ebook img

Hot Stuff for One Year (HSOY) - A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL PDF

0.84 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hot Stuff for One Year (HSOY) - A 583 million star proper motion catalogue derived from Gaia DR1 and PPMXL

Astronomy&Astrophysicsmanuscriptno.paper161˙arxiv (cid:13)c ESO2017 February23,2017 LettertotheEditor Hot Stuff for One Year (HSOY) A 580 million star proper motion catalog derived from Gaia DR1 and PPMXL M.Altmann1,S.Roeser1,2,M.Demleitner1,U.Bastian1,andE.Schilbach1,2 1 Zentrum fu¨r Astronomie der Universita¨t Heidelberg, Astronomisches Rechen-Institut, Mo¨nchhofstr. 12-14, 69120 Heidelberg, Germanye-mail:[email protected] 2 Zentrumfu¨rAstronomiederUniversita¨tHeidelberg,LandessternwarteKo¨nigsstuhl,Ko¨nigsstuhl12,69117Heidelberg,Germany ReceivedJanuary04,2017,acceptedxxx 7 1 ABSTRACT 0 2 Context.Recently,thefirstinstallmentofdatafromESA’sGaiaastrometricsatellitemission(GaiaDR1)wasreleased,containing b positions of more than 1 billion stars with unprecedented precision, as well as proper motions and parallaxes, however only for a e subsetof2millionobjects.Thesecondreleasewillincludethosequantitiesformostobjects. F Aims.InordertoprovideadatasetthatbridgesthetimegapbetweentheGaiaDR1andGaiaDR2releasesandpartlyremediesthelack ofpropermotionsintheformer,HSOY(”HotStuffforOneYear”)wascreatedasahybridcatalogbetweenGaiaandground-based 2 astrometry,featuringpropermotions(butnoparallaxes)foralargefractionoftheDR1objects.Whilenotattemptingtocompetewith 2 futureGaiareleasesintermsofdataqualityornumberofobjects,theaimofHSOYistoprovideimprovedpropermotionspartly basedonGaiadata,allowingstudiestobecarriedoutjustnoworaspilotstudiesforlaterprojectsrequiringhigher-precisiondata. ] A Methods.TheHSOYcatalogwascompiledusingthepositionstakenfromGaiaDR1combinedwiththeinputdatafromthePPMXL catalog,employingthesameweightedleast-squarestechniquethatwasusedtoassemblethePPMXLcatalogitself. G Results.Thiseffortresultedinafour-parameterastrometriccatalogcontaining583millionstars,withGaiaDR1qualitypositions . andpropermotionswithprecisionsfromfarlessthan1mas/yrto5mas/yr,dependingonobjectbrightnessandlocationonthesky. h p Keywords.astrometry–catalogs–Galaxy:kinematicsanddynamics–propermotions - o r t 1. Introduction s a 1e8 [ Gaia, ESA’s 1-billion star astrometric space mission (Gaia 2 Collaboration , 2016a) set out in late 2013 to revolutionise v (among many other fields of astronomy) our understanding of 9 the kinematics, the structure and evolution of our Galaxy. On 1e6 2 September 14, 2016, the Gaia consortium published the first 6 GaiaDatarelease,GaiaDR1(GaiaCollaboration,2016b),con- 2 taining the positions and broad-band photometry for 1.143 bil- n 1e4 0 lionobjects. Giventheshorttimespanofthemeasurementsin- . 1 corporatedintothisrelease(lessthan15months),theseparation 0 of parallaxes and proper motions was not possible. Therefore 7 Gaia DR1 in general does not include these quantities, with 100 1 the exception of a small subset of those 2 million stars already : presentintheHipparcos(ESA,1997)orTycho2catalogs(Høg v i et al., 2000). Using this data as a first epoch, proper motions X 1 and parallaxes could be disentangled, yielding the Tycho Gaia 5 10 15 20 25 r AstrometricSolution(TGAS,Michaliketal.,2015).Thusmost a Gmag[mag] astrometry-related projects within the astronomical community might focus on the TGAS data, as well as on preparing for the Fig.1. Distribution of object counts in HSOY over the Gaia G nextGaiarelease. magnitude(red filled circles). As comparison, the object counts forGaiaDR1arealsoshown(blueopentriangles). Inthemeantime,wepresentaveryshort-livedyetpowerful astrometriccatalog,addingvalueandscientificusecasestoGaia DR1.Itprovidespropermotionsfor583millionobjects,i.e.for more than half of the objects for which Gaia DR1 only gives positions.ThisisachievedbycombiningdatafromthePPMXL precise positions of DR1 and the ultra-precise full 5 parameter catalog (Roeser et al., 2010) and Gaia DR1 positions. Named astrometryofDR2. ”HSOY” (Hot Stuff for One Year), highlighting its short-lived UntilHSOYwillbesupersededbyGaiaDR2,itpresentsthe nature,weintendtopartlyfillthegapintimebetweentheultra- best set of proper motions in existence in the magnitude range 1 M.Altmannetal.:HotStuffforOneYear(HSOY) 6 ¢¹®cos±(±>¡30±) 5 ¢¹±(±>¡30±) ¢¹®cos±(±<¡30±) ¢¹±(±<¡30±) 4 yr] = as m 3 [ ¹avg ¢ 2 1 0 4 6 8 10 12 14 16 18 20 Gmag[mag] Fig.2.MeanstandarderrorsinpropermotionsoftheHSOYcat- alognorthandsouthofδ=−30◦.Theerrorsaregiveninbinsof onemagnitudecenteredonfullGaiaGmagnitudes.Thesymbols aredefinedinthelegendboxwithintheplot fainter than TGAS to G = 20 mag, and is a valuable base for studiesofstellarkinematics. Sect. 2 describes the assembly of this catalog and its input data,aswellasgivingtheoverallcharacteristicsofthiscatalog. In Sect. 3 we demonstrate the improvement of the precision of propermotionsofHSOYwithrespecttocurrententirelyground- basedvalueswithtwosciencecaseexamples. 2. PresentingHSOY 2.1. ConstructionandstellarcontentofHSOY HSOYhasbeenconstructedusingthemethodpreviouslyusedto assemblethePPMXLcatalog(Roeseretal.,2010),whichitself nowformsoneoftheinputdatasetsforHSOY.ForPPMXLthe inputdatawerethe2MASS(Skrutskieetal.,2006)andUSNO- B1.0 catalogs (Monet et al., 2003), for HSOY, accordingly, PPMXL and Gaia DR1. The procedure of construction, de- Fig.3. The upper two panels show the global variation of the scribedindetailinRoeseretal.(2010),involvescross-matches r.m.s. errors in proper motion (upper panel, right ascension, between the datasets, and a weighted least-squares fit to derive middle panel, declination) in equatorial coordinates. Darker positionsandpropermotions. shades/colours indicate higher errors. The bottom panel shows PPMXL contains about 900 million, and Gaia DR1 1.1 thedensityofHSOYinstarspersquaredegreesovertheentire billion sources. Yet HSOY only contains 583,001,653 entries, skyingalacticcoordinateshighlightingtheoveralluniformityof i.e. about 50-60% of the object numbers of the input catalogs. thecatalog. Fig. 1 shows the object counts for both HSOY and Gaia DR1. Of course, HSOY can only contain objects which are in both PPMXLandGaiaDR1.Objectsthatdidnotmakeitintothefinal ject for each pair member and the observations had sufficient HSOYareveryprobablynon-stellarobjectsandfailedmatches precision, they will form a close, common proper motion pair originatingintheUSNO-B1.However,theinhomogeneoussky inPPMXLandwillconsequentlybematchedtothesameGaia coverageofGaiaDR1(GaiaCollaboration,2016b)mostlikely DR1 object. Such objects (and a few other cases where two or alsoplaysarole. morePPMXLobjectsarematchedtothesameGaiaDR1object) On the other hand, there still is a significant fraction of en- aremarkedwithanon-NULLcloneflag(0.7%oftheentirecat- triesprobablynotrelatedtophysicalobjectsinHSOY.Themost alog).PPMXLcontainedabout24.5millionobjectswithproper commonformofthesearespuriouspairs.Thesemayarisefrom motions larger than 150 mas/yr on the northern hemisphere, observations that have not been matched in USNO-B, either alone against an expectation of about 105 as discussed in the from different epochs or from different plates. As long as the PPMXLpaper.Theprocedureoutlinedabovebringsthenumber originalUSNO-Bmatcheduptwoobservationsofthesameob- ofhigh-PMobjectsinHSOYdownto2.5millionontheentire 2 M.Altmannetal.:HotStuffforOneYear(HSOY) Table1.ContentoftheHSOYcatalog. determinedbytheprecisionofthepropermotions.Theseareat maximum 5 mas/yr (see below), so the positional rms-errors at Name Unit description J2000.0arewellbelow0.1arcsec,andarenotindividuallygiven 1 ipix – PPMXLobjectidentifier in the catalog. Since for the HSOY-proper motions, PPMXL’s 2 comp – flagindicatingmultipleGaiamatches positions are necessary, the vastly higher precision of the Gaia toonePPMXLobject DR1-positions does not dominate as in the case of the mean- 3 raj2000 degrees RAatJ2000.0,epoch2000.0 epochpositionsintheHSOYcatalog.Thisalsomeansthatthey 4 dej2000 degrees Decl.J2000.0,epoch2000.0 reflectsomeofthesystematicerrorsinthePPMXL,suchasthe 5 e ra degrees Meanerror:αcosδatmeanepoch zonalerrorspresentinallground-basedcatalogsofsimilartype 6 e de degrees Meanerror:δatmeanepoch 7 pmra deg/yr Propermotioninαcosδ (Roeser et al., 2010). This is to be kept in mind, when using 8 pmde deg/yr Propermotioninδ HSOY proper motions. Due to the addition of Gaia DR1 these 9 e pmra deg/yr Meanerrorinµ cosδ systematics are reduced to a certain extent, but do not vanish α 10 e pmde deg/yr Meanerrorinµ altogether1. Given the much smaller positional errors of Gaia δ 11 epra yr MeanEpochinRA(α) DR1,thecorrelationsbetweentheerrorsinRAanddeclination 11 epde yr MeanEpochinDec.(δ) in Gaia DR1 can here be neglected. Generally the average for- 13 jmag mag 2MASSJmagnitude mal errors for HSOY proper motions range from < 0.2 mas/yr 14 e jmag mag errorof2MASSJmag. forstarsbrighterthan8mag,upto4or5mas/yrnearthefaint 15 hmag mag 2MASSHmagnitude magnitudelimit,seeFig.2. 16 e hmag mag errorof2MASSHmag. Fig.3exhibitsmuchlargererrorsinbothpropermotioncom- 17 kmag mag 2MASSKmagnitude ponents at declinations south of −30◦- the mean formal errors 18 e kmag mag errorof2MASSKmag. there are slightly less than double of those in the rest of the 19 b1mag mag Bmag:USNO-B,1stepoch 20 b2mag mag Bmag:USNO-B,2ndepoch sky, as shown in Fig. 2. This is inherited from the underlying 21 r1mag mag Rmag:USNO-B,1stepoch plate surveys: the first all-sky Schmidt plate surveys started in 22 r2mag mag Rmag:USNO-B,2ndepoch thenorthernhemisphereinthe1950sandwereextendedtothe 23 imag mag Imag:USNO-B south only much later in the 1970s. Therefore the baseline for 24 surveys – OriginofUSNO-Bmags proper motions in the southern quarter of the sky is shorter by 25 nobs – total number of astrometric observa- 20 years, with the corresponding consequences for the formal tions(n +1) PPMXL proper motion uncertainties. Apart from this issue the errors in 26 gaiaid – Gaiauniquesourceidentifier propermotionoverthewholeskyareremarkablyhomogeneous, 27 Gmag mag meanGaiaG-bandmagnitude beingjustalittlehighernearthedenseareasoftheMilkyWay. 28 e Gmag mag estimatederrorofGaiaG-mag Note that we used the original PPMXL proper motions rather 29 clone – >1PPMXLmatchtoGaiaobject 30 no sc – objectnotinSuperCOSMOS than the possibly more inertial ones given by (Vickers et al., 2016)sincethelatterareonlyavailableforobjectswith2MASS photometryandhencelessthanhalfthePPMXL. sky(2.5·105 inthenorth).Hence,therearestillmanyspurious HSOY is not a dedicated photometric catalog; therefore it high PM objects in HSOY accidentally matching a (real) Gaia utilises all photometry that its input catalogs supply. From its DR1objectatJ2015.Anotherreductionofthespurioussources PPMXL parent, it retains the photographic magnitudes taken can be effected by matching PPMXL against SuperCOSMOS fromtheUSNO-B1catalogandtheNIR2MASSvalues.Added (Hambly et al., 2001), an independent source extraction from tothisistheGaiaDR1G-magnitude.Therefore,formoreinfor- the plate collections underlying USNO-B at J2000. Where no mation regarding the quality of the photometry, we refer to the suchmatchcanbefoundwithin3(cid:48)(cid:48),HSOYsettheno sccolumn originalsources,i.e.GaiaDR1,USNO-B1,and2MASS. to 1. On the northern sky, only using objects with matches in As for Gaia DR1 itself, the primary access mode to HSOY SuperCOSMOS,only168206objectswithµ > 150mas/yr are is the Virtual Observatory protocol TAP through the service at left,withinafactoroftwooftheleveltobeexpectedfromLPSM http://dc.g-vo.org/tap. Further access options are discussed at (Le´pine & Shara, 2005). All-sky, including the very crowded http:///dc.g-vo.org/hsoy(Demleitneretal.,2015).Table1shows fields on the southern sky, there are about 1.38·106 high-PM thedatacontentofHSOY. objectswithmatchesinSuperCOSMOSinHSOY. Conversely, sometimes more than one Gaia DR1 object is withinonePPMXLobjects’matchradius.Whileincomecases, 3. ThepropermotionsofM4andM67asscience thismaybeduetotruebinariesalreadyresolvedbyGaia,more caseexamples typically they willbe due to failedobservation matching in the InordertodemonstratetheincreasedcapabilitiesofHSOY,es- constructionofGaiaDR1andshouldthereforegenerallybecon- pecially with respect to earlier, entirely ground-based catalogs, sideredspuriouspairs,too.Theyaremarkedwithanon-NULL e.g. PPMXL, we present the proper motion distributions in the comp flag (1.5% of the entire catalog). In both catalogs, there fieldsoftheglobularclusterM4(NGC6121)andtherich,old areacoupleofhundredsourcesfainterthan21mag,seeFig.1. openclusterM67(NGC2682).Theseobjectsareespeciallyin- Thesehavetobeconsideredspurioussources. structive,giventheirlargepropermotionandhighstellardensity. ForM4wedownloadedacircularfieldwitharadiusof0.5◦, 2.2. TheastrometricprecisionofHSOY whichwasfoundtoshowboththeclusterandthefieldstarsbest, frombothcatalogs.ThefieldofviewisshowninFig.4.There- For the positions, the overwhelming precision of Gaia DR1 re- sultingvectorpointdiagrams(VPD)arealsoshowninFig.4.A sults in mean epochs close to that of Gaia DR1 of 2015.0; the meanepochofmostobjectsinHSOYisnear2014.8.InHSOY, 1 Itwouldinprinciplebepossibletoreducetheseerrorsevenfurther the positions are given for epoch J2000.0 by applying proper by re-constructing the PPMXL itself using Gaia DR1, but this is not motions.Also,theformalprecisionofthesepositionsisentirely worthwhileonthetimescaleoftheusefullifeofHSOY 3 M.Altmannetal.:HotStuffforOneYear(HSOY) 50 50 PPMXL HSOY 40 120 40 120 ¡26:2 30 110100 30 110100 20 90 20 90 (J20000)[deg]±:¡¡2266::64 [masyr]¹=±¡1210000 4567800000 Density[starspixel]= [masyr]¹=±¡1210000 4567800000 Density[starspixel]= ¡ ¡ ¡26:8 30 30 30 30 ¡ 20 ¡ 20 40 40 ¡ 10 ¡ 10 27:0 ¡ 50 0 50 0 246:4 246:2 ®24(J62:0000:002[4d5e:g8] 245:6 245:4 ¡¡50 ¡40 ¡30 ¡20 ¡¹1®0cos±0[mas=1y0r] 20 30 40 50 ¡¡50 ¡40 ¡30 ¡20 ¡¹1®0cos±0[mas=y1r0] 20 30 40 50 Fig.4. left panel: plot of the field with a radius of 30’ taken from the HSOY catalog centered around M 4 . The center and right panelsshowthevectorpointdiagramsoftheM4region,withpropermotionstakenfromthePPMXL(centre)andHSOY(right). TheholeinthemiddleoftheplotiscausedbythestrongcrowdinginthecentralpartofM4,thefewpointsinsidethisholecanbe consideredasbeingspurious,whichmeanstheyhavetobysuppressedinanykindofanalysis. 50 50 PPMXL HSOY 40 120 40 120 12:5 110 110 30 30 100 100 20 90 20 90 (J20000)[deg]±:1112::50 [masyr]¹=±¡1210000 4567800000 Density[starspixel]= [masyr]¹=±¡1210000 4567800000 Density[starspixel]= ¡ ¡ 30 30 30 30 ¡ 20 ¡ 20 11:0 40 40 ¡ 10 ¡ 10 50 0 50 0 133:5 ®13(J32:0000:00[deg1]32:5 132:0 ¡¡50 ¡40 ¡30 ¡20 ¡¹1®0cos±0[mas=1y0r] 20 30 40 50 ¡¡50 ¡40 ¡30 ¡20 ¡¹1®0cos±0[mas=y1r0] 20 30 40 50 Fig.5.leftpanel:plotofthefieldwitharadiusof1degreesaroundM67takenfromtheHSOYcatalog.Thecenterandrightpanels showthevectorpointdiagramsoftheM67region,withpropermotionstakenfromthePPMXL(centre)andHSOY(right). comparisonoftheVPDmadefromthePPMXLpropermotions than either the current catalogs or Gaia, and will continue the (centrepanel)withthatmadefromHSOYdataclearlyshowsthe traditionofspace-calibratedground-basedastrometriccatalogs. dramatic improvement. Although the PPMXL has significantly morestarsinthisfieldthanHSOY(42,000vs. 30,000),theM4 Acknowledgements. S. Roeser and E. Schilbach were supported by SonderforschungsbereichSFB881TheMilkyWaySystem(subprojectsB5)of propermotionpeakismuchmoreandthefieldpeaksomewhat theGermanResearchFoundation(DFG).Itisagreatpleasuretoacknowledge morepronouncedinthelattercase. Mark Taylor from the Astrophysics Group of the School of Physics at the The open cluster, M 67, one of the oldest of its kind and UniversityofBristolforhiswonderfulworkonTOPCAT,ToolforOPerations rather populous, is our second demonstration object. Fig. 5 onCataloguesAndTablesandSTILTS,StarlinkTablesInfrastructureLibrary showsthefieldandthevectorpointdiagramsforbothPPMXL Tool Set. This research has made use of the resources of CDS, Strasbourg, France. Technical and publication support was provided by GAVO under (centre) and HSOY (right), this time, given the less dense en- BMBFgrant05A14VHA.ThisworkhasmadeuseofdatafromtheEuropean vironment, using a field with a radius of 1◦. Again the clear Space Agency (ESA) mission Gaia (http://www.cosmos.esa.int/gaia), improvement is seen by comparing the centre and right panels processed by the Gaia Data Processing and Analysis Consortium (DPAC, in Fig. 5. While the PPMXL only shows hints of the cluster, it http://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for the DPAC has been provided by national institutions, in particular the clearlystandsoutintheVPDgeneratedusingHSOY. institutionsparticipatingintheGaiaMultilateralAgreement. Both demonstration cases, i.e. M 4 and M 67 highlight the scientific potential of this catalog. The improvement is clearly shown.Therearecertainlymanyothersciencecaseswhichwill References profitfromtheexistenceofHSOY. Demleitner,M.,Roeser,S.,Proft,S.,2015,”HsoyObjectCatalog”,http:// dc.zah.uni-heidelberg.de/tableinfo/hsoy.main ESA1997,ESASpecialPublication,1200 4. Outlook GaiaCollaboration,Brown,A.G.A.,Vallenari,A.,etal.2016b,A&A,595,A2 GaiaCollaboration,Prusti,T.,deBruijne,J.H.J.,etal.2016a,A&A,595,A1 Inalittlemorethanayearfromnow,GaiaDR2willbereleased Hambly,N.C.,MacGillivray,H.T.,Read,M.A.,etal.2001,MNRAS,326,1279 and will thus make HSOY obsolete. However, we believe that Høg,E.,Fabricius,C.,Makarov,V.V.,etal.2000,A&A,355,L27 thiscatalogwillbeputtogooduseuntilthen.Inawayitisthe Le´pine,S.,&Shara,M.M.2005,AJ,129,1483 finalversionofthesecond-generationground-basedastrometric Michalik,D.,Lindegren,L.,&Hobbs,D.2015,A&A,574,A115 Monet,D.G.,Levine,S.E.,Canzian,B.,etal.2003,AJ,125,984 catalogs,i.e.,thosedonebeforeoratthebeginningoftheCCD Roeser,S.,Demleitner,M.,&Schilbach,E.2010,AJ,139,2440 age, but with old photographic plates as the long time-baseline Skrutskie,M.F.,Cutri,R.M.,Stiening,R.,etal.2006,AJ,131,1163 basis.Ontheotherhanditpresentsabridgetoanewgeneration Vickers,J.J.,Ro¨ser,S.,&Grebel,E.K.2016,AJ,151,99 of ground-based astrometric surveys, now based on Gaia data, suchaswhatwillcomeoutofLSST.Thesewillgomuchfainter 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.