RESEARCHARTICLE Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors VincentO.Nyasembe1,2,DavidP.Tchouassi1,ChristianW.W.Pirk2,CatherineL.Sole2, BaldwynTorto1,2* 1 InternationalCentreofInsectPhysiologyandEcology,Nairobi,Kenya,2 DepartmentofZoologyand Entomology,UniversityofPretoria,Hatfield,SouthAfrica *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Theglobalspreadofvector-bornediseasesremainsaworryingpublichealththreat,raising theneedfordevelopmentofnewcombatstrategiesforvectorcontrol.Knowledgeofvector ecologycanbeexploitedinthisregard,includingplantfeeding;acriticalresourcethatmos- quitoesofbothsexesrelyonforsurvivalandothermetabolicprocesses.However,theiden- OPENACCESS tityofplantspeciesmosquitoesfeedoninnatureremainslargelyunknown.Bytestingthe Citation:NyasembeVO,TchouassiDP,PirkCWW, hypothesisaboutselectivityinplantfeeding,weemployedaDNA-basedapproachtargeting SoleCL,TortoB(2018)Hostplantforensicsand trnH-psbAandmatKgenesandidentifiedhostplantsoffield-collectedAfro-tropicalmos- olfactory-baseddetectioninAfro-tropicalmosquito quitovectorsofdengue,RiftValleyfeverandmalariabeingamongthemostimportantmos- diseasevectors.PLoSNeglTropDis12(2): quito-bornediseasesinEastAfrica.TheseincludedthreeplantspeciesforAedesaegypti e0006185.https://doi.org/10.1371/journal. pntd.0006185 (dengue),twoforbothAedesmcintoshiandAedesochraceus(RiftValleyfever)andfivefor Anophelesgambiae(malaria).Sinceplantfeedingismediatedbyolfactorycues,wefurther Editor:BrianL.Weiss,YaleSchoolofPublic Health,UNITEDSTATES soughttoidentifyspecificodorsignaturesthatmaymodulatehostplantlocation.Usingcou- pledgaschromatography(GC)-electroantennographicdetection,GC/massspectrometry Received:October2,2017 andelectroantennogramanalyses,weidentifiedatotalof21antennally-activecomponents Accepted:December20,2017 variablydetectedbyAe.aegypti,Ae.mcintoshiandAn.gambiaefromtheirrespectivehost Published:February20,2018 plants.WhereasAe.aegyptipredominantlydetectedbenzenoids,Ae.mcintoshidetected Copyright:©2018Nyasembeetal.Thisisanopen mainlyaldehydeswhileAn.gambiaedetectedsesquiterpenesandalkenes.Interestingly, accessarticledistributedunderthetermsofthe themonoterpenesβ-myrceneand(E)-β-ocimenewereconsistentlydetectedbyallthemos- CreativeCommonsAttributionLicense,which quitospeciesandpresentinalltheidentifiedhostplants,suggestingthattheymayserveas permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal signaturecuesinplantlocation.Thisstudyhighlightstheutilityofmolecularapproachesin authorandsourcearecredited. identifyingspecificvector-plantassociations,whichcanbeexploitedinmaximizingcontrol DataAvailabilityStatement:Thehaplotypes strategiessuchassuchasattractivetoxicsugarbaitandodor-baittechnology. generatedfromthisstudyhavebeendepositedin GenBankunderaccessionnumbersMG573108, MG573126-MG573131(RVFvectorshostplant trnH-psbAgenesequences),MG573132- MG573139(denguevectorhostplanttrnH-psbA Authorsummary genesequences),MG573109-MG573125 Plantsplayanimportantroleinthefitnessofmosquitodiseasevectors,yettheidentityof (malariavectorhostplanttrnH-psbAgene plantspeciesthattheyfeedonintheirnaturalhabitatsremainslargelyunknown.Inthis sequences),andKY308115-KY398121(malaria vectorhostplantmatKgenesequences). PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 1/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Funding:ThisstudywasfundedthroughSwedish InternationalDevelopmentCooperationAgency study,weemployedDNAbarcodingtoidentifytheplantspeciesfeduponbyAedes (Sida)studentshiptoVON.Partialfundingwasalso aegypti,Aedesmcintoshi,AedesochraceusandAnophelesgambiaeintheirnaturalhabitats. receivedfromtheUK’sDepartmentfor Sinceplantfeedingismediatedbyolfactorycues,withpotentialapplicationasattractant- InternationalDevelopment(DFID),theSwiss basedtoolsforvectorsurveillance,weidentifiedspecificodorsignaturesthatmaymodu- AgencyforDevelopmentandCooperation(SDC), latehostplantlocation.Ourfindingsshowedpreferenceinodordetectionamongthe andtheKenyanGovernment.Theviewsexpressed hereindonotnecessarilyreflecttheofficialopinion vectorsfordifferentcompoundclasses;benzenoidsforAe.aegypti,aldehydesforAe.mcin- ofthedonors.Thefundershadnoroleinstudy toshiandsesquiterpenesandalkenesforAn.gambiae.Thisstudyhighlightstheutilityof design,datacollectionandanalysis,decisionto molecularapproachesinidentifyingspecificvector-plantassociations,aknowledgewhich publish,orpreparationofthemanuscript. canbeexploitedinmaximizingvectorcontrolstrategiessuchasattractivetoxicsugarbait. Competinginterests:Theauthorsdeclarethatno Furthermore,theelucidationofpotentialodorsignaturelaysfoundationfordevelopment competinginterestsexist. ofplantodor-baittechnologywhichiscriticalforsurveillanceofdifferentmosquitodis- easevectorsofvaryingphysiologicalstatesandthepathogenstheytransmit. Introduction Therehasbeenanincreaseintheincidenceofvector-bornediseases,keyamongthemarbo- viraldiseasessuchasdengue,chikungunya,RiftValleyfever(RVF)andzika.Whiledengue predominantlyaffectsAsiancountries,increasingoutbreaksinEastAfricancoastalregions havebecomeevidentinrecenttimes[1–3].RiftValleyfeverwhichmainlyoccursinAfrica, withfociinEastAfrica,israpidlyspreadingeastwardsintoAsiaandtheArabianPeninsula [4–6].Therecentupsurgeindengueincidencehasbeenattributedtorapidandunplanned urbanizationwhichcreatesconducivebreedinghabitatsforthekeymosquitovectorofthedis- ease,Aedesaegypti[3,7].Ontheotherhand,RVFisanepizooticdiseasemainlyassociated withdevastatingoutbreaksfollowingwidespreadelevatedrainfall,leadingtofloodingthatcre- atesfavorablebreedingsitesfortheprimarymosquitovectorsAedesmcintoshiandAedes ochraceus[5,8].InEastAfrica,inparticularKenya,thepublichealthburdenduetothesearbo- viraldiseasesisfurthercompoundedbytheendemicityoftheparasiticmalariadiseasetrans- mittedbycertainspeciesoftheAnophelesmosquito[9].Globally,vector-bornediseasespose riskofinfectiontomorethanhalfoftheworldpopulationwithmorethanamilliondeaths annually[10].Consequently,thereisrenewedefforttocomeupwithnewdiseasecontrolmea- suresandvectorcontrolformsakeypillarintheseefforts.Detailedunderstandingofthevec- torecologyisneededinsearchfornovelcontrolstrategies. Plantfeedingplaysacriticalroleinthebio-ecologyofmosquitodiseasevectors.Several studieshavedemonstratedthatbothsexesofdifferentmosquitospeciesforageonplantsto obtaincarbohydratesrequiredformetabolicprocessesvitalfortheirsurvival[11–13].Besides providingareadysourceofenergyforflight,fecundityandcellmetabolism[12,14,15],plant carbohydratesarealsoutilizedduringdiapausebymosquitoessuchasCulexpipienstosynthe- siselipidreserves[16–18].Theavailabilityofhostplantshasalsobeenshowntoextendsur- vivalofAnophelesgambiaeandAn.sergentii,likelyallowingforthecompletionofsporogonic cycleofmalariaparasitesandtherebyincreasingdiseasetransmissionpotentialofthesevectors [19–22].Ontheotherhand,abundanceoffloweringplantshasbeenlinkedtoreducedhuman bitingbehaviorbymosquitodiseasevectors,whichcanimpacteitherpositivelyornegatively ondiseasetransmissionpotentialdependingontheinfectionstatusofthemosquitoes[13,20, 23,24].Inaddition,studieshaveshownthatbothmosquitoesandsandfliesimbibeplantsec- ondarymetabolitesduringplantfeeding,someofwhichreduceparasiteloadinthevector [21,25,26].Thishasledtothehypothesisofpossibleselfmedicationbythesediseasevectors [15,26]openingupnewavenuesforexploitingphytochemicalsindevelopmentofnovel PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 2/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors chemotherapeuticsagainstthepathogenstheytransmit.Thus,beyondtheprovisionofnutri- ents,understandingplantfeedingindiseasevectorsofferspromisingopportunitiesfordevel- opmentofnewcontrolstrategiesagainstthemyriadofvectorbornediseases.Despitethis, littleisknownaboutplantfeedingbehaviorofmosquitovectorsofdengueandRVF. Previousstudieshavedemonstratedthatmosquitoesarehighlyselectiveintheirchoiceof plants[27–30].Theseinferencesweredrawnfromsemi-fieldandfieldexperimentswhich eitherinvolvedfeedingmosquitoesonrandomlyselectedperi-domesticplantstodetermine theiracceptability[27,28]ordeterminingtheattractionofmosquitoestorandomlyselected fruits/seedpodsandfloweringplants[29–31].Determinationofplantfeedingamongvarious mosquitospecieshasmainlybeenbasedonanalyticaltechniquessuchascoldanthroneteststo detectfructoseinthecropoffieldcollectedmosquitoes,chromatographicmethodstodetect plantsugarsandcellulosestainingtodetectplanttissuefeeding[12,16,19,23,24,28,32],with littletonodirectfieldobservationsofmosquitoesfeedingonplants[33,34].Whilecontribut- ingimmenselytowardsourunderstandingoftheroleofplantfeedinginthevectorialcapacity ofmosquitoes,thesemethodsare,however,limitedbytheirinadequacyindeterminingthe precisehostplantsinthenaturalmosquitohabitats.Asdiverseplantsoftenoccurineachhabi- tat,thecriticalquestionofwhichplants,ifany,areforageduponbymosquitodiseasevectors, remainsunanswered. RecentadvanceshaveseentheapplicationofDNAbarcodingtargetingspecificgenesto profileplantspeciesfeduponbydiseasevectors[35,36].However,thishasnotbeenapplied foranyAfro-tropicaldiseasevector,thusfar.ByemployingDNAbarcodingtargetingmultiple geneloci,wetestedthehypothesisthatAfro-tropicaldiseasevectorsfeedoncertainplantsin theirrespectiveecologies.Wefocusedonfourmosquitospecieswhichtransmitdengue(Aedes aegypti),RiftValleyfever(AedesmcintoshiandAedesochraceus)andmalaria(An.gambiae)[3, 37–39].Thesediseasesrankamongthemostimportantvector-bornediseasesinKenyawith somehavingbeenassociatedwithlargeoutbreaksaffectinghumansintherecentpast[2,5,6, 9].Giventhecentralroleofolfactorycuesinlocatingthiskeyplantresource[40–42],wefur- therusedcoupledgaschromatography/massspectrometryandelectrophysiologicalassaysto testthehypothesisthatthesediseasevectorsuseuniqueodorbouquettolocatetheirsuitable naturalhostplant.OurresultsshowthatthefourAfro-tropicalmosquitospeciesfeedoncer- tainplantspecieswithintheirecologicalrangeanddetectcommonandspecificchemicalcues tolocatetheirsuitablehostplants.Thisstudyprovidesusefulinsightthatcaninformvector controlstrategiestargetingplantfeedingbehaviorsuchasattractivetoxicsugarbaitandodor baittechnology. Matherialsandmethods Mosquitosamplecollection MosquitosampleswereobtainedfromthreesitesinKenya:Ae.aegyptifromKilifi(3.6333˚S and39.8500˚E)inthecoastalregionwithhighdengueendemicity[2,3],Ae.mcintoshiand Ae.ochraceusfromIjara(1.5988˚Sand40.5135˚E)innortheasternKenyawhichisaRiftVal- leyfeverendemicregion[5,6]andAn.gambiaes.l.fromAhero(0˚10’S,34˚55’E)whichisa malariaendemicareainwesternKenya[9].Thetrappingmethodsusedtocollectmosquito samplesaredescribedindetailinNyasembeetal.[42].Briefly,unlitCDCtrapsseparately baitedwithlinalooloxide(LO),BioGent(BG)lureandHONAD(amixtureofheptanal,octa- nal,nonanalanddecanal)formulatedfrommammalianodorbyTchouassietal.[37]were usedtotrapAe.mcintoshi,Ae.ochraceusandAn.gambiae;whileBGsentineltrapsseparately baitedwithLOandBGlure,wereusedtotrapAe.aegypti.Thetrapswerealsoeitherbaited withorwithoutcarbondioxideintheformofdryiceatallthethreesites.Alltrappingswere PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 3/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors carriedoutoutdoors.InAheroandKilifi,trapswereplacedinthreedistinctsettingsi)closeto thehomestead,ii)closetobreedingsitesaprioriidentifiedaspositiveforthespecificmosquito larvae,andiii)invegetationawayfromhumandwelling[3,39,43,44].InIjara,thetrapswere setattwodistinctsettingsi)nextto‘dambos’whichserveasbreedingsitesforAe.mcintoshi andAe.ochraceusandii)inbushygrasslandswherepastoralistsgrazetheirlivestock[6,37, 38].InKilifi,trappingswerecarriedoutbothduringthedayandnight(informedbythediur- nalnatureofAe.aegypti)whileinAheroandIjaratrappingswerecarriedoutduringthenight only(duetothenocturnalnatureofmosquitovectorsintheselocalities).Trapswereemptied after12handthecollectedmosquitoesimmobilizedbyplacingondryice,immediatelyfrozen inliquidnitrogenandtransportedtoicipelaboratoriesinNairobiforfurtherprocessing. Samplepreparation Topreparethesamplesforbiochemicalandmolecularanalyses,individualmosquitoeswere submergedinasolutionof0.5%hypochlorite,agitatedgentlyfor1minwithforceps,andthen rinsedindoubledistilledwater(ddH 0)for1min.Thiswastoremoveanyplantdebristhat 2 mayhavebeenontheoutsideoftheinsect,whichcouldotherwisecontaminatethesample. Themosquitoeswerethenplacedindividuallyina1.5mlsterileEppendorftubeandmacer- atedusinground-tippedglassrodssterilizedthroughtheflameofaBunsenburner.Onehun- dredmicrolitresofabsoluteethanolwasaddedandthesolutionhomogenized.Twosetsof controlswereusedasfollows:a)laboratory-rearedAn.gambiaes.s.fedonPartheniumhystero- phorus(Asteraceae)overnight,andb)An.gambiaeaspirateddirectlyfromP.hysterophorus fieldinAherousingabackpackaspirator(3”IN-LINEBLOWER,JohnW.HockCompany, Gainesville,FL,USA).Allmosquitoesfromthecontrolswerepreparedasdescribedabove. Determinationofevidenceofrecentplantfeedinginfieldcollected mosquitoes ThiswasdoneusingthecoldanthronetestasdescribedbyvanHandeletal.,[45]asaquick initialtesttodetectfructose.Aliquots(50μl)ofthepreparedmosquitohomogenatewereindi- viduallyplacedinthewellsofaflatbottomed96-wellmicrotiterplatefollowedby300μlofthe reactionsolutioncomprising0.15%anthrone(Sigma)(wt/vol)in71.7%sulphuricacid.This wasincubatedat25oCfor60minbeforebeingexaminedforcolorchanges.Inthepresenceof fructose,thereactionmixturechangeditscolorfromyellowtoblue.Theremainingaliquotof fructose-positivesampleswassubjectedtoplantDNAextractionasdescribedbelow. ExtractionofplantDNAfrommosquitoes PlantDNAwasextractedfromthehomogenizedsamplesoffructose-positivemosquitoesonly usingthemanufacturer’sprotocoldescribedbyDNeasyPlantMinikit-(QIAGEN,USA)with aminormodification.TheincubationperiodwithlysisbufferAP1andRNasewasextended by30minwhilethatwiththeelutionBufferAEwasextendedfor3hr.TheextractedDNAwas storedat-20˚CuntiluseinPCRamplification. PCRamplificationandsequencing PlantDNAextractedfromthefructose-positivemosquitospecimenswasamplifiedtargeting thetrnH-psbAintergenicspacerregionandmaturaseK(matK)gene(Table1)usingestab- lishedprimers.Theuseofmorethanonetargetwastomaximizeonthedetectionpossibility asindividualgenesselectivelyamplifycertainplantfamilies[46].EachPCRreaction(carried outinavolumeof20μl)consistedof7μltemplateDNA,10μl2xHotStarTaqMasterMix PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 4/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Table1. Forwardandreverseprimersequencesforthreegenetargetsusedtoidentifynaturalhostplantsofdengue,RiftValleyfeverandmalariamosquitodisease vectors. Primer Direction Sequence(5’-3’) Reference trnH-psbA trnH CGCGCATGGTGGATTCACAATCC Shawetal.,2005 psbA GTTATGCATGAACGTAATGCT Shawetal.,2005 matK 2.1forward CCTATCCATCTGGAAATCTTAG Kressetal.,2005 5reverse GTTCTAGCACAAGAAAGTCG Kressetal.,2005 https://doi.org/10.1371/journal.pntd.0006185.t001 (HotStarTaqPlusMasterMixKit,Qiagen),0.5μMofeachprimer,and2μlofRNasefree water.APCRnegativecontrol(RNase-freewater)wasroutinelyused.Sampleswereamplified usingVeriti96-wellThermalCycler(Singapore).FortrnH-psbA,thecyclingparameterswere 94oCfor1min,followedby45cyclesof94oCfor1min,55oCfor40secand72oCfor1min, andfinalextensionat72oCfor10min.SimilarcyclingconditionswereusedformatKamplifi- cationwiththeannealingtemperaturesetat48oC. SuccessfulamplificationswereconfirmedbyvisualizingPCRampliconsin1%agarosegel electrophoresis.TheywerepurifiedusingtheExo/SAP-ITKitforPCRproduct(Affymetrix Inc.,USA)asperthemanufacturer’sinstructionsandoutsourcedforbidirectionalsequencing toInqabaBiotechnologicalIndustries(Pty)Ltd(Pretoria,SouthAfrica). TheobtainedplantDNAsequencesforeachgenewerecleaned,editedandcomparedto referencesequencesintheGenBankdatabase[47].InGenBank,the‘megablast’searchoption ofnucleotideBasicLocalAlignmentSearchTool(BLASTn)[48]algorithmwasusedwiththe defaultsearchparameters.Thehitswithsequenceidentityabove96%wereretrievedand addedtotheoriginalsamplequerysequences.ThesequenceswerealignedusingClustalWin MEGA6[49].Alignedmatriceswereusedtoconstructp-distancephylogenetictreeusingthe NeighborJoiningmethodforindividualgeneswith1000bootstraps.Nodalsupportwasevalu- atedbybootstrappingwithvaluesof95%ormoreconsideredsignificant. Confirmationofidentifiedmosquitohostplants Furtherstepstoconfirmtheplantidentityincludedon-siteidentificationwithinthespecific ecologiesfromwherethemosquitoesweresampledbyaplanttaxonomist(SimonMathenge, retiredfromtheHerbarium,DepartmentofBotany,UniversityofNairobi)andcomparison toestablishedbotanicaldatabasebytheNationalMuseumofKenya(http://www.museums. or.ke). Leavesandflowers(whereapplicable)ofidentifiedplantsweresampledfromtherespective fieldsitesforDNAextractionandsequencing.Thesampleswerecleanedusingdoubledistilled waterbeforeobtainingapproximately100mgwetweightofthesamplewhichwereplacedin sterile1.5mlEppendorftubes.TheplantsampleswerehomogenizedandDNAextracted usingtheDNeasyPlantMiniKitasdescribedabove.TheobtainedplantDNAwassimilarly amplifiedfortrnH-psbAandmatKgenes,processedandsentforsequencingasdescribed above.Thesequenceswerethenalignedwiththosefromthemosquitoesandphylogenetic treesobtained.Nodalsupportwasevaluatedbybootstrappingwithvaluesof95%ormorecon- sideredsignificant. ThehaplotypesgeneratedfromthisstudyhavebeendepositedinGenBankunderaccession numbersMG573108,MG573126–MG573131(RVFvectorshostplanttrnH-psbAgene sequences),MG573132–MG573139(denguevectorhostplanttrnH-psbAgenesequences), MG573109–MG573125(malariavectorhostplanttrnH-psbAgenesequences),and KY308115—KY398121(malariavectorhostplantmatKgenesequences). PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 5/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Collectionofheadspacevolatilesfromtheidentifiednaturalmosquitohost plants HeadspaceVOCswerecollectedfromfiveoftheconfirmednaturalhostplantsforAe.aegypti, Ae.mcintoshi,Ae.ochraceusandAn.gambiae.ThefiveplantsincludedPithecellobiumdulce (Fabaceae),Opuntiaficus-indica(Cactaceae),Leonotisnepetifolia(Lamiaceae),Sennaalata (Fabaceae)andRicinuscommunis(Euphorbiaceae).Thiswasdonebycollectingtheheadspace volatilesfromtheseplantsinsituattheirnaturalhabitatsusingaportablefieldpump(Analyti- calResearchSystems,Gainesville,Florida,USA).Theaerialpartsofanintactplantweregently enclosedinanair-tightovenbag(Reynolds,Richmond,VA,USA)andcharcoalfilteredair passedovertheplantataflowrateof350ml/minintoaSuper-Qadsorbenttrap(30mg,Ana- lyticalResearchSystems,Gainesville,Florida,USA).Theaerialplantpartsenclosedinthe ovenbagsincludedleaves,flowersandpodsofP.dulceandS.alata,leavesandflowersofL. nepetifolia,leavesandleafstalksofR.communis,andleaves,flowersandfruitsofO.ficus- indica.Forallplantspecies,volatileswerecollectedfor12hrduringthedayand12hratnight andreplicatedthreetimesusingdifferentplantsineachreplicate.TheSuper-Qtrapswere elutedwith200μlGC/GC-MS-gradedichloromethane(DCM)(BurdickandJackson,Muske- gon,Michigan,USA)andtheeluentsstoredat-80˚Cuntilanalysis. Analysisofvolatiles Forquantificationandidentificationoftheconstituentcompoundsoftheplantvolatiles,an aliquot(1μl)ofeachsamplewasinjectedintoagaschromatograph(Agilenttechnologies- 7890)coupledtoinertXLEI/CImassspectrophotometer(5975C,EI,70eV,Agilent,PaloAlto, Califonia,USA)(GC/MS)inasplitlessinjectionmode.TheGCwasequippedwithanHP-5 column(30mx0.25mmIDx0.25μmfilmthickness,Agilent,PaloAlto,California,USA), withheliumasthecarriergasataflowrateof1.2ml/min.Theoventemperaturewasheldat 35˚Cfor5min,thenprogrammedtoincreaseat10˚C/minto280˚Candmaintainedatthis temperaturefor10min.Thevolatileorganiccompoundswereidentifiedbycomparingtheir massspectrawithlibrarydata(Adams2.L,Chemecol.LandNIST05a.L)andwiththoseof authenticstandardswherepossible(seesourcesandpurityunderchemicalsectionbelow). TheabsoluteareasofeachconstituentascalculatedbytheNIST05a.Lsoftwarewasusedto estimatetheiramountsusinganexternalcalibrationequationgeneratedfromknownamounts ofauthenticcompounds. Electrophysiologicalassays ToisolatethespecificVOCsthataredetectedbythedifferentmosquitodiseasevectorsand theirpreferrednaturalhostplants,wildcaughtadultAe.aegypti,Ae.mcintoshiandAn.gam- biaes.l.,werecollectedfromtheirrespectivehabitatsusingmethodsdescribedaboveand transportedalivetotheicipelaboratoriesinNairobiunderhighcontainmentlevelanddirectly usedinelectrophysiologicalassays.Thetrappedmosquitoeswereaspiratedinto30x30x30 cmcagesandprovidedwith10%glucosesolutionsoakedincottonwoolduringtransporta- tion.Thetopsofthecageswerecoveredwithamoisttoweltomaintainhighhumidity.Once aticipe,themosquitoeswerekeptinahighcontainmentanimalrearingunitatatemperature of27–31˚Candaveragehumidityof80%.Onlyfemalemosquitoeswereusedforelectrophysi- ologicalassaysandtheywerestarvedfor2hrbeforeexperimentation.Anophelesgambiaes.s. antennalresponsestoR.communisheadspacevolatileshadbeentestedinourpreviousstudy [40],hencewasnotrepeatedinthisstudy.Inaddition,Ae.ochraceuswasnotusedinthese studiesasnonewerecollectedduringthisfieldsampling. PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 6/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Coupledgaschromatography/electro-antennographicdetection(GC/EAD)analyseswere performedasdescribedbyNyasembeetal.[40].Briefly,5μlofvolatilesampleswereanalyzed usingaHewlett-Packard(HP)5890SeriesIIgaschromatographequippedwithanHP-5col- umn(30mx0.25mmIDx.0.25μmfilmthickness,Agilent,PaloAlto,California,USA)with nitrogenasthecarriergasat1ml/min.Volatileswereanalyzedinthesplitlessmodeatan injectortemperatureof280˚Candasplitvalvedelayof5min.Theoventemperaturewasheld at35˚Cfor3min,thenprogrammedat10˚C/minto280˚Candmaintainedatthistempera- turefor10min.Thecolumneffluentwassplit1:1afteradditionofmake-upnitrogengasfor simultaneousdetectionbyflameionizationdetector(FID)andEAD.ForEADdetection,sil- ver-coatedwiresindrawn-outglasscapillaries(1.5mmI.D.)filledwithRingersalinesolution servedasreferenceandrecordingelectrodes.Livemountinginwhichthemosquitowas restrainedwithanadhesivetapewiththereferenceelectrodeconnectedtothebaseofthehead andtherecordingelectrodeconnectedtothetipoftheantennae.Theanaloguesignalwas detectedthroughaprobe(INR-II,Syntech,Hilversum,theNetherlands),capturedandpro- cessedwithanintelligentdataacquisitioncontroller(IDAC-4,Syntech,theNetherlands),and lateranalyzedwithEAG2000,software(Syntech).FIDsignalsfromtherespectivehostplant volatilesthatelicitedrepeatedantennalresponsesinatleastthreereplicatesusingfreshanten- naeweredesignatedasEAD-activecompoundsandidentifiedbymatchingthemwithcorre- spondingGC/MSdataandthoseofauthenticstandards. EAGpuffswereusedtoconfirmthedetectionofsevenEAD-activecomponentswhichelic- itedantennalresponsesusingsyntheticstandards.Thesevencompoundswereselectedbased oneitherbeingdetectedbymorethanonemosquitospeciesfromthevolatilesfromtheir respectivehostplants,orbythesamemosquitospeciesfromvolatilesofdifferenthostplants. Thesyntheticstandardswerepreparedataconcentrationof1ng/μl,2ng/μland4ng/μlin dichloromethane(SigmaAldrich,99.9%)andseparatelydeliveredaspuffson1cmX1cmfil- terpaperplacedinPasteurpipettes.Thepuffsweredeliveredat1mininterval,allowingthe antennaetoequilibratepost-exposure.Tocorrectforvariabilityinresponse,responsesto blanks(filterpaperlacedwithsolventonly)weresubtractedfromeachsampleandantennal responsevalueswerenormalizedtoastandardstimulussetat100%(2ng/μl1-octen-3-ol,cho- senbasedonitsknownattractivenesstohematophagousinsects[41].EAGpuffswererepli- catedninetimesforeachdoseofeverystimulus. Chemicalsused ThesyntheticstandardsofthefollowingEAD-activecompoundswereused:hexanal(Sigma Aldrich,99%),(E)-2-hexenol(Aldrich,96%),benzaldehyde(SigmaAldrich,99.5),β-myrcene (SigmaAldrich,99%),ocimene(InternationalFlavorsandFragrance,NewYork,USA,(Z)-β- ocimene=27%,(E)-β-ocimene=67%andallo-ocimene=6%),linalooloxide(SigmaAldrich, mixtureofstereoisomerswithfuranoidform,99.5%and0.5%pyranoidform),indole(Sigma Aldrich,99%)and1-octen-3-ol(FlukaChemica,racemicmixtureofRandS98%). Statisticalanalysis Todetermineiftherewasanysignificantdifferenceinthevolatileprofilesofthefiveplantspe- cies,tenmostabundantvolatileconstituentsineachplantspecieswereselected.Attempts werethenmadetoretrieveeachofthesecompoundsfromtheVOCsanalyzedfortherestof theplantspecies,yieldingatotalof26differentcompounds.Theabsoluteareasofthesecom- poundswerethenmeasuredandconvertedintoapercentageofthetotal.Thesepercentages werethensubjectedtoPrincipalComponentAnalysis(PCA)todeterminewhichones,ifany, areimportantinexplainingthevariationintheodorprofilesofthefivedifferentplantspecies. PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 7/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors QuantitativedifferencesinVOCsofthefivedifferentplantspeciesweredetectedusingUni- variateanalysisofvarianceandTukeyposthoctest.Differencesbetweentheantennaldose responsesandbetweenthethreedifferentmosquitospecies,weredetectedusingANOVAand Tukeyposthoctest.Allstatisticalanalyseswerecarriedoutat95%confidenceintervalusingR 2.15.1software[50]. Results Evidenceofplantfeedingamongwild-caughtAfro-tropicalmosquito species Byapplyingthecoldanthronetesttodetectfructoseasevidenceofrecentplantfeeding,we establishedthedegreeofplantfeedingamongthefemalesoffourAfro-tropicalmosquitospe- ciesAedesaegypti(denguevector),Aedesmcintoshi,Ae.ochraceus(RVFvectors)andAnopheles gambiaes.l.(malariavector)trappedfromdifferenthabitatsinKenyaduringthelongrainy season(April-June,2014).SincenomalemosquitoeswerecollectedforRVFandmalariavec- tors,thisanalysiswaslimitedtoonlyfemalemosquitoesforallthefourspecies.Wefoundevi- denceofrecentplantfeedinginAe.aegypti(17%,n=245),Ae.mcintoshi(56%,n=68),Ae. ochraceus(65%,n=50)andAn.gambiae(24%,n=146). Afro-tropicalmosquitospeciesfeedondiverseplantspeciesintheir naturalhabitats Todeterminetheidentitiesoftheplantspeciesfeduponbythesemosquitospeciesintheir naturalhabitats,wesubjectedaliquotsofsamplesthattestedpositivefortheanthronetestto DNAextractionfollowedbyamplificationtargetingtwoplantgenes;trnH-psbAandmatK; andthensequencing.WeobservedthatthesuccessratesinamplificationofplantDNAfrom themosquitocropdifferedsignificantlybetweenthetwogenetargets;trnH-psbA(24.5%)and matK(8.8%)(P<0.05;Table2).Similarly,sequencingsuccessratesdifferedsignificantly betweentrnH-psbA(16.4%)andmatK(1.9%)(P<0.05;Table2).Thesequencedfragment sizesrangedfrom276–617bpfortrnH-psbAand133–846bpformatKgenes. BlastsearchesofthesequencesforeachtargetinGenBankandfurtherphylogenyshowed strongsupport(bootstrapvalues95%andabove)andidentifiedhostplantsasPithecellobium dulce(Fabaceae),Sennauniflora(Fabaceae)andHibiscusheterophyllus(Malvaceae)forAe. aegypti(Fig1A);Opuntiaficus-indica(Cactaceae)forAe.mcintoshi;andO.ficus-indicaandan unidentifiedplantspeciesforAe.ochraceus(Fig1A);andSennaalata(Fabaceae),Sennatora (Fabaceae),Ricinuscommunis(Euphorbiaceae),Partheniumhysterophorus(Asteraceae)and Leonotisnepetifolia(Lamiaceae)forAn.gambiae(Fig1Aand1B).Theplantidentitieswere Table2. VariablesuccessratesoftwogenetargetsinamplifyingandsequencingplantDNAinthecropofdiffer- entmosquitospecies. Mosquitospecies N Amplified(Sequenced) trnH-psbA(total(success)) matK(total(success)) Aedesaegypti 42 8(6) 0(0) Aedesmcintoshi 38 2(2) 2(0) Aedesochraceus 32 11(3) 9(0) Anophelesgambiaes.l. 35 18(15) 3(3) Overall 147 39(26) 14(3) N=numberofmosquitoesfromwhichplantDNAwereextracted. https://doi.org/10.1371/journal.pntd.0006185.t002 PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 8/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 9/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Fig1.NJphylogenetictreesfromtwogenetargetsshowingplantspeciesidentifiedasnaturalhostplantsoftheAfro- tropicalmosquitospecies.A)PlantspeciesidentifiedusingtrnH-psbAgenetargetsashostplantsforAedesaegypti,Aedes mcintoshi,AedesochraceusandAnophelesgambiae.B)PlantspeciesidentifiedusingmatKgenetargetsashostplantsfor Anophelesgambiae.PlantspeciesnameswithprefixAafromAedesaegypti,AmfromAedesmcintoshi,AofromAedesochraceus andAgrepresentthosethatwereidentifiedfromAnophelesgambiae,thenumbersbeingsampleID.Plantspecieswithprefix P1-4representtheplantsamplessequencestoconfirmtheidentityofthemosquitohostplantswhilethosewithsuffixesare outgroupsfromGenBankwithextensionbeingaccessionnumbers. https://doi.org/10.1371/journal.pntd.0006185.g001 furthercorroboratedbyon-sitebotanicalidentificationtoconfirmtheirpresenceandinclu- sionofmatchedsequencesofextractedDNAintheanalyses.Theseandputativesequences fromthemosquitogutclusteredtogetherwithstrongbootstrapsupportinthephylogenetic analysis(Fig1Aand1B). Diversevolatileorganiccompoundscharacterizethenaturalhostplantsof Afro-tropicalmosquitospecies WeanalyzedheadspacevolatilesfromfiveoftheidentifiednaturalhostplantsvizP.dulce,O. ficus-indica,L.nepetifolia,S.alataandR.communis.TheVOCsofthefivedifferentplantspe- ciesweredifferentiatedbyuniquechemicalconstituentsofvaryingabundance(Fig2A).Prin- cipalComponentAnalysis(PCA)resolvedthesechemicalconstituentsintothreeclusters whichaccountedformorethan90%ofthetotalvariation(Fig2B).PC1explained38%ofthe variation;PC2explained32%whilePC3explained22%ofthevariation.PC1wasweighedpos- itivelybymonoterpenoidsandbenzenoids,predominantlyuniquetoP.dulce,whilePC2was positivelycontributedtobysesquiterpeneswhichwerecharacteristicallyabundantinL.nepoti- folia(S1Table).PC3waspositivelycharacterizedbymonoterpeneswhichwerethekeyconstit- uentsdetectedintheVOCsofR.communis(S1Table).Theheadspacevolatileconstituentsof S.alataandO.ficus-indicacontainedbenzenoids(S1Table).(E)-β-Ocimenewaspresentin theVOCsofallthefivehostplantspecies,whilehexanal,(E)-2-hexen-1-ol,β-myrcene,benzal- dehyde,α-pinene,nonanal,linalooloxide,decanal,methylsalicylate,(E)-β-caryophylleneand germacreneDwerevariablypresentinthevolatilesoftwoormoreplantspecies(S1Table). Multivariateanalysisofvariancerevealedsignificantquantitativedifferencesinthevolatile profilesofthefiveplants(F =142.907,P<0.001;Fig2C). (4,1095) Afro-tropicalmosquitospeciesdetectuniquevolatileorganiccompounds fromtheirnaturalhostplants TotestifAfro-tropicalmosquitospeciesdetectodorsoftheirnaturalhostplants,weemployed coupledgaschromatography/electroantennographicdetection(GC/EAD)andGC/massspec- trometrytoisolateandidentifyVOCsthataredetectedbyantennaeofAe.aegypti,Ae.mcin- toshiandAn.gambiae.Ourassaysrevealedthattheantennaeofthethreedifferentmosquito speciesdetectedatotalof21differentVOCs,someofwhichwereuniquetotheirpreferred hostplantswhileotherswerecommonacrosstwoormoreoftheplantspecies.Antennaeof Ae.aegyptidetected8componentsinP.dulceheadspacevolatiles(Fig3A),with12compo- nentsdetectedbyAe.mcintoshifromO.ficus-indica(Fig3B)whilethoseofAn.gambiaes.l. detected13and7componentsinthevolatilesofL.nepetifoliaandS.alata,respectively(Fig3C and3D).β-Myrceneandocimeneweredetectedbyantennaeofallthethreedifferentmos- quitospeciesfromtheirrespectivehostplantswhilehexanal,(E)-2-hexenol,andlinalooloxide isomers,andbenzaldehydewerevariablydetectedbythethreedifferentmosquitospecies.On theotherhand,antennaeofthethreedifferentmosquitospeciesalsodetecteduniquecom- poundsfromtheirrespectivehostplantswhichincludedbenzenoids(benzylalcoholand indole)byAe.aegypti,aldehydes(octanal,nonanalanddecanal)byAe.mcintoshi,and PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 10/21
Description: