Review – How Do Virus Mosquito Interactions Lead to Viral Emergence? Claudia Rückert1,* and Gregory D. Ebel1,* Arboviruses such as West Nile, Zika, chikungunya, dengue, and yellow fever Highlights viruseshavebecomehighlysignificantglobalpathogensthroughunexpected, ArbovirusessuchasWestNile,Zika, explosive outbreaks. While the rapid progression and frequency of recent chikungunya,dengue,andyellowfever viruseshaveb ecomeh ighl ysignifi cant arbovirus outbreaks is associated with long-term changes in human behavior global pathogens through unex- (globaliza tion, urban iza tion, climat e ch ange), ther e are dir ec t mosqu ito–virus pected ,explosiveo utbreaks. interactions which drive shifts in host range and alter virus transmission. This Recent advances in next-generation review summarizes how virus–mosquito interactions are critical for these sequencinghaveallowedrapiddetec- viruses tobecomeg lobal pathogensatmo lecular,phys iolog ical,ev oluti onary, tion and id entific ation of virus es, as well astr acingvirusm ove mentus ing and epidemiological scales. Integrated proactive approaches are required in phylogeneticanalysis. order to effectively manage the emergence of mosquito-borne arboviruses, which appears likely to continue into the indefinite future. Evolutionaryandmodelingapproaches, combined with experiments and new surveillancemodalities,areattempting Mosquito-Borne Viruses as the New Global Pathogens topredictvirusemergence. Viral pathogens are major causes of morbidity and mortality among humans and animals. Efficienttransmissionofvirusesbetweensusceptiblehostsisrequiredinorderfortheseagents Vector competence and virus evolu- tionstu dies–usings elect edmo squito to persist in nature and ultimately cause disease. Several mechanisms for this exist, and include spe cies and neglec ted arbo viruses – direct contact, aerosol and sexual transmission, among others. A subset of viruses, termed arehelp ingto identifyw hichvirusma y arthropod-borne viruses (arboviruses) requires hematophagous arthropods, mainly mosqui- causethenextoutbreak. toesandticks,fortransmissionbetweenvertebrates.Ingeneral,perpetuationofarboviruses Integrated proactive approaches are requires vertebrate viremia so that arthropods acquire infectious virus along with nutrient- requiredinordertoeffectivelymanage containingbloodduringfeeding.Transmissionofvirustoanewhostbyanarthropodinfectedin the eme rg ence o f mosqui to-borne thismannerrequiresthatthisarthropodbeacompetentvector.Inpublichealthentomology, arboviruses, which appears likely to the term‘vec torcomp eten ce’ referstoth ein he rentability ofapart icu lararth ropod totransmita continue into the in definite fu ture. particularvirus.Incompetentvectors,virusisacquiredduringfeeding,undergoesreplicationin guttissue,disseminatestosecondarysitesofreplication,includingthesalivaryglandsandis ultimatelyreleasedintothearthropod’ssalivarysecretions,whereitmaybeinoculatedintothe skinandcutaneousvasculatureofthehostduringsubsequentfeeding(Figure1).Arboviruses, therefore,arethosevirusesthathaveevolvedanintimateassociationwithbothavertebrateand arthropod hostinorderto perpetuateinnature. Mosquitoes are the most important vectors of arboviruses [1], although many are main- 1DepartmentofMicrobiology, tainedbyticks[2],phlebotomines[3],andotherarthropods[4].Theglobalhealthburdenof ImmunologyandPathology,College mosquito-borne viruses is immense. It is commonly estimated that between 50 and 100 ofVeterinary Med icineandB iomedical million cases of infection b y dengue vi rus (DENV) se rotypes 1– 4 oc cur per y ear . Re cent Sc iences,Co loradoSt ateU niversity, FortCollin s,CO805 23,U SA estimatesplacedtheburdenofDENVat1.14milliondisability-adjustedlife-years in2013 [5].MostoftheindividualswhoareatriskofDENVinfectionareatriskofotherarboviruses, including yellow fever virus (YFV), chikungunya virus (CHIKV), and Zika virus (ZIKV) which *Correspondence: sharethesamemosquitovector,Aedesaegypti[6].Additionalarbovirusesthatburdenthe [email protected] (C.Rückert)and healthofindividualslivingin,ortravelingto,thetropicsincludeJapaneseencephalitisvirus [email protected] (JEV), Venezuelan equine encephalitis virus (VEEV), Mayaro virus (MAYV), o’nyong nyong (G.D.Ebel). 310 TrendsinParasitology,April2018,Vol.34,No.4 https://doi.org/10.1016/j.pt.2017.12.004 ©2017ElsevierLtd.Allrightsreserved. virus(ONNV),andmanyothers.Temperateregionsalsoexperienceseasonalepidemicsof Glossary arboviraldiseasecausedbyWestNilevirus(WNV),LaCrossevirus(LACV),easternequine Antigenemia:describeslevelsof encephalitis virus (EEEV), Jamestown Canyon virus (JCV) and related viruses. Although antigenintheblood.Intheparticular quantitative estimates of the collective burden of mosquito-borne arboviruses on human caseofincreasedNS1antigenemia mentionedhere,itmeansthatthe health worldwide do not currently exist, it is clear that their burden is enormous, and morerecentisolatesofZIKVresultin increasing [5,7,8]. increa sedNS 1levels in theb loodo f infectedindividuals. The geographic distribution of many arboviruses has expanded in recent decades [6,9], E1andE2glycoproteins:structural resu lting in infec tion of naïv e p opula tions and pr ovidi ng opportu nit ies for new host –virus proteins incorporated into the envelopeofthealphaviruses,such relationshipstodevelop.Forexample,afterincursionsintoEuropeinthe1990s,WNV(genus asCHIKV .E 1a ndE2areimp ortant Flavivirus)wasintroducedinto the Americasin1999andrapidly spreadfromasmallfocus forattachment,entry,andfusion nearNew York Citythroug hou tthe NewWo rld .Simi larly, CHIKV (genus Alpha v irus)s pread eve nts of the vi rus. Enzootictransmissioncycle: fromanAfricanfocusintoAsiaduringthemid-2000sandwasintroducedintotheCaribbean regio n in 2013 [10,11 ]. C HIKV is now en demic in th e Am eric as and has cau sed over one cdyecslceriobfeas tphaet hnoagtuernalb teratwnsemeniswsioildn million inf ection s, many of whic h result in debilit ati ng a rthralgia [1 0]. Z IKV (genus Flaviv irus) anima ls. T heterm‘e nzootic’i s equivalen tto thet erm‘endem ic’as hasalsoemergedinrecentyears[12].FollowinganexpansionfromanAfricanfocusintothe usedforhumandiseases. Pacificislands,theviruswasintroducedintoSouthAmericaandhasspreadthroughoutmost Epizootictransmissioncycle: ofther angeof itsA e.ae gypt ivector[8]. ZIKV hasc ausedno tabl edis easeam ongdevelo ping referstod iseaseoutbreak samong fetuses and unexpected neurological disease among adults [13]. WNV, CHIKV, and ZIKV, animalpopulations.Theterm ‘epizoo tic’isequiva lent totheterm along with DENV and YFV, underscore the emergence of mosquito-borne viruses as truly ‘epidemic’ as usedforh um an global pathogens. The combination of increased travel and trade has resulted in frequent diseases. exchangeofpathogensandvectorsacrosscontinents,suchthatthenotionof‘geographic Vectorcompetence:describesthe diseases’ is increasingly irrelevant. Coupled with the rapid growth of tropical megacities, abilityofaparticulararthropodto transm it a specificp athogen. these exchanges continue to result in explosive epidemics of pathogens transmitted by Vectorialcapacity:describesthe mosquitovectorsthat requirethehuman footprint on theenvironment in order to survive – basicrepr oductivera teofavec tor- vectors such as Ae. aegypti and Culex quinquefasciatus. The ongoing emergence of mos- bornepathogenbyaparticular quito-bo rnev irus esis occurri ngo nasca le(geographic,eco nom ic,andh uman)thatis w ithout vector species/p op ula tion. precedent in human history [7,8,14]. How,then,domosquito–virusrelationshipsleadtotheemergenceoftheseglobalpathogens (Figure 2, Key Figure)? This review examines the ways that mosquitoes influence the emer- genceofmosquito-bornevirusesinordertoprovideperspectivesonthehistoryandfutureof thisphenomenon.Thefirstsectionexaminestwocentralconceptsinpublichealthentomology –vectorcompetenceandvectorialcapacity–whichoutlinebasicmosquito–virusinteractions andarekeyinunderstandinghowmosquitoesimpactvirusemergence.Theseconceptsare alsorequiredforreaderstodevelopabasicunderstandingofthebiologyandepidemiologyof arboviruses.Thesecondsectiondealswithnewknowledgeoftheevolutionaryrelationships between viruses and their arthropod hosts. This section illuminates the complexities of arthropod–host interactions and how these can influence virus population biology and phe- notype,sometimesleadingtoemergence.Thethirdsectionprovidesahistoricalperspectiveon howmosquitoesinfluencearbovirusemergencebyexaminingthecasesofWNV,CHIKV,and ZIKV. Finally, we provide perspectives on the future emergence of mosquito-borne viruses, highlighting emerging mosquito-borne viruses that have yet to capture the attention of the generalpopulation. Understanding Vector Competence and Vectorial Capacity Arbovirusemergenceisdrivenbythehematophagousbehavioroftheirarthropodvectors.This unique mode of transmission has important consequences for the ecology of arboviruses. There aretwo conceptsthat arecentral toour understandingofarbovirus transmission and epidemiology:vector competence(seeGlossary)andvectorial capacity. TrendsinParasitology,April2018,Vol.34,No.4 311 Basal lamina Midgut lumen Salivary d o glands o Bl va ai S Midgut epithelium Figure1.DifferentTissueBarriersDetermineVectorCompetenceinMosquitoes.Anarbovirusistakenupbythemosquitoduringaninfectiousbloodmeal. Thevirusinfectsthemidgutepitheliumandreplicatesbeforeitpassesthebasallaminaintothehemolymphanddisseminatesthroughoutthemosquito'sbody.Inorder tobetransmittedtothenexthost,thevirushastoinfectthesalivaryglandsfromwhereitcanbereleasedintothesalivaandtransmittedtothenexthost.Viruspopulation geneticdiversityisreducedstochasticallyasvirusespassthroughanatomicalbarrierstotransmission,suchasmidgutinfectionandescapebarriers,andsalivarygland infectionandescapebarriers.Potentialchangesinviruspopulationsthathavepassedthroughsuchbottlenecksaredepictedasachangeincolor(increasinglydark blue).Throughthisgeneticdrift,aswellaspositiveselectioninthemosquito,newgenotypesmayemerge. Asdescribedabove,vectorcompetencedefinestheabilityofaparticulararthropodtotransmit a given virus. Vector competence has been studied extensively in mosquitoes, and it is determinedbybothgeneticandnongenetic(e.g.,environmental)factors.Itmayvarydepend- ingonmosquitospecies,localmosquitopopulations,andevenindividualmosquitoes.Impor- tantly, vector competence is a quantitative rather than a qualitative quantity: rarely do all mosquitoesofagivenspeciesorpopulationtransmitagivenvirus.Thus,vectorcompetenceis usuallyexpressedasaproportion(e.g.,34%ofCulextarsalismosquitoestransmitWNVafter 10daysincubation).Vectorcompetenceofaspecificmosquitopopulationisalsodependent on the virus, and even different isolates of the same virus species may result in changes in vectorcompetenceofamosquitopopulation[15,16].Generally,therearefourmajorbarriers thatthevirusmustcrosswithinthemosquitoinordertobetransmitted(reviewedin[17]).First, when a mosquito ingests an infectious bloodmeal, the virus must successfully infect and replicateinthemidgutepithelialcells(Figure1).Themidgutisthefirsttissueinwhichvirus– mosquitocellinteractionsoccurthatcanshapetheoutcomeofinfection.Mosquitoesinwhich theviruscannotestablishaninfectionhaveamidgutinfectionbarrier(MIB).Thiscanoccurdue togeneticfactors,suchaslackingexpressionofreceptorsonthecellsurface,ornongenetic determinantssuchasmicrobiomedensityandcomposition[18–20].However,onceavirushas establishedmidgutinfectionitmustcrossthebasallaminasurroundingthemidgutepitheliumin ordertodisseminatethroughouttherestofthemosquito(Figure1).Whenvirusreplicationis limitedtothemidgutanddisseminationdoesnotoccur,mosquitoesaresaidtohaveastrong midgutescapebarrier(MEB).Thebasallaminaofthemidgutpresentsaphysicalbarrierforthe virus,andthethicknessofthebasallaminahaspreviouslybeenlinkedtodecreaseddissemi- nation of DENV-1 in different Aedes albopictus populations [21]. Furthermore, it has been shownthatsmaller,nutritionallydeprivedAedestriseriatusmosquitoeshaveincreasedLACV 312 TrendsinParasitology,April2018,Vol.34,No.4 KeyFigure Summary of Factors Influencing Arbovirus Emergence Virus Replica(cid:2)on diversifica(cid:2)on 21nt RNAi Cellular virus–mosquito Vector competence Host/vector switching Emergence as global pathogen interac(cid:2)ons Figure2.Cellularandmolecularinteractions,suchasRNAi,drivevirusdiversificationinthemosquito.Differencesinmosquitovectorcompetence,andbottlenecks thatthevirusencountersduringdisseminationwithinamosquito,canresultinfurtherdivergenceoftheviruspopulationanddrivevirusevolutionandemergence.Dueto urbanizationanddeforestation,humansandlivestockarefrequentlyincloseproximitytomosquitovectorsandtovertebratehostsmaintainingvirusesinsylvatic/ enzootictransmissioncycles.HumansettlementsmayalsobringalonganthropophagicmosquitoessuchasAedesaegyptiandAedesalbopictus,whichmay encounterviremicreservoirhosts,suchasprimates.Interactionsbetweennewvectormosquitoesandvertebratehostscandrivearbovirusevolutionandemergence. Duetointensetravel,andubiquitousdistributionofAedesspp.mosquitoes,suchspillovereventsmayeasilyleadtotheoutbreakofanewglobalpathogen. dissemination rates compared to larger mosquitoes reared on a normal or rich larval diet [22,23],whichmayalsocorrelatewiththedevelopmentofathickbasallamina.However,ithas recentlybeenshownthattheuptakeofabloodmealaltersexpressionofspecificenzymesinthe mosquitomidgut,includingcollagenases,whichresultsintransientdegradationandincreased permissibilityofthebasallamina,allowingCHIKVtodisseminate[24,25].Viruseswithslower replicationrates,suchasDENV,maynotbenefitasmuchfromearlytransientdegradationof thebasallaminafollowingabloodmeal.Anotherpossiblemidgutescaperouteforarboviruses maybeviatrachealorneuronalcells.Dongandcolleagues[24]recentlyshowedthatCHIKV caninfecttrachealcellsconnectedtoAe.aegyptimidguts.Whenthevirushasdisseminated fromthemidgutitreplicatesinothermosquitotissues,includingthefatbody,hemocytes,nerve tissue,andmuscletissue(dependingonthevirus)ultimatelyreachingthesalivaryglands,the next crucialanatomicalbarriertoinfection,the‘salivarygland infectionbarrier’(SGIB).Upon salivaryglandinfection,thevirusreplicatesandisdepositedintheapicalcavitiesofacinarcells inordertobeexpectoratedwithsaliva(Figure1).However,notallmosquitoeswillbeableto expectorate virus (for reasons yet unknown) and thus have a ‘salivary gland escape barrier’ (SGEB). Other important mechanisms to limit virus replication throughout the mosquito body are mosquito antiviral immune responses (reviewed in [26,27]). The most specific and potent mosquitoantiviraldefenseisRNAinterference(RNAi).Duringinfectionofamosquitocell,viral dsRNAintermediatesarerecognizedbytheendonucleaseDicer2andcleavedinto21ntvirus- derivedsmallRNAs.ThesesmallRNAsareintegratedintotheRNA-inducedsilencingcomplex (RISC)andcantargetviralRNAfordegradation.Thissequence-specificresponsecanbevery efficient at controlling viral replication, and many viruses have evolved mechanisms to TrendsinParasitology,April2018,Vol.34,No.4 313 antagonize or evade the RNAi response [28]. All mosquito antiviral responses may pose selectivepressuresonthevirus,butRNAiisuniqueinitssequencespecificity,whichposes adirectevolutionarypressureontheviralgenome.Mosquitobarriersandantiviralresponses togethercontribute tothe overallphenotypeof vector competence. Vectorialcapacityisasecondcriticalconceptthatdescribesthebasicreproductiverateofa vector-bornepathogenbyaparticularvectorspecies/population(Figure3),andhighlightsthe powerofmosquitoesasdriversofvirusemergence.Factorswhichinfluencevectorialcapacity arevectordensitywithrespecttohost(m),thedailyprobabilityofthehostbeingfedupon(a), vectorcompetence(VC),theprobabilityofdailysurvival(P)andtheextrinsicincubationperiod (n).Thefactorsthatinfluencevectorialcapacity,andleadtoarbovirusemergence,havebeen reviewedanddiscussedextensively[29,30].Briefly,themostinfluentialvariablesintheformula aretheprobabilityofdailymosquitosurvivalandtheextrinsicincubationperiod(EIP).TheEIP referstotheamountoftimethatittakesforavirustoinfectthemidgutanddisseminatetothe saliva(i.e.,thetimebetweenuptakeofvirusandabilitytotransmit).Iftheprobabilityofmosquito dailysurvivalislowandtheEIPlong,thelikelihoodoftransmissionislow.Extensivemosquito- controlprogramsthatshortenthelifespancanthusefficientlyreducetransmission.However, theEIPisaffectedbyenvironmentalconditions,suchastemperature[31–33],aswellasgenetic factors[34–36]influencingvectorcompetenceofthemosquitopopulation.Virusesmayadapt to fasterdisseminationinsusceptiblemosquitospeciesand thusshorten theEIP[37]. Anotherimportantvariableistheprobabilityofaparticularhostbeingfedupon,orthedegreeof hostfocus.Thisvariable,‘a’inthevectorialcapacityequation,isaproportion(e.g.,80%,or0.8 ofmosquitoXbloodmealsaretakenfromhostY)andisraisedtothesecondpowertoreflect theneedforsusceptiblehoststobebittentwiceinorderforperpetuationtooccur.Different mosquito species vary in their blood-feeding behavior and host preference. The mosquito speciesAe.aegypti,forexample,hasadaptedtolifearoundhumans,inparticularurbanareas ofthetropicsandsubtropics,andmosquitoesofthisspeciesfeedalmostexclusivelyonhuman m =vector density in rela(cid:2)on to host a =probability of host being fed upon affected by climate change affected by differences in VC =vector competence and globalisa(cid:2)on human behavior/living condi(cid:2)ons affected by climate, microbiome, virus adapta(cid:2)on, mosquito gene(cid:2)cs ma2 × VC × Pn Vectorial capacity n =extrinsic incuba(cid:2)on period P affected by climate, virus evolu(cid:2)on -log e P = Probability of daily survival affected by climate, mosquito control Figure3.VectorialCapacity.Thevectorialcapacityformuladescribesthetotalnumberoffutureinfectiousbitesarisingfrommosquitoesbitinganindividual infectio ush ostonasin gleday.Itc onsis tsoffive factors:ve ctorden sitywithre spe cttoh ost(m), the dailyp robabilityo fthe hostbe ingfed upon(a),ve ctorco mp etenceof themosquitopopulation(VC),theprobabilityofdailysurvival(P)andtheextrinsicincubationperiod(n).Noneofthesefactorsareconstants,butvariableswhichdepend on bothenvir onmentalin fluen ces aswellas s pecifi cvirus– mo squi toin teraction sasindica ted. 314 TrendsinParasitology,April2018,Vol.34,No.4 hostsandfrequentlyfeedindoors[38].Thisbehaviormakesthemextremelyefficientvectorsfor viruses such as DENV, CHIKV, and ZIKV, which replicate to high titers in human hosts. In contrast,Ae.albopictus,whichcanalsoserveasavectorforDENV,CHIKV,andZIKV,ismore likelytofeedoutside,andwhileitisstillanthropophilic,itismoreofanopportunisticfeeder[39]. Othermosquitoes,suchasseveralspecieswithinthegenusCulex,mayfeedonahumanhost, but tend to prefer birds [40]. This makes them efficientvectors for WNV and other zoonotic arboviruses.WNVinfectionofhumanorhorsehostsisincidentalandresultsina‘deadend’for thevirusduetoinefficientreplicationandconsequentlowviremia.Thus,thecompetenceofa givenmosquitovectorforanarbovirusmaybeirrelevantifthatmosquitofeedsonlyinfrequently on susceptiblevertebratehosts. Virus adaptation to new mosquito vectors clearly shapes the patterns and dynamics of arbovirusemergence.Generally,viruseswithanAe.aegypti-drivenurbanlifecycleemerged fromenzooticprogenitorsthatcirculatedbetweennonhumanprimatesandsylvaticmosquito speciessuchasAedesafricanusorAedesfurcifer[8,41].AdaptationtotransmissionbyAe. aegyptimosquitoesprovidedaccesstoanewandabundantvertebratehost,humans.Thishas resultedinexplosiveoutbreaksasseenbeforeforZIKV,whichoriginatedinasylvaticcyclein Africa. Similarly, there are likely numerous viruses in current sylvatic viruses that may cause diseaseoutbreaksinthefuture,someofwhichwealreadyknow,manyofwhichwemaybe unawareof. Mosquitoes as Sources of Virus Genetic Diversity Arbovirustransmissionrequiresactivevirusreplicationbothinthearthropodvectorandthe vertebrate host. Arboviruses are thus subject to selectivepressures from two evolutionarily distant hosts. In vertebrates, where purifying selection is strong [42,43], these pressures includeinnateandadaptiveimmuneresponses.Mosquitoeslackaclassicadaptiveimmune system and do not produce interferon. However, Jak/STAT signaling and other signaling pathways, such as Toll, have been identified as antiviral responses against DENV [44,45], WNV [46], Semliki Forest virus [47], and ONNV [18]. RNAi is the main antiviral defense in mosquitoes[27],whichhasdirectconsequencesforvirusintrahostevolutioninmosquitoes (which can significantly impact virus emergence). Virus-derived small RNAs inhibit virus replicationandtranslationbydirectlybindingtocomplementaryviralRNA[27].Thegenera- tionandperpetuationofnovelsequencesofviralRNA(i.e.,containingmutations)maythusbe beneficial forthe viruswithinthemosquitobecausesmallRNAswillnotmatch withperfect complementarity. Experimental evolution studies have confirmed the hypothesis that RNAi targetingbythearthropodvectorleadstodiversificationofarbovirusgenomes[48–50].Rapid evolutionandgenerationofacomplexviruspopulationcouldbeparticularlybeneficialforthe virusinordertoreducecomplementarybinding,andbecausesmallRNAshavebeenshown tospreadfromcelltocellandmaythusprepareneighboringcellsforimminentvirusinfection [51]. However, these rapidly generated complex viral populations encounter bottlenecks withinthemosquitowhencrossingtheMEB,theSGIB,andduringtransmissionofsalivaitself [52,53]. These bottlenecks vary in their size between different mosquito species and most likelyvirus–vectorcombinations.InCx.quinquefasciatus,forexample,WNVdiversificationis high, purifying selection is relatively weak, and bottlenecks are significant, resulting in high divergenceofWNVpopulationsinthesalivacomparedtotheviruscontained intheblood- meal [52]. Different mosquito species may thus alter the virus population that is ultimately transmitted.Additionally,ithasbeenshownthatCulexmosquitoesmaytransmituniqueWNV populations during each feeding episode [54], which is a further example of howmosquito infection promotes virus diversification. However, it is not known if the same phenomenon occurs with other viruses and mosquito species. TrendsinParasitology,April2018,Vol.34,No.4 315 Rapid intrahostevolution ofamosquito-borne virusinthe mosquitomay result inthe emer- gence of a new variant with a replication advantage in the vertebrate host or a new tissue tropism resultingin increased disease severity. For instance, VEEV emerges frequently from enzootictoepizootictransmissioncycles,withhorsesservingasamplifyinghostscausing largeoutbreaksinbothhumansandhorses.Theseepizooticstrainsappeartohaveonlyafew aminoacidchangesintheenvelopeglycoproteinE2incommoncomparedtotheenzootic strains[55].TherearemanyVEEVstrainscurrentlybeingtransmittedinenzooticcycles,posing a constant threatinSouthandCentralAmerica [56]. Whilevirusadaptationtoreplicationinmosquitoesmayreducetheabilityofthevirustoreplicate to high titers in the mammalian host, such adaptations can also affect pathogenesis in undesirableways.ThiscanbeseeninEEEV,forexample,whichdoesnotreachhighviremia inhumans,butcancauseseveretofatalencephalitis.Ithasrecentlybeenshownthatthevirus cannotreplicateinmyeloidcellsofmiceduetoamiRNAtargetsiteinthe3ʹUTRformiRNA142- 3p,amyeloidcell-specificmiRNA[57].However,whilemutatingthistargetsequenceledtoan increase in viremia and replication in peripheral tissues in mice, it resulted in a decrease in replicationinmosquitocellsandininfectivityofmosquitoes,suggestingthatthissequenceis importantforreplicationinmosquitoes.Thisisoneexampleofhowadaptationtothevector may interfere withreplicationina mammalian host. Conversely,insect-specificvirusesmayhaveatsomepointdevelopedmechanismstoinhibit mosquitoantiviraldefenses, whichmayalsohelp thevirusreplicateefficientlyinmammalian cells. One such mechanism is the generation of subgenomic flaviviral RNA (sfRNA) during replication.Flaviviruseshavecomplexsecondarystructuresinthe3ʹUTR,whichstallthe3ʹ!5ʹ exonucleaseXRN1,resultinginthegenerationofsfRNAs.ThesesfRNAsinhibitmRNAdegra- dationbysequesteringXRN1,bothinmosquitoandmammaliancells.sfRNAsalsosuppress interferonsignalinginvertebratecellsandareimportantforcytopathicityaswellaspathoge- nicityinmice[58].ProductionofsfRNAsisalsoimportantforreplicationanddisseminationof flavivirusesinmosquitoes[59,60],whichmaybeduetobothrepressionofXRN1andtheirother functionassuppressorsofthemosquitoRNAimachinery[61,62].However,ithasrecentlybeen shownthatDENVsfRNApatternsdifferwhenvirusispassagedinmosquitocellscomparedto mammaliancells[63],suggestingthatwhilesfRNAgenerationisimportantinbothcelltypesitis notoptimizedforoneovertheother.Overall,sfRNAsmayhaveevolvedinmosquitoes(similar yet lesscomp lex 30UT Rst ruct urese xistinin sect-spe cific flaviv iruses),b u thaveanim portant role invertebratecells thatisrelated to,but distinctfrom,itsroleinmosquitoes. Virus–Mosquito Interactions Have Previously Shaped Virus Emergence Inrecentdecades,WNV,CHIKV,andZIKVhaveemergedasglobalpathogensinexplosive outbreaksthathavecausedsignificanthumanmorbidityandmortality.Thegeneralphenom- enon of formerly geographically restricted arboviruses emerging on a global scale has become common enough, and it is perhaps best considered a new status quo. Several factorsthathaveledtothisphenomenonhavebeenextensivelydiscussed,includinginthis review.Theseincludeglobalincreasesintravelandtrade,theriseoftropicalmegacities,and thedeclineofpublichealthprogramstomanagevectormosquitoes[9,64,65].Further,aswe have seen above, arboviruses have the capacity for explosive outbreaks due to their coadaptation to mosquitoes, which carry these agents between individuals with direction (i.e.,asavector).However,ineachcase(WNV,CHIKV,andZIKV)thevirusadaptedtolocal conditionsduringglobalspread,whichmaximizedtransmissionpotential(andhealthburden). Thesechangeshighlightthewaysthattheassociationofviruseswithmosquitoescanleadto their emergence. 316 TrendsinParasitology,April2018,Vol.34,No.4 WNVwasintroducedintotheAmericasin1999,mostlikelyfromtheMiddleEast[66].Molecular epidemiologic studies confirmed that the virus remained fairly homogeneous until approxi- mately2001,whenanewvirusgenotypeemergedincentralUSA.Duringthenext2years,this genotype (somewhat erroneously called the ‘WN02’ lineage because it was first recognized during 2002) outcompeted the introduced ‘NY99’ genotype to the extent that the NY99 genotypeseemstohavebecomeextinct.Themostnotabledifferencebetweenthisgenotype andtheintroducedgenotypewasamutationthatresultedinaconservativevalinetoalanine change on the exposed surface of the WNV envelope glycoprotein [67,68]. This mutation conferredfastertransmissionbyCulexpipiensmosquitoes,importantvectorsofWNVinNorth America[37].ThereducedEIPoftheWN02genotypeenhancesvectorialcapacity(seeabove) becausemortalityhaslesstimetoactonWN02-infectedmosquitoesbeforetheycantransmit virustoanewhost.ThisenhancedvectorialcapacityoftheWN02genotypecoincidedwitha massiveWNVoutbreakinNorthAmericain2002.Thus,specificvirus–mosquitointeractions between WNV and Cx. pipiens led to epidemiological changes (via vectorial capacity) that contributedto a significant and,at thetime, unprecedentedarbovirus outbreakintheUSA. In contrast, CHIKV provides evidence of how an arbovirus can acquire the capacity for efficienttransmissionbyanewvectormosquitospecieswithdisastrousconsequences.The currentglobalCHIKVepidemicbeganwhenthevirusemergedincoastalKenyaaround2004. Fromthere,itspreadthroughouttheIndianOceanregion.Duringthisprocessofemergence, thevirusacquiredamutationtothecodingsequenceoftheenvelopeglycoproteinE1that resultedinthesubstitutionofavalineforanalanineatposition226(A226V)oftheprotein[69]. Thismutation rendered the virus more transmissible by the highly abundant Ae. albopictus mosquito[70](i.e.,increased thecompetence ofAe. albopictus).Since thecompetenceof any given vector (again, see above) clearly impacts the reproductive rate of the virus, the acquisition of the A226V mutation conferred an advantage and spread rapidly [70]. Initial adaptationtoAe.albopictuslaterallowedformutationsinCHIKVE2todevelop,whichfurther enhanced infection of the Ae. albopictus midgut [71]. Interestingly, the CHIKV that was introducedintotheCaribbeanin2013lackedtheA226Vmutation,andthismutationhasnot yet been detected in CHIKV from the Americas. Mostrecently,ZIKVhasemergedasaglobalpathogeninamannersimilartothatofWNVand CHIKV before it. The consequences of ZIKV infection were not fully understood prior to this emergence, and are now notorious: microcephaly in developing fetuses and Guillain–Barré syndromeinsomeinfectedadults[13].Further,itisnowclearthatZIKVmaybetransmitted sexually[72,73].SeveralmutationshavebeendescribedintheliteraturethatimpacttheZIKV phenotypeinpotentiallysignificantways.Amutationthatchangesanalanineatposition188of theZIKVNS1proteintoavalinehasbeenassociatedwithenhancedinfectivitytoAe.aegypti mosquitoesviaincreasedNS1antigenemia[74].Similarly,theserinetoasparaginemutation ataminoacid139(S139N)oftheprMprotein,thatappearstohavearisenaround2013,has beenshowntocontributetopathogenesisindevelopingfetuses[75].Itisnotyetclearwhat specificinteractionscouldhaveproducedeitherofthesechangesandhowtheymayimpact other importantZIKVphenotypes. Thispromisesto beafruitful areafor futureresearch. Future Arbovirus Threats Therecenthistoryofmosquito-bornevirusemergence,coupledwithwhatweknowaboutthe molecular and ecological interactions that facilitate their transmission, indicate that new explosiveoutbreaksofarbovirusdiseasearelikelytooccurinthefuture.Severalarboviruses (Table 1) currently circulate at low levels in geographically limited settings that result in few humancases.Whilealloftheseviruseshavethe(theoretical)capacitytospreadrapidlyand TrendsinParasitology,April2018,Vol.34,No.4 317 Table1.SelectedArboviruseswithCurrentlyLimitedGeographicDistributionandDiseaseIncidence Genus Virus Suspectedmosquitovector Geographicdistribution Disease Alphavirus Mayarovirus(MAYV) Haemagogusspp. SouthandCentralAmerica Febrileillness,arthralgia,myalgia Unavirus(UNAV) Psorophoraspp. SouthAmerica Febrileillness,arthralgia,myalgia Pixunavirus(PIXV) Unclear SouthAmerica Febrileillness,encephalitis RioNegrovirus(RNV) Unclear SouthAmerica Febrileillness,myalgia Tonatevirus(TONV) Unknown FrenchGuiana Febrileillness,encephalitis Evergladesvirus(EVEV) Culexcedecei Florida Fever,headache,myalgia Mucambovirus(MUCV) Culexspp. SouthAmerica Febrileillness,arthralgia,myalgia Trocaravirus(TROCV) Aedesserratus SouthAmerica Unknown O’nyongnyongvirus(ONNV) Anophelesspp. Sub-SaharanAfrica Febrileillness,arthralgia,myalgia Flavivirus Spondwenivirus(SPONV) Aedescircumluteolus Sub-SaharanAfrica Febrileillness,arthralgia,myalgia Denguevirustype5(DENV-5) Aedesspp. SouthEastAsia Highfever,arthralgia,myalgia Rociovirus(ROCV) Aedesspp.,Psorophoraspp. SouthAmerica Febrileillness,encephalitis Orthobunyavirus Oropouchevirus(OROV) MainlyCulicoidesbitingmidgesa SouthAmerica Highfever,arthralgia,myalgia Phlebovirus RiftValleyfevervirus(RVFV) >40speciesofmosquitoes Sub-SaharanAfrica Febrileillness,arthralgia,myalgia aOropouchevirusispossiblyalsotransmittedbyAedesspp.andCoquillettidiaspp.mosquitoes. causeoutbreaks,someofthemseemmorelikelythanotherstocauselarge-scaleepidemicsin the near future. One of these viruses is MAYV, which has been circulating in parts of South and Central Americasinceatleast1954 when itwasfirstisolatedin Trinidad[76].Diseasesymptoms aresimilartothoseofCHIKVinfection,includingfever,rash,myalgia,andarthralgia.MAYV issuspectedofbeingtransmittedbetweennonhumanprimatesbyvectormosquitoesofthe genusHaemagogus;however,Ae.aegyptiandAe.albopictusarecapableoftransmission inanexperimentalsetting[77,78].Whilefewhumaninfectionshavebeenreportedoverall,a relatively large outbreak of 77 cases occurred in 2010 in Venezuela [79], and MAYV received some media attention due to a human case in Haiti in 2015 [80]. Historically, MAYVinfections occurredpredominantlyinnorthernSouthAmerica,inregionsbordering the Amazon basin [81]. Since there was no history of travel in the Haitian case, infection probably occurred through local mosquito transmission. The patient was also coinfected withDENV-1,possiblysuggestingthatinfectionoccurredthroughthebiteofanAe.aegypti mosquito. Since there are no nonhuman primates on Hispaniola, this may indicate the presenceofalocalhuman–mosquitotransmissioncycle.However,MAYVwas previously isolatedfromamigratingbirdinColorado[82],suggestinganotherpotentialrouteofMAYV introductionintoHaiti(andasourceofinfectionoflocalmosquitoes).Whethercontinuous local transmission was established remains unknown. While reports of potential recent recombinantMAYVstrains[83]areofsomeconcern,recombinationofalphavirusesislikely a rare event. The only recombinant alphaviruses described are the three members of the Westernequineencephalitisvirusserocomplex,whicharerecombinantsofastrainofEEEV andaSindbis-likevirus[84].However,withamultitudeofalphavirusescirculatinginSouth and Central America, and therecent additionof CHIKV, a smallchance of recombination eventsremains.Thiscouldresultinrapidemergenceofnewviruseswithalteredtransmis- sion phenotypes and pathogenesis. The risk of MAYV emergence has been discussed in detail in several recent reviews [85–87]. 318 TrendsinParasitology,April2018,Vol.34,No.4 Inaddition,alittle-knownflavivirusofsomeconcernisSpondwenivirus(SPONV).SPONVis Outstanding Questions currently circulating solely in sub-Saharan Africa in sylvatic cycles involving zoophilic Aedes Can the emergence of mosquito- mosquitoes. Peri-domestic mosquitoes, such as Ae. aegypti, Ae. albopictus, and Cx. quin- borne arboviruses be predicted and pre-emptivelymanaged? quefasciatus,donotappeartobecompetentvectors[88].However,aspreviouslydiscussed, adaptationtoanurbantransmissioncyclemaybeachievedbyonlyoneorafewmutationsin Which sylvatic/enzootic arboviruses the virus genome that increase the infection potential for Ae. aegypti or Ae. albopictus can be maintained in a transmission mosquitoes. Current research on SPONV is limited, but recent evidence shows its potential cycle exclusively between humans tobesexuall ytransm ittedamo ng mice,alb eit inefficie ntly [89].Ou rcurrent lackof und erstand- andm osquitoes? ing of SPONV pathogenesis and transmission warrants further investigation. The zoonotic Whatvector-controlmechanismsand potential of arbovirusescurrently circulatinginAfrica hasbeen reviewedelsewhere [90]. otherpreventativemeasurescanspe- cifical ly help to p revent or co ntain Concluding Remarks futureoutbreaks? Overrecentdecades,arboviruseshavetrulyemergedasglobalpathogens.Virusespreviously existi ngonly inlocaltra nsmissionc ycles inru raltropica lse ttingsa renowdist ributedw orldwide, What are the molecular mechanisms thatunderpinvirushostshifts? causing devastating disease outbreaks. This is largely due to the now global distribution of mosquitospecieswithhighvectorpotential,suchasAe.aegyptiandAe.albopictus,aswellas human tra vel and pop ulatio n dens ity in trop ical m eg aci ties. Viru s–m osq uito interac tio ns a nd aTpop rowahcahte sexctoennttr ibcuaten toevoplruetdioicntaivrey mosqu ito ad apta tion to hum ans co nt ribute s ignificantly to arboviral em ergence. Fu ture efforts? research should be aimed at increasing our understanding of neglected arboviruses, novel Defining transmission and/or patho- surveillance methods, and implementation of surveillance programs to recognize spillover genesis-altering mutations to a viral eventsandarbovirusoutbreaksearlyon(seeOutstandingQuestions).Surveillanceforarbo- genome using experimental studies viruses and also inva sive mosq uito s pec ies can help with implement ation of rapi d v ector- is, in so me ca ses, highly t ractable. controlresponses.Aswithallarboviruses,vectorcontrolwillbecrucialforthepreventionand However, frequently, these studies mayresul t inso-calle d‘gain -of-func- containment of future arbovirus emergence. The development of simple inexpensive diagnostic tion’ varia nts . Are th e benefits of tests for a large selection of pathogens may also help to identify and contain an outbreak. understanding the plasticity of viral More ove r, the m osquito– viru s interactio n ha s fa cilitat ed the rap id e mergenc e of several genotypesand phe notypesw ort hthe arboviruses,apatternthatislikelytocontinue,requiringanintegratedapproachtooutbreak risk of generating gain-of-function variants? management. Isoursocietywillingtoinvestindeter- References miningwhatarbovirusesmayemerge 1. Conway,M.J.etal.(2014)Roleofthevectorinarbovirustrans- 11.Silva,L.A.andDermody,T.S.(2017)Chikungunyavirus:epide- mission. Annu .R ev. Virol.1 ,71 –88 miolo gy,re plica tion,disea sem echanis ms,andpros pectiv einter- next? 2. tMwaennstfiye-fild rs, tKc.eLn. teutr ya.l .F (r2o0n1t .7C) eElml.eInrfgeicntg. Mticick-robboironle. 7v,ir2u9se8s in the 12.Avelinottiao,nM s .tTra.teetgaiel.s(.2 J0 .1 C7)linZ.i kIna vienstth. e12A7m, e7r3ic 7a–s7,4 y9ear2:what have Systems for monitoring arbovirus 3. AAlfkriacna,: Cep. iedt e aml. i(o2l0o1g3y ,) Sgeannedtfl icy-dbiov ernrsei tpyh,lg eeboogvriraupsheisc oraf nEguera,scioan atnrodl wNeet wleoa rrkn.e dA?n tWiv ihraa l tR geasp. s1 r4e4m, a2i2n 3?– A2 4r6eport from the G lobal Virus iemmpelergmeenn cte aet xisatn, bauptp raorper iadtiefficsuclta lteo. 4. mCaerapseun rteesr., ASn.teivtiraal.l R(2 e0s1.3 1)0C0u , li5c4o–id7e4sb itingmidge s,arbo viruses 13. aMninde tri,s sJu.Je. taronpdi sDmia. mCoenll dH, oMst. SM. ic(2ro0b1e7 ) 2Z1i,k a1 3v4ir–u1s4 p2athogenesis mFuornthiteorr,i nmg ahney a ltmh od‘eevrenn tssy’stseu mcsh faosr and public he alt h in Europ e. Antiviral Res. 1 00, 102 –113 14. aPcotwiveitrys–, lAe.sMso. nasndle aWrnaetedrfmroamn,t hSe.Htr.e (n2c0h1e7s). AP LdoeScaNdeeg ol.fT arorbpo.vDirisa.l arbovirus e mergen ce rely o n pas sive 5. Stanaway,J.D.etal.(2016)Theglobalburdenofdengue:an reportingandsocialmedia.Appropri- analysisfro mth eG lob alBurd eno fDisea seStud y2 013.Lan cet 11, e0005421 atesurve illanc esyst emssho uldfocus 6. ItLnreafetnacs,tm .S Dit. t iesed.t 1ba6 yl., A7(2e1 d021e–s77)a2 eG3g loypbtaila rnisd kA medaepspainlbg o pfoicr tums a.jIonrt .dJ i.sIenafescets. 15. mW10oe,s geqe0ur0-itL0ou5ec1sa 0rfo1elrl i,t hJr.e eet satlr.a (i2n0s1 o6f) ZViekac tvoirr ucso.m PpLeotSe nNceeg ol.f TArmope.r iDcaisn. tohne dperoteccetsinsg o fa eg menetrsg etnhca et aanred ec aornlyta iinn Dis. Publish ed online Novem be r 28, 2 017. http: //dx .d oi.org/ 16. aAlzbaorp, iSct.uRs. epto aplu. l(a2t0io1n7s) fDroifmfertehnetiaAl mveecritcoars cfoomrpZeiktaenvciryu so.f AAmed.eJs. rmeesecahracnhisomns antoon gosinugppboarts is.cDriotiicnagl 10.1016/j.ijid.2017.11.026 Trop.Med .Hyg.97,3 30–33 9 sorequir esfi na ncialcom mitme ntand 7. Gould,E.etal.(2017)Emergingarboviruses:whytoday?One Health 4, 1–1 3 17. Fmroansqz,u Aito.Wes.. eVt iraul.s e(2s071,53) 7T4is1s–u3e7 b6a7rriers to arbovirus infection in political will. 8. Mayer,S.V.etal.(2017)Theemergenceofarthropod-borneviral 18.Carissimo,G.etal.(2015)AntiviralimmunityofAnophelesgam- diseases:aglobalprospectiveondengue,chikungunyaandzika fevers.Ac ta Trop. 166,155–1 63 biae is highly compartmentalized, with distinct roles for RNA interferenceandgutmicrobiota.Proc.Natl.Acad.Sci.U.S.A. 9. Weaver,S.C.(2013)Urbanizationandgeographicexpansionof 112,E176– E185 zoonotic arbo viraldis eases:mecha nism sandpoten tialstrategi es for preve ntion. Tre nds Micr obiol. 21, 360 –36 3 19. Htraengsdme,i sSsi.o neti naml. o(2s0q1u5it)o eTsh.eC murirc.roObpioinm.Ve irmol.od1u5l,a9te7s– 1a0rb2ovirus 10. bIBniuoferlotc,gt .Fy D .Jais.n . de1t 7 pa,a le.t h1(o20g07e1–ne7e1) s1Cis7h iokfu nthgius neyma evrigruinsg: apna tuhpodgaetne. oLann tcheet 20. TSbelcoric.r ak2di2nag,s 3,in 7G t–.h4 ae4n m d oMscqGuirtaow v,e Ect .oAr. A(2e0 d1e7s) aWe oglybpatci. h Ciau-rm r.e Odpiainte. dIn vsierucst TrendsinParasitology,April2018,Vol.34,No.4 319