ebook img

How comprehensive is the category of abelian groups? PDF

45 Pages·2011·0.52 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview How comprehensive is the category of abelian groups?

How comprehensive is the category of abelian groups? Adam J. Przez´dziecki WarsawUniversityofLifeSciences-SGGW Large-Cardinal Methods in Homotopy, 2011 PreprintavailableonarXiv. Introduction ConstructionofthefunctorG Alg-universalcategories Applications TheEmbedding Questions When a category is comprehensive? When the category of graphs fully embeds into it. Why graphs? Every accessible category admits a full embedding into graphs (Ada´mek-Rosicky´, 1994) Assuming that the measurable cardinals are bounded above every concrete category fully embeds into graphs (Hedrl´ın-Kucˇera, 1969 unpublished) 2/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups? Introduction ConstructionofthefunctorG Alg-universalcategories Applications TheEmbedding Questions Some categories admit a full embedding of Graphs: (cid:73) Category of semigroups (Hedrl´ın-Lambek, 1969) (cid:73) Category of integral domains (Fried-Sichler, 1977) Some more categories admit an “almost” full embedding of Graphs: (cid:73) Category of metric spaces (uptoconstantmaps – Trnkova´, 1972) up to constant maps (cid:73) Category of paracompact spaces ( ) –Koubek,1974 (cid:73) Category of groups ( up to trivial homomorphisms ) andconjugationinthetargets (cid:73) The unpointed homotopy category (uptonull-homotopicmaps) (cid:73) Category of abelian groups (upto???) 3/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups? Introduction ConstructionofthefunctorG Alg-universalcategories Applications TheEmbedding Questions Some categories admit a full embedding of Graphs: (cid:73) Category of semigroups (Hedrl´ın-Lambek, 1969) (cid:73) Category of integral domains (Fried-Sichler, 1977) Some more categories admit an “almost” full embedding of Graphs: (cid:73) Category of metric spaces (uptoconstantmaps – Trnkova´, 1972) up to constant maps (cid:73) Category of paracompact spaces ( ) –Koubek,1974 (cid:73) Category of groups ( up to trivial homomorphisms ) andconjugationinthetargets (cid:73) The unpointed homotopy category (uptonull-homotopicmaps) (cid:73) Category of abelian groups (upto???) 3/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups? Introduction ConstructionofthefunctorG Alg-universalcategories Applications TheEmbedding Questions G : Graphs → Ab (cid:73) full embedding: ∼= Hom(X,Y) −→ Hom(GX,GY) (cid:73) “almost” full for abelian groups: Z[Hom (X,Y)] −∼=→ Hom (GX,GY) Graphs Ab where Z[S] is the free group with basis S. 4/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups? Introduction ConstructionofthefunctorG Alg-universalcategories Applications TheEmbedding Questions G : Graphs → Ab (cid:73) full embedding: Ho(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)m((cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)X(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104),Y(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104))(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)−∼=→(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)H(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)om(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(G(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)X(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40)(cid:104)(cid:40),GY) (cid:73) “almost” full for abelian groups: Z[Hom (X,Y)] −∼=→ Hom (GX,GY) Graphs Ab where Z[S] is the free group with basis S. 4/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups? Natural completion of abelian groups η : A → A(cid:98). A (cid:73) A(cid:98) ∼= limn∈NA/nA (cid:73) A(cid:98) ∼= (cid:81) A∧ p p (cid:73) kerη is the divisible subgroup of A. A The completion is an idempotent functor (localization, reflector), that is: (cid:73) η : A(cid:98) −∼=→ A(cid:98)(cid:98) (cid:98)A (cid:73) For all groups A, B the map η Hom(A(cid:98),B(cid:98)) −→A Hom(A,B(cid:98)) is an isomorphism. If A ⊆ C ⊆ A(cid:98) and C is pure in A(cid:98) then C(cid:98) = A(cid:98). In particular the inclusion A ⊆ C induces an isomorphism ∼ Hom(A,A(cid:98)) = Hom(C,A(cid:98)) Introduction NaturalcompletionandtheCornermethod ConstructionofthefunctorG ConstructionofthefunctorG Applications Proofof Z[Hom(X,Y)]∼=Hom(GX,GY) Questions Finiteapproximation Theorem (Corner, 1963) Let A be a ring of cardinality at most continuum, whose additive group is free. Then there exists a group A such that (a) A ⊆ A ⊆ A(cid:98) as left A-modules. (b) A ∼= Hom(A,A) (c) |A| = |A| The construction: Choose elements αa, βa (a ∈ A) of Z(cid:98) that are algebraically independent over Z. Define elements ea (a ∈ A) of A(cid:98) as e = α ·1+β ·a a a a and take A to be the pure subgroup of A(cid:98) generated by A and Ae (a ∈ A). a 6/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups? Introduction NaturalcompletionandtheCornermethod ConstructionofthefunctorG ConstructionofthefunctorG Applications Proofof Z[Hom(X,Y)]∼=Hom(GX,GY) Questions Finiteapproximation Theorem (Corner, 1963) Let A be a ring of cardinality at most continuum, whose additive group is free. Then there exists a group A such that (a) A ⊆ A ⊆ A(cid:98) as left A-modules. (b) A ∼= Hom(A,A) (c) |A| = |A| The construction: Choose elements αa, βa (a ∈ A) of Z(cid:98) that are algebraically independent over Z. Define elements ea (a ∈ A) of A(cid:98) as e = α ·1+β ·a a a a and take A to be the pure subgroup of A(cid:98) generated by A and Ae (a ∈ A). a 6/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups? Introduction NaturalcompletionandtheCornermethod ConstructionofthefunctorG ConstructionofthefunctorG Applications Proofof Z[Hom(X,Y)]∼=Hom(GX,GY) Questions Finiteapproximation Construction of the functor G Let Γ be a full subcategory of Graphs whose objects are representatives of countable graphs. Let A = Z[Γ] be the ring whose additive group is free with the basis consisting of the identity 1 and the maps ϕ : X → Y in Γ. If ψ : M → N is another map in Γ then (cid:73) the product ϕψ in A is the composition ϕψ if N = X (cid:73) ϕψ = 0 if N (cid:54)= X 7/31 AdamJ.Przez´dziecki Howcomprehensiveisthecategoryofabeliangroups?

Description:
How comprehensive is the category of abelian groups? Adam J. Przezdziecki´ Warsaw University of Life Sciences - SGGW Large-Cardinal Methods in Homotopy, 2011
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.