ebook img

Hot Stars: Old-Fashioned or Trendy? PDF

38 Pages·1.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hot Stars: Old-Fashioned or Trendy?

Hot Stars: Old-Fashioned or Trendy? A.W.A.Pauldrach Institutfu¨rAstronomieundAstrophysikderUniversita¨tMu¨nchen Scheinerstraße1,81679Mu¨nchen,Germany [email protected], http://www.usm.uni-muenchen.de/people/adi/adi.html 3 0 0 Abstract 2 SpectroscopicanalyseswiththeintentionoftheinterpretationoftheUV-spectra n a ofthebrighteststarsasindividuals–supernovae –orascomponents ofstar- J formingregions–massiveOstars–provideapowerfultoolwithgreatastro- 6 physical potential for the determination of extragalactic distances and of the 1 chemicalcompositionofstar-forminggalaxiesevenathighredshifts. Theperspectivesofalreadyinitiatedworkwiththenewgenerationoftools 2 forquantitativeUV-spectroscopyofHotStarsthathavebeendevelopedduring v the last two decades are presented and the status of the continuing effort to 6 constructcorrespondingmodelsforHotStaratmospheresisreviewed. 2 Since thephysicsof theatmospheres ofHot Starsare stronglyaffectedby 2 velocityexpansion dominating thespectraat all wavelength ranges, hydrody- 2 namicmodelatmospheresforO-typestarsandexplosionmodelsforSupernovae 1 ofTypeIaarenecessaryasbasisforthesynthesisandanalysisofthespectra. 2 0 Itisshownthatstellarparameters,abundances,andstellarwindpropertiescan / bedetermined by themethodsof spectral diagnostics already developed. Ad- h ditionally,itwillbedemonstratedthatmodelsandsyntheticspectraofTypeIa p Supernovae ofrequiredqualityarealreadyavailable. Thesewillmakeitpos- - o sibletotacklethequestion ofwhetherSupernovae Iaarestandard candlesin r acosmologicalsense, confirmingordisprovingthatthecurrentSN-luminosity t s distancesindicateacceleratedexpansionoftheuniverse. a Indetailwediscussapplicationsofthediagnostictechniquesbyexampleof : v twoofthemostluminousOsupergiantsintheGalaxyandastandardSupernova i ofTypeIa.Furthermore,itisdemonstratedthatthespectralenergydistributions X providedbystate-of-the-artmodelsofmassiveOstarsleadtoconsiderablybet- r teragreementwithobservationsifusedfortheanalysisofHIIregions.Thus,an a excellentwayofdeterminingextragalacticabundancesandpopulationhistories isoffered. Moreover,theimportanceofHotStarsinabroadastrophysicalcontextwill bediscussed. Astheydominatethephysical conditionsoftheirlocalenviron- mentsandthelifecycleofgasanddustoftheirhostgalaxies,specialemphasis will be given to the corresponding diagnostic perspectives. Beyond that, the relevanceofHotStarstocosmologicalissueswillbeconsidered. 2 A.W.A.Pauldrach 1 Introduction Itis wellknownthatHotStars are nota single groupof objectsbutcomprisesub- groups of objects in different parts of the HR diagram and at different evolution- arystages. Themostimportantsub-groupsaremassive O/Bstars, CentralStarsof PlanetaryNebulae,andSupernovaeofTypeIaandII.Allthesesub-groupshavein commonthattheyarecharacterizedbyhighradiationenergydensitiesandexpand- ingatmospheres,andduetothisthestate oftheoutermostpartsofthese objectsis characterizedbynon-equilibriumthermodynamics.Inordertocoverthebest-known fundamentalstagesoftheevolutionofHotStarsinsufficientdepththisreviewwill berestrictedtothediscussionofOstarsandSupernovaeofTypeIa;wewillnotdis- cussobjectslikeWolf-Rayetstars, LuminousBlueVariables,Be-stars, Supernovae of Type II, and others. Furthermore, Hot Stars play an important role in a broad astrophysical context. This implies that a complete review covering all aspects in theoryandobservationisnotonlyimpossible,butalsobeyondthescopeofthisre- view.Thus,thisreviewwillfocusonaspecialpartoftheoveralltopicwiththeintent toconcentrateonjustonesubject;thesubjectchosenisUVspectraldiagnostics. It willbeshown,however,thatthissubjecthasimportantimplicationsforastrophysical topicswhicharepresentlyregardedasbeing“trendy”. ButfirstofallwehavetoclarifywhatUVspectraldiagnosticsmeans.Thisisbest illustratedbythereallyold-fashioned(1977,MortonandUnderhill)UVspectrumof one of the brightest massive O stars, the O4I(f) supergiant ζ Puppis. As can be seeninFigure1,expandingatmosphereshaveapronouncedeffectontheemergent spectraofhotstars–especiallyintheUV-part.Thesignaturesofoutflowareclearly recognizedbytheblue-shiftedabsorptionandred-shiftedemissionintheformofthe well-knownP Cygniprofiles. Itis quite obviousthatthese kindof spectra contain informationnotonlyaboutstellarandwindparameters,butalsoaboutabundances. Thus, in principle,all fundamentalparametersofa hotstar can bededucedfroma comparisonofobservedandsyntheticspectra. AlthoughspectraofthequalityshowninFigure1havebeenavailableformore than25years,mostoftheworkdonetodatehasconcentratedonqualitativeresults andarguments. Inviewoftheeffortputintothedevelopmentofmodern–state-of- the-art– instruments, it is certainly not sufficient to restrict the analyses to simple lineidentificationsandqualitativeestimatesofthephysicalproperties. Theprimary objective must be to extract the complete physical stellar information from these spectra. Such diagnosticissues principallyhave beenmade possible by the superb qualityandspectralresolutionofthespectraavailable. For this objective, the key is to produce realistic synthetic UV spectra for Hot Stars. Such powerful tools, however, are still in development and not yet widely used.Theyoffertheopportunitytodeterminethestellarparameters,theabundances ofthelightelements–He,C,N,O,Si–andoftheheavyelementslikeFeandNi, quantitatively,asisindicatednotonlybyIUE,butalsomorerecentHST,ORFEUS, and FUSE observations of hot stars in the Galaxy and Local Group galaxies. All theseobservationsshowthatthespectraintheUVspectralrangearedominatedby adenseforestofslightlywind-affectedpseudo-photosphericmetalabsorptionlines HotStars:Old-FashionedorTrendy? 3 Figure1: MergedspectrumofCopernicusandIUEUVhigh-resolutionobservationsofthe O4I(f)supergiantζPuppis(900–1500A˚:MortonandUnderhill1977;1500–1800A˚:Walborn etal.1985). Themostimportantwindlinesofthelightelementsareidentifiedandmarked. Alsomarkedarethelargenumberofwind-contaminatedlinesoftheirongroupelements(e.g., FeV)whichareespeciallypresentbetween1250and1500A˚.(FigurefromPauldrachetal. 1994b). overlaid by broad P Cygni line profiles of strong, mostly resonance lines, formed in different parts of the expanding atmosphere. Thus, the obvious objective is to investigatetheimportanceoftheselineswithrespecttothestructureoftheexpanding atmospheresthat are characterized by the strength and the velocity of the outflow, andthroughwhichtheshapeofthespectrallinesismainlydetermined.Overthelast 30yearsitturnedoutthattheachievementofthisobjective,whichwillalsobethe primaryaimofthispapertoreview,remainsadifficulttask. Before we discuss in detail the status quo of the diagnostictool required(Sec- tion 6), we will first examine whether such a tool has been made obsolete by the generaldevelopmentin astrophysics or whether it is still relevant to currentastro- nomicalresearch. For this purpose we first discuss the diagnostic perspectives of galaxies with pronouncedcurrentstar formation. Duetothe impactofmassivestarsontheiren- vironmentthe physics underlying the spectral appearance of starburst galaxies are rooted in the atmospheric expansion of massive O stars which dominate the UV wavelength range in star-forming galaxies. Therefore, the UV-spectral features of massiveOstarscanbeusedastracersofageandchemicalcompositionofstarburst galaxiesevenathighredshift(Section2). 4 A.W.A.Pauldrach Withrespecttothepresentcosmologicalquestionofthereionizationoftheuni- verse–whichappearedtohavehappenedataredshiftofaboutz ∼6–theionization efficiencyofatop-heavyInitialMassFunctionforthefirstgenerationsofstarsisdis- cussed(Section3). Startingfromtheimpactofmassivestarsontheirenvironmentitisdemonstrated thatthespectralenergydistributionsprovidedbystate-of-the-artmodelsofmassive O stars lead to considerable improvementsif used for the analysis of HII regions. Thus,thecorrespondingmethodsfordeterminingextragalacticabundancesandpop- ulationhistoriesarepromising(Section4). Regardingdiagnosticissues,theroleofSupernovaeofTypeIaasdistanceindi- cators is discussed. The contextof this discussion concernsthe currentand rather surprisingsurprisingresultthatdistantSNe Ia appearfainterthanstandardcandles inanemptyFriedmannmodeloftheuniverse(Section5). Finally,wediscussapplicationsofthediagnostictechniquesbyexampleoftwo ofthemostluminousOsupergiantsintheGalaxy;additionally,basicstepstowards realisticsyntheticspectraforSupernovaeofTypeIaarepresented(Section7). 2 The impact of massivestars on their Environment – UV Spectral Analysis of Starburst Galaxies Theimpactofmassivestarsontheirenvironmentinthepresentphaseoftheuniverse isofmajorimportancefortheevolutionofmostgalaxies.Althoughrarebynumber, massive stars dominate the life cycle of gas and dust in star forming regions and areresponsibleforthechemicalenrichmentoftheISM,whichinturnhasasignifi- cantimpactonthechemicalevolutionofthehostgalaxy. Thisismainlyduetothe shortlifetimesofmassivestars,whichfavourstherecyclingofheavyelementsinan extremely efficient way. Furthermore, the large amountof momentum and energy input of these objects into the ISM controls the dynamical evolution of the ISM. This takes place in an extreme way, because massive stars mostly group in young clusters,producingvoidregionsaroundthemselvesandwind-andsupernova-blown superbubbles around the clusters. These superbubbles are ideal places for further star formation, as numerous Hubble Space Telescope images show. Investigation of these superbubbleswill finally yield the required information to understand the variousprocessesleadingtocontinuousstarformationregions(cf.OeyandMassey 1995).Thecreationofsuperbubblesisalsoresponsibleforthephenomenonofgalac- ticenergeticoutflowsobservedinstarbursts(Kunthetal.1998)andstarburstgalaxies evenathighredshift(Pettinietal.1998). Itisthusnotsurprisingthatspectroscopic studiesofgalaxieswithpronouncedcurrentstarformationrevealthespecificspec- tralsignaturesofmassivestars,demonstratinginthiswaythattheunderlyingphysics forthespectralappearanceofstarburstgalaxiesisnotonlyrootedintheatmospheric expansionofmassiveOstars,butalsodominatedbytheseobjects(cf.Figure2from Steidel etal. 1996, for star-forming galaxies at high redshift see also Pettini etal. 2000, and for UV line spectra of local star-forming galaxiessee Conti etal. 1996; notethatthesimilarityofthespectraatnone/lowandhighredshiftssuggestsasimi- larstellarcontent). HotStars:Old-FashionedorTrendy? 5 Figure 2: UV spectrum of a z > 3 galaxy (upper part). For comparison, a recent HST spectrumof thecentral starburst regionintheWolf-Rayetgalaxy NGC4214 isalsoshown (lowerpart).NotethecharacteristicP-Cygnilines,especiallyofCIVandSiIV,pointingtothe dominatinginfluenceofmassiveOstars.FigurefromSteideletal.1996. ThecharacteristicP-Cygnilinesobservedasbroadstellarwindlines,especially thoseoftheresonancelinesofCIVandSiIV,integratedoverthestellarpopulations in the spectra of starbursting galaxies, allow quantitative spectroscopic studies of themostluminousstellar objectsindistantgalaxiesevenathighredshift. Thus,in principle, we are able to obtain important quantitative information about the host galaxiesoftheseobjects,butdiagnosticissuesofthesespectrarequireamongother things synthetic UV spectra of O-type stars as input for the population synthesis calculationsneededforacomparisonwiththeobservedintegratedspectra. The potentialof these spectra forastrophysicaldiagnosticscan neverthelessbe investigatedin a first step by usingobserved UV spectra of nearbyO-typestars as inputforthecorrespondingpopulationsynthesiscalculationsinstead.Intheframeof thismethodstarsaresimulatedtoformaccordingtoaspecifiedstar-formationhis- toryandinitialmassfunctionandthenfollowpredefinedtracksintheHR-diagram. The integrated spectra are then built up from a library of observed UV spectra of hotstarsintheGalaxyandtheMagellanicClouds. Theoutputofthisprocedureare semi-empiricalUVspectrabetween1000and1800A˚ at0.1to0.7A˚ resolutionfor populationsofarbitraryage,star-formationhistories,andinitialmassfunction. The computationaltechniqueof thismethodisdescribedcomprehensivelyinthe litera- ture and we refer the reader to one of the latest papers of a series (Leitherer etal. 2001). Asanexampleoftheanalysesperformedinthiswayacomparisonoftheaverage spectrumof8clustersinNGC5253tosyntheticmodelsatsolar(top)and1/4solar (bottom)metallicityisshowninFigure3(Leithereretal. 2001). TheFigureshows clearly thata representativevalue of the overallmetallicity of this starburstgalaxy can be determined, since the modelspectrum in the lower part fits the observation 6 A.W.A.Pauldrach Figure 3: Average spectrum of 8 clusters in NGC 5253 compared to that of a population modelatsolar(top)and1/4solarmetallicity(bottom). Itisclearlyshownthatarepresenta- tivevalueoftheoverallmetallicityofthisstarburstgalaxycanbedetermined. Figurefrom Leithereretal.,2001. almostperfectly. Thisresultisespeciallyconvincingasbothmodels(dashedlines) are based on the same parameters, except for the metallicity. A standard Salpeter IMF between 1 and 100 M⊙ was used and the starburst has been assumed to last 6Myr,withstarsformingcontinuouslyduringthistime. Theworsefittotheobser- vationsproducedby the solar metallicity modelspectrum– particularlydiscrepant aretheblueabsorptionwingsinSiIVandCIVwhicharetoostronginthemodels– couldbeimprovedbyreducingthenumberofthemostmassivestarswithasteeper IMF,butatthecostofthefitqualityintheemissioncomponents. Asanimportant result the ratio of the absorption to the emission strengths is therefore a sensitive indicatorforthemetallicity. Moreover, the strong sensitivity of the emission parts of the P-Cygni lines of NV, SiIV, and CIV on the evolutionary stage of the O stars makes these spectra quitesuitable asage tracers, whichis shownin Figure4, wherethe time evolution of the integrated spectrum following an instantaneous starburst is presented. The line profiles gradually strengthen from a main-sequence-dominated population at 0–1 Myr to a population with luminous O supergiants at 3–5 Myr; and the lines weakenagainatlaterageduetoterminationofthesupergiantphase–thisbehavior isespeciallyvisibleintheshapeoftheCIVλ1550resonanceline. Theconclusionfromtheseexamplesisthatthiskindofanalysisisverypromis- ing,butreliesonobservedUVspectra,whicharejustavailableforasmallnumber ofmetallicityvalues,namelythoseoftheGalaxyandtheMagellanicClouds. Inor- dertomakeprogressinthedirectionoutlinedbefore,realisticsyntheticUVSpectra ofO-type stars are needed. Thisis in particularthe case for high-redshiftgalaxies (whichareobservablespectroscopicallywhenthefluxisamplifiedbygravitational lensingthroughforegroundgalaxyclusters)sinceinthesecasestheexpectedmetal- licitiesofstarburstinggalaxiesintheearlyuniverse(cf.Pettinietal.2000)aremost probablydifferentfromlocalones. HotStars:Old-FashionedorTrendy? 7 Figure 4: Timeevolutionoftheintegratedspectrumforthe10Myrfollowinganinstanta- neousstarburst.ThestrongsensitivityoftheemissionpartsoftheP-CygnilinesofNV,SiIV, and CIV on the evolutionary stage of theO starsmakes these spectra quite suitable asage tracers.FigurefromLeithereretal.2001. 3 First generations of Stars – Ionization Efficiency of a Top-Heavy Initial Mass Function Apartfromtheshortevolutionarytimescaleofmassivestarsitisobviouslythemetal- licity, and, connected to this, the steepness of the Initial Mass Function, which is responsiblefortherarityoftheseobjectsinthepresentphaseoftheuniverse. Ithas tobethemetallicity,becauseveryrecentlystrongevidencehasbeenfoundthatthe primordialIMFhasfavoredmassivestarswithmasses> 102M⊙ (cf.Brommetal. 1999). Thus, in the early universe, when only primordial elements were left over fromthe Big Bang, natureobviouslypreferredto formmassive stars. Thispredic- tionisbasedonthemissingmetallicitywhichleadstoacharacteristicscaleforthe densityandtemperatureoftheprimordialgas,whichinturnleadstoacharacteristic JeansmassofMJ ∼103M⊙ (Larson1998). Finally,duetothesephysicalconditionstheInitialMassFunctionbecomestop- heavyandthereforedeviatessignificantlyfromthestandardSalpeterpower-law(see, for instance, Bromm etal. 1999, 2001). Such an early populationof very massive starsatverylowmetallicities(i.e.,PopulationIIIstars)whichhavealreadybeenthe- oreticallyinvestigatedbyElEidetal.(1983),recentlyturnedouttobealsorelevant tocosmologicalissues,themostimportantbeingthecosmologicalquestionofwhen 8 A.W.A.Pauldrach Figure 5: The normalized spectral energy distribution in the continuum of Population III stars–massrange100–1000M⊙atZ =0.Notethatthespectraattainanuniversalformfor stellarmassesM >300M⊙FigurefromBrommetal.2001. and how the cosmic “dark ages” ended (Loeb 1998). We know that the dark ages endedbecausetheabsenceofaGunn-Petersontrough(GunnandPeterson1965)in thespectraofhigh-redshiftquasarsimpliesthattheuniversewasreionizedagainat aredshiftofz > 5.8(Fanetal.2000). Foralongtime,Carretal.(1984)suspected that the first generationsof stars have been relevantto control this process. Thus, Population III stars could contribute significantly to the ionization history of the intergalacticmedium (IGM), but the contributionof the first generationof stars to the ionization history of the IGM depends crucially on their initial mass function. Withregardtothe firstgenerationsofstarstheionizationefficiencyofa top-heavy InitialMassFunctionwill,therefore,havetobeinvestigated. ItistheenormousamountofUVandEUVradiationoftheseverymassivestars which could easily change the status of the cold and dark universe at that time to becomereionizedagain.ThisisindicatedinFigure5,whichalsoshowsthatthetotal spectral luminosity dependssolely on the total amountof mass, if the mass of the mostmassivestarsexceeds300M⊙ (cf.Brommetal.2001). Duetothistop-heavy InitialMassFunctionthetotalspectralenergydistributiondeviatessignificantlyfrom thatobtainedwiththestandardSalpeterpower-law,asisshowninFigure6,andthe fluxobtainedcan contributethe decisivepartto the unexplaineddeficitof ionizing photonsrequiredforthereionizationoftheuniverse(cf.Brommetal.2001). However,inordertobeabletomakequantitativepredictionsabouttheinfluence ofthis extremelymetalpoorpopulationof verymassivestars ontheir galacticand intergalacticenvironmentoneprimarilyneedsobservationsthatcanbecomparedto thepredictedfluxspectrum. HotStars:Old-FashionedorTrendy? 9 Figure 6: PredictedfluxfromaPopulationIIIstarclusteratz = 10. Aflatuniversewith Ω = 0.7isassumed. Thecutoffbelowλ = 1216A˚ isduetocompleteGunn-Peterson Λ obs absorption, and the observable flux is larger by an order of magnitude for the case of the top-heavyIMFwhencomparedtothecaseofthestandardSalpeterpower-law. Figurefrom Brommetal.2001. Future observations with the Next Generation Space Telescope of distant stel- lar populationsat high redshifts will principally give us the opportunityto deduce the primordialIMF from these comparisons. Kudritzki(2002)has recently shown thatthisisgenerallypossible,bycalculatingstate-of-the-artUVspectraformassive O stars in a metallicity range of 1...10−4 Z⊙. From an inspection of his spec- tra he concluded that significant line features are still detectable even at very low metallicities;thus,therewillbediagnosticinformationavailabletodeducephysical propertiesfromstarburstingregionsathighredshiftsthatwilleventuallybeobserved withtheNextGenerationSpaceTelescopeintheinfraredspectralregion. AsasecondrequirementweneedtodeterminethephysicalpropertiesofPopu- lationIIIstarsduringtheirevolution. Akeyissueinthisregardistoobtainrealistic spectralenergy distributionscalculatedfor metallicitiesdifferentfromzerofor the most massive objects, since the assumption of a metallicity of Z = 0 is certainly onlycorrectfortheveryfirstgenerationofPopulationIIIstars. 4 Theoretical Ionizing Fluxes of O Stars Although less spectacular, we will now investigate the impact of massive stars on theirenvironmentinamoredirectmanner. Apartfromthechemicalenrichmentof the ISM, the large amount of momentum and energy input into the ambient inter- stellarmediumoftheseobjectsisprimarilyofimportance. Especiallytheradiative energy input shortward of the Lyman edge, which ionizes and heats the Gaseous Nebulae surroundingmassive Hot Stars, offers the possibility to analyze the influ- ence of the EUV radiationof the photoionizingstars on the ionizationstructure of theseexcitedHIIregions. 10 A.W.A.Pauldrach Figure7: [ArIII]8.99µm/[ArII]6.99µmversus[NeIII]15.6µm/[NeII]12.8µmdiag- nosticdiagramofobservedandpredictednebularexcitationofHIIregions.Boldfacenumbers indicatemodels whicharedesignated bytheireffectivetemperaturein103K.Trianglesare NLTEmodelsandsquaresareLTEmodels;notethattheNLTEmodelsrepresentanimpres- siveimprovementinreproducingthe[NeIII]emission.Arepresentativeerrorbarforthedata isshowninthelowerrightcorner.FigurefromGiveonetal.2002. The primary objective of such investigations are studies of theoretical models of starburst regions, which for instance are used to determine the energy source in ultra-luminousinfrared galaxies – ULIRGs – (cf. Lutz etal. 1996; Genzel etal. 1998).Theinterpretationofthecorrespondingextra-galacticobservationsobviously requiresunderstandingthepropertiesofthespectralenergydistributions(SEDs)of massivestarsandstellarclusters. Thus,thequalityoftheSEDshastobeprobedin afirststepbymeansofinvestigationsofGalacticHIIregions. 4.1 The ExcitationofGalacticHIIRegions Giveonetal.(2002)recentlypresentedacomparisonofobserved[NeIII]15.6µm/ [NeII]12.8µmand[ArIII]8.99µm/[ArII]6.99µmexcitationratios,obtainedfor asampleof112GalacticHIIregionsand37nearbyextragalacticHIIregionsinthe LMC, SMC, and M33 observed with ISO-SWS, with the correspondingresults of theoreticalnebularmodels. The authors have chosen infrared fine-structure emission lines for their inves- tigation because these lines do not suffer much from dust extinction and the low energies of the associated levels make these lines quite insensitive to the nebular electrontemperature. Moreover,therelativestrengthsofthefine-structureemission lines chosen are ideal for constraining the shape of the theoretical ionizing fluxes,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.