (PO43−: 0.7–1.5 μmol∙L−1; NO3−: 6–13 deliveryofthenutrientmixturebytheperistalticpump. μmol∙L−1). This instability may be explained by the technical issues encountered during the delivery of the nutrient mixture by the peristaltic pump. 3.2.2. MetabolomicsStudy 3.2.2. Metabolomics Study The distribution of the samples on the PCA showed no clear difference in the specialized metabolomeThoef cdoisntrtriboultaionnd onf utthrei esnatm-tprleeast eodn stahme PpCleAs (sFhiogwuerde 5n)o. Hcleoawr edvifeferr,eancceh ainn gtheei nsptehceiamlizeetda bolome atT4sememeteabdotloombee ionf itcioantetrdola nadnds hnouutrlidenbt‐etrceoatnesdi dsearmedpl.eIst i(sFiwguorret h5)n. oHtiocwinegvetrh, aat thcheamngoe stinc otnhter ibutive metabolome at T4 seemed to be initiated and should be considered. It is worth noticing that the most ionsdifferedinthisexperimentfromthepreviousone.Inthiscase,wewereabletoidentifycrambescin contributive ions differed in this experiment from the previous one. In this case, we were able to C1withalowerconcentrationatT4innutrient-treatedsamples. identify crambescin C1 with a lower concentration at T4 in nutrient‐treated samples. Figure5.Cont. Mar.Drugs2017,15,181 10of15 Mar. Drugs 2017, 15, 181 10 of 15 m/z RT [M+H]+ Known 280.1541 7.03 559.3082 no 408.1482 8.13 408.1482 no 326.2444 5.8 326.2444 no 358.2473 1.15 358.2473 no 234.1909 6.5 467.3818 yes Figure 5. PCA plot obtained from an untargeted metabolomics study of the nutrients. C = control and Figure5.PCAplotobtainedfromanuntargetedmetabolomicsstudyofthenutrients.C=controland N = nutrient‐treated samples and triplicates of biological samples are represented by a colored point. N=nutrient-treatedsamplesandtriplicatesofbiologicalsamplesarerepresentedbyacoloredpoint. The table shows the five most important ions contributing to explain the sample distribution on the ThetablPeCsAh polwots atlohnegfi wviethm thoesirt riemtepntoiornta tnimteio annsd cthoenirt reixbpuetcitnedg [tMo +e xHp]+l.a inthesampledistributiononthe PCAplotalongwiththeirretentiontimeandtheirexpected[M+H]+. The targeted metabolomics analysis showed that the differences observed between control and nutrient‐treated samples were not statistically different for the major metabolites (Figure 3C). The The targeted metabolomics analysis showed that the differences observed between control concentrations measured in this experiment were very close to those measured in in situ samples. and nutrient-treated samples were not statistically different for the major metabolites (Figure 3C). Thecon4c.e Dntisrcautisosinosn measuredinthisexperimentwereveryclosetothosemeasuredininsitusamples. The Mediterranean Sea is considered an oligotrophic region where spatial distribution of 4. Discussion biogeochemical elements [51] as well as plankton species [52] is dependent on meso‐scale circulation Theof Mwaetderi tmerarsasense. aVnariSaetiaoniss ofc osuncshi dbeiorteicd anadn aoblioigtioc tpraorpahmiecterrse gmioignht wcohnetrriebustep atot ivaalridatiisotnrsib inu tion of the production of the specialized metabolites in common organisms like sponges. This aspect is of biogeochemicalelements[51]aswellasplanktonspecies[52]isdependentonmeso-scalecirculation interest as sponges are recognized as important producers of metabolites with pharmaceutical ofwatermasses. Variationsofsuchbioticandabioticparametersmightcontributetovariationsin interest. We selected the Mediterranean sponge C. crambe as a model due to the presence of a high the prodquuacnttiiotyn oof fbtihoaectsivpee cailaklailzoeidds mnaemtaedb oPloitlyecsyicnlicc Gomuamnidoinnico rAglaknaliosimdss frloikme tshpeo cnragmesb.escTinh iasnads pect is of interecrsatmabsesscpidoinng faemsialirees. recognized as important producers of metabolites with pharmaceutical interest. WeIns eolredcetre tdo tahseseMss ethdei tvearrriaabnieliatyn, ssppeocnimgeenCs .ofc rbaomthb ewailsd aanmd ofadremleddu Ceratmobteh cerapmrbees sepnocnegeosf ahigh were harvested from two distinct Mediterranean sub‐basins (Ligurian Sea and Sardinia Sea), located quantity of bioactive alkaloids named Polycyclic Guanidinic Alkaloids from the crambescin and from ~500 kilometers along a latitudinal cline (44°18′ N vs. 40°35′ N, respectively), thus differing by crambescidinfamilies. the intensity of the solar radiation they receive as well as by their hydrological characteristics In order to assess the variability, specimens of both wild and farmed Crambe crambe sponges (temperature, salinity) and primary productivity [53]. The production of specialized metabolites in werehawrvileds tsepdecfirmoemnst wwoasd sihsotiwnnc ttMo ebde ivteerrrya nsiemainlars ubbet-wbaeesnin tsh(eL tiwguo risaanmpSleead alnocdatSioanrsd i(nFiigauSree a2)),. located from~5T0h0erkeifloorem, ettheer sroalleo npglayaedla tbityu deninviarloncmlineneta(l4 4p◦a1r8am(cid:48) Netevrss .in4 0t◦h3e5 (cid:48)coNnc,ernetsrpateiocnti voef lysp),etchiauliszeddi ffering by the imnteetanbsoiltiyteso ifs tlhimeitseodl ainr trhaisd ciaasteio. Tnhtish leimyirteedc einivtreasapsecwifiecl ml aestabboylict hveairriahbiylidtyr ooblosegrivceadl bcehtawreaecnt eristics the two locations might be related to the genetic diversity as previously suggested [1,33,54–57]. In (temperature, salinity) and primary productivity [53]. The production of specialized metabolites accordance with previous studies [13–15,20,23,58], a marked seasonal trend of the metabolic content in wild specimens was shown to be very similar between the two sampled locations (Figure 2). showed a maximum in autumn and a minimum in spring (specimens of the Ligurian Sea, Figure 2). Therefore,theroleplayedbyenvironmentalparametersintheconcentrationofspecializedmetabolites Interestingly, the same seasonal pattern was observed in both wild and farmed specimens cultured is limiteind thinis athreias, scuagsgee.stTinhgi sa rloimle iotfe idnteinrntarla pshpyescioifilocgimcael tfaacbtoorlsic asv maraiianb dirliivtyerso obfs tehrev veadriabtieotnws eofe tnhet he two locationsspmeciiaglhiztebd emreetlaabtoeldismto. Sthucehg feancteotrisc cdouivlde resitihtyera bse pgrreovwitohu [s2l1y,24su,2g5]g oers rteepdro[1d,u3c3t,i5on4 –[5577,]5.8]I.n Ita hcacso rdance with prbeeveino uosftesnt uhdyipeosth[e1s3iz–e1d5 ,t2h0a,t2 t3h,5e 8r]e,leaasme aofr klaerdvasee ians olantea lsutrmemnder osifgtnhaels mthee teanbdo loifc tchoe netneenrgtys howed investment in reproduction, allowing a switch towards an enhanced production of specialized amaximuminautumnandaminimuminspring(specimensoftheLigurianSea,Figure2).Interestingly, metabolites during autumn and throughout the winter [17]. This trade‐off between the reproduction the same seasonal pattern was observed in both wild and farmed specimens cultured in this area, and the production of specialized metabolites was hypothesized by [24] and [17] for C. crambe. Our suggestdinagta aserto laelsoo frienvteearlns aal spighnyifsiicoalnot gdicifafelrfeanccteo rins athsem maeitnabdorliicv ecorsntoefntt hbeetvwaereina twioinlds aonfdt hfaermspeedc ialized metabolsipsemci.mSeuncs hinf aaucttuomrsnc (oFuigludree i2t)h, weritbhe hgigrhoewr ctohn[c2e1n,t2ra4t,i2o5n] oof rthree ptorxoicd curcatmiobnes[c5id7i,n5 8fa]m. Iitlyh ians wbielde noften hypothespsioznegdest (hFaigtutrhee 3Are)l. eTahsues,o af cloamrvbaineatiinonla otfe instuermnaml fearctsoirgsn aactlisngth teogeenthdero wfitthh ebieontiec rfgacytoirnsv seuscthm entin as competition for space [1,16,18,19] may also explain the seasonal variability of the production of reproduction,allowingaswitchtowardsanenhancedproductionofspecializedmetabolitesduring the specialized metabolites. Abiotic factors such as temperature or nutrient availability might trigger autumnandthroughoutthewinter[17]. Thistrade-offbetweenthereproductionandtheproduction other processes like sponge reproduction or other constraints of primary metabolism [25,58,59], ofspecializedmetaboliteswashypothesizedby[24]and[17]forC.crambe. Ourdatasetalsoreveals rather than directly affecting the specialized metabolome. a significanTthdei fmfeerteanbocleominicst haeppmroeatcahb oallilocwceodn teenncotmbpeatwssienegn owf itlhde avnardiabfailritmy eodf tshpee cwihmoelen sseitn ofa utumn (Figures2p)e,cwialiitzhedh migehtaebrocliotensc pernotdruacteiodn byo fCt. hcreamtobxe iwcicthr abmotbh etshcei mdiinnofra amndil ythien mwajiolrd mseptoabnoglietess(. FIti gisu re3A). Thus, aincotemrebstiinnga ttioo nnotoef thinatt enronnea loff athcet omrasjoarc stpinecgiatloizgedet mheetrabwoilitthesb bieolotincg ftaoc tthoer fsivseu mcohsta csoncotrmibupteivteit ion for space [1,16,18,19] may also explain the seasonal variability of the production of the specialized metabolites. Abioticfactorssuchastemperatureornutrientavailabilitymighttriggerotherprocesses likespongereproductionorotherconstraintsofprimarymetabolism[25,58,59],ratherthandirectly affectingthespecializedmetabolome. The metabolomics approach allowed encompassing of the variability of the whole set of specializedmetabolitesproducedbyC.crambewithboththeminorandthemajormetabolites. Itis
Description: