ebook img

How does MRI work An Introduction to the Physics and Function of Magnetic Resonance Imaging PDF

172 Pages·2006·2.73 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How does MRI work An Introduction to the Physics and Function of Magnetic Resonance Imaging

Dominik Weishaupt · Victor D. Köchli · Borut Marincek How Does MRI Work ? Dominik Weishaupt Victor D. Köchli Borut Marincek How Does MRI Work ? An Introduction to the Physics and Function of Magnetic Resonance Imaging Second Edition Contributors: J. M. Froehlich, D. Nanz, K. P. Pruessmann With 57 Figures and 9 Tables 123 Dominik Weishaupt, MD Contributors: Associate Professor Klaas P. Pruessmann, PhD Institute of Diagnostic Radiology Assistant Professor Raemistrasse 100, 8091 Zurich, Switzerland Institute of Biomedical Engineering Swiss Federal Institute of Technology Victor D. Köchli, MD Gloriastrasse 35, 8092 Zurich, Switzerland Rötelstrasse 30, 8006 Zurich, Switzerland Johannes M. Froehlich, PhD Borut Marincek, MD Guerbet AG Professor and Chairman Winterthurerstrasse 92, 8006 Zurich, Institute of Diagnostic Radiology Switzerland Raemistrasse 100, 8091 Zurich, Switzerland Daniel Nanz, PhD Department of Medical Radiology Raemistrasse 100, 8091 Zurich, Switzerland Translator: Bettina Herwig Hauptstraße 4 H, 10317 Berlin, Germany Corrected 2nd printing 2008 ISBN 978-3-540-30067-0 e-ISBN 978-3-540-37845-7 DOI 10.1007 / 978-3-540-37845-7 Library of Congress Control Number: 2006924129 © 2006, 2003 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad- casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts therof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.Product liability: The publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such information by consulting the relevant literature. Product liability: the publishers cannot guarantee the accuracy of any information about dosage and application contained in this book. In every individual case the user must check such informa- tion by consulting the relevant literature. Cover design: Frido Steinen-Broo, eStudio Calamar, Spain Production & Typesetting: LE-Tex Jelonek, Schmidt & Vöckler GbR, Leipzig Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com T itel V Preface It is with great pleasure that we present this completely revised English edi- tion of our book How Does MRI Work? An Introduction to the Physics and Function of Magnetic Resonance Imaging only two years after publication of the first English edition. We are particularly pleased that our introductory textbook met with great approval in the English-speaking world and not just in the German-speaking countries. This success has been an enormous in- centive for us to further improve and update the text. For this reason, we are now presenting a second edition. All chapters have been thoroughly revised and updated to include the latest developments in the ever-changing field of MRI technology. In particular, the chapter on cardiovascular imaging has been improved and expanded. We gratefully acknowledge the contribution of Daniel Nanz, PhD, the author of this chapter. Moreover, two completely new chapters have been added: “Fat Suppression Techniques” and “High- Field Clinical MR Imaging”. Notwithstanding these additions, the intended readership of our book remains the same: it is not a book for MR specialists or MR physicists but for our students, residents, and technologists, in short, all those who are interested in MRI and are looking for an easy-to-understand introduction to the technical basis of this imaging modality at the beginning of their MRI training. The second English edition presented here corresponds to and appears together with the completely revised fifth German edition. The authors gratefully acknowledge the support of numerous persons without whose contributions the new German and English editions of our book would not have been possible. First of all, we thank our readers, in particular those who bought and read the preceding versions and provided oral and written comments with valuable suggestions for improvement. We should furthermore like to thank Klaas P. Pruessmann, PhD, and Jo- hannes M. Froehlich, PhD, for their excellent introductions to parallel im- aging and MR contrast agents. Special thanks are due to our translator, Bettina Herwig, who very know- ledgeably and with great care translated the entire text and provided valu- able advice in preparing the new edition. Finally, we would like to thank Springer-Verlag, in particular Dr. U. Heil- mann, W. McHugh, and Dr. L. Ruettinger, for their cooperation. For the authors: Dominik Weishaupt, MD January 2006 Titel VI I Contents 1 Spin and the Nuclear Magnetic Resonance Phenomenon ...... 1 2 Relaxation .................................................................. 7 2.1 T1: Longitudinal Relaxation .............................................. 7 2.2 T2/T2*: Transverse Relaxation ........................................... 8 3 Image Contrast ............................................................ 11 3.1 Repetition Time (TR) and T1 Weighting ............................... 12 3.2 Echo Time (TE) and T2 Weighting ...................................... 13 3.3 Saturation at Short Repetition Times ................................... 15 3.4 Flip Angle (Tip Angle) .................................................... 17 3.5 Presaturation ................................................................ 18 3.6 Magnetization Transfer .................................................... 19 4 Slice Selection and Spatial Encoding ................................. 21 4.1 Three-Dimensional Spatial Encoding ................................... 26 4.2 K-Space ...................................................................... 27 5 Factors Affecting the Signal-to-Noise Ratio ........................ 29 5.1 Pixel, Voxel, Matrix ........................................................ 30 5.2 Slice Thickness and Receiver Bandwidth ............................... 30 5.3 Field of View and Matrix .................................................. 32 5.4 Number of Excitations ..................................................... 36 5.5 Imaging Parameters ........................................................ 36 5.6 Magnetic Field Strength ................................................... 36 5.7 Coils .......................................................................... 37 5.7.1 Volume Coils ................................................................ 37 5.7.2 Surface Coils ................................................................ 37 5.7.3 Intracavity Coils ............................................................ 37 5.7.4 Phased-Array Coils ........................................................ 38 6 The MR Scanner ........................................................... 41 6.1 The Magnet .................................................................. 42 6.2 The Gradient System ....................................................... 44 6.3 The Radiofrequency System .............................................. 45 6.4 The Computer System ..................................................... 45 VIII 7 Basic Pulse Sequences ................................................... 47 7.1 Spin Echo (SE) Sequences ................................................ 48 7.2 Black Blood Effect .......................................................... 49 7.3 Multislice Imaging ......................................................... 50 7.4 Inversion Recovery (IR) Sequences ...................................... 50 7.5 STIR Sequences ............................................................. 52 7.6 FLAIR Sequences .......................................................... 52 7.7 Gradient Echo (GRE) Sequences ........................................ 52 7.8 Multiecho Sequences ...................................................... 55 8 Fast Pulse Sequences .................................................... 57 8.1 Fast or Turbo Spin Echo Sequences ..................................... 57 8.2 Single-Shot Fast Spin Echo (SSFSE) Sequences ........................ 58 8.3 Fast or Turbo Inversion Recovery (Fast STIR) Sequences ............ 59 8.4 Fast Gradient Echo (GRE) Sequences ................................... 59 8.5 Echo Planar Imaging (EPI) Sequence ................................... 60 8.6 Hybrid Sequences .......................................................... 60 8.7 Gradient and Spin Echo (GRASE) Sequence ........................... 61 8.8 Spiral Sequences ............................................................ 61 8.9 Echo Time and T2 Contrast in Fast Sequences ........................ 62 9 Fat Suppression Techniques ............................................ 63 9.1 Chemical Shift Imaging ................................................... 63 9.2 Frequency-Selective Fat Saturation ...................................... 65 9.3 Short TI Inversion Recovery (STIR) ..................................... 66 9.4 Spectral Presaturation with Inversion Recovery (SPIR) .............. 66 10 Parallel Imaging ........................................................... 69 10.1 Background ................................................................. 69 10.2 Principles of Parallel Imaging ............................................ 69 10.3 Special Requirements ...................................................... 71 10.4 Applications ................................................................. 71 11 Cardiovascular Imaging ................................................. 73 11.1 Angiography ................................................................ 74 11.1.1 Bright Blood Imaging ...................................................... 74 11.1.2 Black Blood Imaging ....................................................... 86 11.1.3 Time-Resolved MR Angiography ........................................ 88 11.2 Perfusion-Weighted Imaging ............................................. 89 11.3 Diffusion-Weighted Imaging ............................................. 91 Contents IX 11.4 The BOLD Effect in Functional Cerebral Imaging .................. 95 11.5 Cardiac Imaging .......................................................... 97 11.6 Cardiac Imaging with SSFP Sequences ............................... 99 11.7 Myocardial Perfusion Imaging ......................................... 100 11.8 Late-Enhancement Imaging ............................................ 101 11.9 Detection of Increased Myocardial Iron Concentrations .......... 102 12 MR Contrast Agents .................................................... 103 12.1 Chemical Structure ...................................................... 107 12.2 Relaxivity .................................................................. 109 12.3 Pharmacologic Properties ............................................... 112 12.3.1 Extracellular Contrast Agents .......................................... 112 12.3.2 Intravascular or Blood Pool Contrast Agents ........................ 115 12.3.3 Liver-Specific Contrast Agents ......................................... 116 12.3.4 RES Contrast Agents ..................................................... 118 12.3.5 Lymph Node-Specific Contrast Agents ............................... 119 12.3.6 Tumor-Targeted Contrast Agents ...................................... 119 12.3.7 Other Emerging Tissue-Specific Contrast Agents ................... 120 12.3.8 Hyperpolarized Gases ................................................... 120 12.3.9 Oral MR Contrast Agents ............................................... 121 12.4 Outlook .................................................................... 122 13 MR Artifacts .............................................................. 129 13.1 Motion and Flow Artifacts (Ghosting) ................................ 129 13.2 Phase Wrapping .......................................................... 131 13.3 Chemical Shift ............................................................ 133 13.4 Magnetic Susceptibility .................................................. 135 13.5 Truncation Artifacts ..................................................... 135 13.6 Magic Angle ............................................................... 136 13.7 Eddy Currents ............................................................ 136 13.8 Partial Volume Artifacts ................................................. 136 13.9 Inhomogeneous Fat Suppression ...................................... 136 13.10 Zipper Artifacts .......................................................... 137 13.11 Crisscross or Herringbone Artifacts ................................... 137 14 High-Field Clinical MR Imaging ...................................... 139 14.1 Tissue Contrast ........................................................... 140 14.2 Magnetic Susceptibility .................................................. 140 14.3 Chemical Shift ............................................................ 140 14.4 Radiofrequency (RF) Absorption ...................................... 141 X 15 Bioeffects and Safety .................................................. 143 Glossary ........................................................................... 147 Subject Index ..................................................................... 165 T itel XI Abbreviations FID Free induction decay FSE Fast spin echo GRE Gradient echo IR Inversion recovery MHz Megahertz MR Magnetic resonance MRA Magnetic resonance angiography MRI Magnetic resonance imaging msec Milliseconds NMR Net magnetization vector PC MRA Phase-contrast MR angiography PD Proton density ppm Parts per million RF Radiofrequency SAR Specific absorption rate SE Spin echo SNR Signal-to-noise ratio T Tesla TE Echo time TOF Time of flight TR Repetition time

Description:
This thoroughly revised second edition succinctly introduces the physics and function of magnetic resonance imaging. All important and clinically relevant aspects are presented in a clearly structured manner. The emphasis is on practical information including the latest trends and developments that
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.