ebook img

Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors PDF

21 Pages·2017·3.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors

RESEARCHARTICLE Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors VincentO.Nyasembe1,2,DavidP.Tchouassi1,ChristianW.W.Pirk2,CatherineL.Sole2, BaldwynTorto1,2* 1 InternationalCentreofInsectPhysiologyandEcology,Nairobi,Kenya,2 DepartmentofZoologyand Entomology,UniversityofPretoria,Hatfield,SouthAfrica *[email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Theglobalspreadofvector-bornediseasesremainsaworryingpublichealththreat,raising theneedfordevelopmentofnewcombatstrategiesforvectorcontrol.Knowledgeofvector ecologycanbeexploitedinthisregard,includingplantfeeding;acriticalresourcethatmos- quitoesofbothsexesrelyonforsurvivalandothermetabolicprocesses.However,theiden- OPENACCESS tityofplantspeciesmosquitoesfeedoninnatureremainslargelyunknown.Bytestingthe Citation:NyasembeVO,TchouassiDP,PirkCWW, hypothesisaboutselectivityinplantfeeding,weemployedaDNA-basedapproachtargeting SoleCL,TortoB(2018)Hostplantforensicsand trnH-psbAandmatKgenesandidentifiedhostplantsoffield-collectedAfro-tropicalmos- olfactory-baseddetectioninAfro-tropicalmosquito quitovectorsofdengue,RiftValleyfeverandmalariabeingamongthemostimportantmos- diseasevectors.PLoSNeglTropDis12(2): quito-bornediseasesinEastAfrica.TheseincludedthreeplantspeciesforAedesaegypti e0006185.https://doi.org/10.1371/journal. pntd.0006185 (dengue),twoforbothAedesmcintoshiandAedesochraceus(RiftValleyfever)andfivefor Anophelesgambiae(malaria).Sinceplantfeedingismediatedbyolfactorycues,wefurther Editor:BrianL.Weiss,YaleSchoolofPublic Health,UNITEDSTATES soughttoidentifyspecificodorsignaturesthatmaymodulatehostplantlocation.Usingcou- pledgaschromatography(GC)-electroantennographicdetection,GC/massspectrometry Received:October2,2017 andelectroantennogramanalyses,weidentifiedatotalof21antennally-activecomponents Accepted:December20,2017 variablydetectedbyAe.aegypti,Ae.mcintoshiandAn.gambiaefromtheirrespectivehost Published:February20,2018 plants.WhereasAe.aegyptipredominantlydetectedbenzenoids,Ae.mcintoshidetected Copyright:©2018Nyasembeetal.Thisisanopen mainlyaldehydeswhileAn.gambiaedetectedsesquiterpenesandalkenes.Interestingly, accessarticledistributedunderthetermsofthe themonoterpenesβ-myrceneand(E)-β-ocimenewereconsistentlydetectedbyallthemos- CreativeCommonsAttributionLicense,which quitospeciesandpresentinalltheidentifiedhostplants,suggestingthattheymayserveas permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal signaturecuesinplantlocation.Thisstudyhighlightstheutilityofmolecularapproachesin authorandsourcearecredited. identifyingspecificvector-plantassociations,whichcanbeexploitedinmaximizingcontrol DataAvailabilityStatement:Thehaplotypes strategiessuchassuchasattractivetoxicsugarbaitandodor-baittechnology. generatedfromthisstudyhavebeendepositedin GenBankunderaccessionnumbersMG573108, MG573126-MG573131(RVFvectorshostplant trnH-psbAgenesequences),MG573132- MG573139(denguevectorhostplanttrnH-psbA Authorsummary genesequences),MG573109-MG573125 Plantsplayanimportantroleinthefitnessofmosquitodiseasevectors,yettheidentityof (malariavectorhostplanttrnH-psbAgene plantspeciesthattheyfeedonintheirnaturalhabitatsremainslargelyunknown.Inthis sequences),andKY308115-KY398121(malaria vectorhostplantmatKgenesequences). PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 1/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Funding:ThisstudywasfundedthroughSwedish InternationalDevelopmentCooperationAgency study,weemployedDNAbarcodingtoidentifytheplantspeciesfeduponbyAedes (Sida)studentshiptoVON.Partialfundingwasalso aegypti,Aedesmcintoshi,AedesochraceusandAnophelesgambiaeintheirnaturalhabitats. receivedfromtheUK’sDepartmentfor Sinceplantfeedingismediatedbyolfactorycues,withpotentialapplicationasattractant- InternationalDevelopment(DFID),theSwiss basedtoolsforvectorsurveillance,weidentifiedspecificodorsignaturesthatmaymodu- AgencyforDevelopmentandCooperation(SDC), latehostplantlocation.Ourfindingsshowedpreferenceinodordetectionamongthe andtheKenyanGovernment.Theviewsexpressed hereindonotnecessarilyreflecttheofficialopinion vectorsfordifferentcompoundclasses;benzenoidsforAe.aegypti,aldehydesforAe.mcin- ofthedonors.Thefundershadnoroleinstudy toshiandsesquiterpenesandalkenesforAn.gambiae.Thisstudyhighlightstheutilityof design,datacollectionandanalysis,decisionto molecularapproachesinidentifyingspecificvector-plantassociations,aknowledgewhich publish,orpreparationofthemanuscript. canbeexploitedinmaximizingvectorcontrolstrategiessuchasattractivetoxicsugarbait. Competinginterests:Theauthorsdeclarethatno Furthermore,theelucidationofpotentialodorsignaturelaysfoundationfordevelopment competinginterestsexist. ofplantodor-baittechnologywhichiscriticalforsurveillanceofdifferentmosquitodis- easevectorsofvaryingphysiologicalstatesandthepathogenstheytransmit. Introduction Therehasbeenanincreaseintheincidenceofvector-bornediseases,keyamongthemarbo- viraldiseasessuchasdengue,chikungunya,RiftValleyfever(RVF)andzika.Whiledengue predominantlyaffectsAsiancountries,increasingoutbreaksinEastAfricancoastalregions havebecomeevidentinrecenttimes[1–3].RiftValleyfeverwhichmainlyoccursinAfrica, withfociinEastAfrica,israpidlyspreadingeastwardsintoAsiaandtheArabianPeninsula [4–6].Therecentupsurgeindengueincidencehasbeenattributedtorapidandunplanned urbanizationwhichcreatesconducivebreedinghabitatsforthekeymosquitovectorofthedis- ease,Aedesaegypti[3,7].Ontheotherhand,RVFisanepizooticdiseasemainlyassociated withdevastatingoutbreaksfollowingwidespreadelevatedrainfall,leadingtofloodingthatcre- atesfavorablebreedingsitesfortheprimarymosquitovectorsAedesmcintoshiandAedes ochraceus[5,8].InEastAfrica,inparticularKenya,thepublichealthburdenduetothesearbo- viraldiseasesisfurthercompoundedbytheendemicityoftheparasiticmalariadiseasetrans- mittedbycertainspeciesoftheAnophelesmosquito[9].Globally,vector-bornediseasespose riskofinfectiontomorethanhalfoftheworldpopulationwithmorethanamilliondeaths annually[10].Consequently,thereisrenewedefforttocomeupwithnewdiseasecontrolmea- suresandvectorcontrolformsakeypillarintheseefforts.Detailedunderstandingofthevec- torecologyisneededinsearchfornovelcontrolstrategies. Plantfeedingplaysacriticalroleinthebio-ecologyofmosquitodiseasevectors.Several studieshavedemonstratedthatbothsexesofdifferentmosquitospeciesforageonplantsto obtaincarbohydratesrequiredformetabolicprocessesvitalfortheirsurvival[11–13].Besides providingareadysourceofenergyforflight,fecundityandcellmetabolism[12,14,15],plant carbohydratesarealsoutilizedduringdiapausebymosquitoessuchasCulexpipienstosynthe- siselipidreserves[16–18].Theavailabilityofhostplantshasalsobeenshowntoextendsur- vivalofAnophelesgambiaeandAn.sergentii,likelyallowingforthecompletionofsporogonic cycleofmalariaparasitesandtherebyincreasingdiseasetransmissionpotentialofthesevectors [19–22].Ontheotherhand,abundanceoffloweringplantshasbeenlinkedtoreducedhuman bitingbehaviorbymosquitodiseasevectors,whichcanimpacteitherpositivelyornegatively ondiseasetransmissionpotentialdependingontheinfectionstatusofthemosquitoes[13,20, 23,24].Inaddition,studieshaveshownthatbothmosquitoesandsandfliesimbibeplantsec- ondarymetabolitesduringplantfeeding,someofwhichreduceparasiteloadinthevector [21,25,26].Thishasledtothehypothesisofpossibleselfmedicationbythesediseasevectors [15,26]openingupnewavenuesforexploitingphytochemicalsindevelopmentofnovel PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 2/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors chemotherapeuticsagainstthepathogenstheytransmit.Thus,beyondtheprovisionofnutri- ents,understandingplantfeedingindiseasevectorsofferspromisingopportunitiesfordevel- opmentofnewcontrolstrategiesagainstthemyriadofvectorbornediseases.Despitethis, littleisknownaboutplantfeedingbehaviorofmosquitovectorsofdengueandRVF. Previousstudieshavedemonstratedthatmosquitoesarehighlyselectiveintheirchoiceof plants[27–30].Theseinferencesweredrawnfromsemi-fieldandfieldexperimentswhich eitherinvolvedfeedingmosquitoesonrandomlyselectedperi-domesticplantstodetermine theiracceptability[27,28]ordeterminingtheattractionofmosquitoestorandomlyselected fruits/seedpodsandfloweringplants[29–31].Determinationofplantfeedingamongvarious mosquitospecieshasmainlybeenbasedonanalyticaltechniquessuchascoldanthroneteststo detectfructoseinthecropoffieldcollectedmosquitoes,chromatographicmethodstodetect plantsugarsandcellulosestainingtodetectplanttissuefeeding[12,16,19,23,24,28,32],with littletonodirectfieldobservationsofmosquitoesfeedingonplants[33,34].Whilecontribut- ingimmenselytowardsourunderstandingoftheroleofplantfeedinginthevectorialcapacity ofmosquitoes,thesemethodsare,however,limitedbytheirinadequacyindeterminingthe precisehostplantsinthenaturalmosquitohabitats.Asdiverseplantsoftenoccurineachhabi- tat,thecriticalquestionofwhichplants,ifany,areforageduponbymosquitodiseasevectors, remainsunanswered. RecentadvanceshaveseentheapplicationofDNAbarcodingtargetingspecificgenesto profileplantspeciesfeduponbydiseasevectors[35,36].However,thishasnotbeenapplied foranyAfro-tropicaldiseasevector,thusfar.ByemployingDNAbarcodingtargetingmultiple geneloci,wetestedthehypothesisthatAfro-tropicaldiseasevectorsfeedoncertainplantsin theirrespectiveecologies.Wefocusedonfourmosquitospecieswhichtransmitdengue(Aedes aegypti),RiftValleyfever(AedesmcintoshiandAedesochraceus)andmalaria(An.gambiae)[3, 37–39].Thesediseasesrankamongthemostimportantvector-bornediseasesinKenyawith somehavingbeenassociatedwithlargeoutbreaksaffectinghumansintherecentpast[2,5,6, 9].Giventhecentralroleofolfactorycuesinlocatingthiskeyplantresource[40–42],wefur- therusedcoupledgaschromatography/massspectrometryandelectrophysiologicalassaysto testthehypothesisthatthesediseasevectorsuseuniqueodorbouquettolocatetheirsuitable naturalhostplant.OurresultsshowthatthefourAfro-tropicalmosquitospeciesfeedoncer- tainplantspecieswithintheirecologicalrangeanddetectcommonandspecificchemicalcues tolocatetheirsuitablehostplants.Thisstudyprovidesusefulinsightthatcaninformvector controlstrategiestargetingplantfeedingbehaviorsuchasattractivetoxicsugarbaitandodor baittechnology. Matherialsandmethods Mosquitosamplecollection MosquitosampleswereobtainedfromthreesitesinKenya:Ae.aegyptifromKilifi(3.6333˚S and39.8500˚E)inthecoastalregionwithhighdengueendemicity[2,3],Ae.mcintoshiand Ae.ochraceusfromIjara(1.5988˚Sand40.5135˚E)innortheasternKenyawhichisaRiftVal- leyfeverendemicregion[5,6]andAn.gambiaes.l.fromAhero(0˚10’S,34˚55’E)whichisa malariaendemicareainwesternKenya[9].Thetrappingmethodsusedtocollectmosquito samplesaredescribedindetailinNyasembeetal.[42].Briefly,unlitCDCtrapsseparately baitedwithlinalooloxide(LO),BioGent(BG)lureandHONAD(amixtureofheptanal,octa- nal,nonanalanddecanal)formulatedfrommammalianodorbyTchouassietal.[37]were usedtotrapAe.mcintoshi,Ae.ochraceusandAn.gambiae;whileBGsentineltrapsseparately baitedwithLOandBGlure,wereusedtotrapAe.aegypti.Thetrapswerealsoeitherbaited withorwithoutcarbondioxideintheformofdryiceatallthethreesites.Alltrappingswere PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 3/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors carriedoutoutdoors.InAheroandKilifi,trapswereplacedinthreedistinctsettingsi)closeto thehomestead,ii)closetobreedingsitesaprioriidentifiedaspositiveforthespecificmosquito larvae,andiii)invegetationawayfromhumandwelling[3,39,43,44].InIjara,thetrapswere setattwodistinctsettingsi)nextto‘dambos’whichserveasbreedingsitesforAe.mcintoshi andAe.ochraceusandii)inbushygrasslandswherepastoralistsgrazetheirlivestock[6,37, 38].InKilifi,trappingswerecarriedoutbothduringthedayandnight(informedbythediur- nalnatureofAe.aegypti)whileinAheroandIjaratrappingswerecarriedoutduringthenight only(duetothenocturnalnatureofmosquitovectorsintheselocalities).Trapswereemptied after12handthecollectedmosquitoesimmobilizedbyplacingondryice,immediatelyfrozen inliquidnitrogenandtransportedtoicipelaboratoriesinNairobiforfurtherprocessing. Samplepreparation Topreparethesamplesforbiochemicalandmolecularanalyses,individualmosquitoeswere submergedinasolutionof0.5%hypochlorite,agitatedgentlyfor1minwithforceps,andthen rinsedindoubledistilledwater(ddH 0)for1min.Thiswastoremoveanyplantdebristhat 2 mayhavebeenontheoutsideoftheinsect,whichcouldotherwisecontaminatethesample. Themosquitoeswerethenplacedindividuallyina1.5mlsterileEppendorftubeandmacer- atedusinground-tippedglassrodssterilizedthroughtheflameofaBunsenburner.Onehun- dredmicrolitresofabsoluteethanolwasaddedandthesolutionhomogenized.Twosetsof controlswereusedasfollows:a)laboratory-rearedAn.gambiaes.s.fedonPartheniumhystero- phorus(Asteraceae)overnight,andb)An.gambiaeaspirateddirectlyfromP.hysterophorus fieldinAherousingabackpackaspirator(3”IN-LINEBLOWER,JohnW.HockCompany, Gainesville,FL,USA).Allmosquitoesfromthecontrolswerepreparedasdescribedabove. Determinationofevidenceofrecentplantfeedinginfieldcollected mosquitoes ThiswasdoneusingthecoldanthronetestasdescribedbyvanHandeletal.,[45]asaquick initialtesttodetectfructose.Aliquots(50μl)ofthepreparedmosquitohomogenatewereindi- viduallyplacedinthewellsofaflatbottomed96-wellmicrotiterplatefollowedby300μlofthe reactionsolutioncomprising0.15%anthrone(Sigma)(wt/vol)in71.7%sulphuricacid.This wasincubatedat25oCfor60minbeforebeingexaminedforcolorchanges.Inthepresenceof fructose,thereactionmixturechangeditscolorfromyellowtoblue.Theremainingaliquotof fructose-positivesampleswassubjectedtoplantDNAextractionasdescribedbelow. ExtractionofplantDNAfrommosquitoes PlantDNAwasextractedfromthehomogenizedsamplesoffructose-positivemosquitoesonly usingthemanufacturer’sprotocoldescribedbyDNeasyPlantMinikit-(QIAGEN,USA)with aminormodification.TheincubationperiodwithlysisbufferAP1andRNasewasextended by30minwhilethatwiththeelutionBufferAEwasextendedfor3hr.TheextractedDNAwas storedat-20˚CuntiluseinPCRamplification. PCRamplificationandsequencing PlantDNAextractedfromthefructose-positivemosquitospecimenswasamplifiedtargeting thetrnH-psbAintergenicspacerregionandmaturaseK(matK)gene(Table1)usingestab- lishedprimers.Theuseofmorethanonetargetwastomaximizeonthedetectionpossibility asindividualgenesselectivelyamplifycertainplantfamilies[46].EachPCRreaction(carried outinavolumeof20μl)consistedof7μltemplateDNA,10μl2xHotStarTaqMasterMix PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 4/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Table1. Forwardandreverseprimersequencesforthreegenetargetsusedtoidentifynaturalhostplantsofdengue,RiftValleyfeverandmalariamosquitodisease vectors. Primer Direction Sequence(5’-3’) Reference trnH-psbA trnH CGCGCATGGTGGATTCACAATCC Shawetal.,2005 psbA GTTATGCATGAACGTAATGCT Shawetal.,2005 matK 2.1forward CCTATCCATCTGGAAATCTTAG Kressetal.,2005 5reverse GTTCTAGCACAAGAAAGTCG Kressetal.,2005 https://doi.org/10.1371/journal.pntd.0006185.t001 (HotStarTaqPlusMasterMixKit,Qiagen),0.5μMofeachprimer,and2μlofRNasefree water.APCRnegativecontrol(RNase-freewater)wasroutinelyused.Sampleswereamplified usingVeriti96-wellThermalCycler(Singapore).FortrnH-psbA,thecyclingparameterswere 94oCfor1min,followedby45cyclesof94oCfor1min,55oCfor40secand72oCfor1min, andfinalextensionat72oCfor10min.SimilarcyclingconditionswereusedformatKamplifi- cationwiththeannealingtemperaturesetat48oC. SuccessfulamplificationswereconfirmedbyvisualizingPCRampliconsin1%agarosegel electrophoresis.TheywerepurifiedusingtheExo/SAP-ITKitforPCRproduct(Affymetrix Inc.,USA)asperthemanufacturer’sinstructionsandoutsourcedforbidirectionalsequencing toInqabaBiotechnologicalIndustries(Pty)Ltd(Pretoria,SouthAfrica). TheobtainedplantDNAsequencesforeachgenewerecleaned,editedandcomparedto referencesequencesintheGenBankdatabase[47].InGenBank,the‘megablast’searchoption ofnucleotideBasicLocalAlignmentSearchTool(BLASTn)[48]algorithmwasusedwiththe defaultsearchparameters.Thehitswithsequenceidentityabove96%wereretrievedand addedtotheoriginalsamplequerysequences.ThesequenceswerealignedusingClustalWin MEGA6[49].Alignedmatriceswereusedtoconstructp-distancephylogenetictreeusingthe NeighborJoiningmethodforindividualgeneswith1000bootstraps.Nodalsupportwasevalu- atedbybootstrappingwithvaluesof95%ormoreconsideredsignificant. Confirmationofidentifiedmosquitohostplants Furtherstepstoconfirmtheplantidentityincludedon-siteidentificationwithinthespecific ecologiesfromwherethemosquitoesweresampledbyaplanttaxonomist(SimonMathenge, retiredfromtheHerbarium,DepartmentofBotany,UniversityofNairobi)andcomparison toestablishedbotanicaldatabasebytheNationalMuseumofKenya(http://www.museums. or.ke). Leavesandflowers(whereapplicable)ofidentifiedplantsweresampledfromtherespective fieldsitesforDNAextractionandsequencing.Thesampleswerecleanedusingdoubledistilled waterbeforeobtainingapproximately100mgwetweightofthesamplewhichwereplacedin sterile1.5mlEppendorftubes.TheplantsampleswerehomogenizedandDNAextracted usingtheDNeasyPlantMiniKitasdescribedabove.TheobtainedplantDNAwassimilarly amplifiedfortrnH-psbAandmatKgenes,processedandsentforsequencingasdescribed above.Thesequenceswerethenalignedwiththosefromthemosquitoesandphylogenetic treesobtained.Nodalsupportwasevaluatedbybootstrappingwithvaluesof95%ormorecon- sideredsignificant. ThehaplotypesgeneratedfromthisstudyhavebeendepositedinGenBankunderaccession numbersMG573108,MG573126–MG573131(RVFvectorshostplanttrnH-psbAgene sequences),MG573132–MG573139(denguevectorhostplanttrnH-psbAgenesequences), MG573109–MG573125(malariavectorhostplanttrnH-psbAgenesequences),and KY308115—KY398121(malariavectorhostplantmatKgenesequences). PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 5/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Collectionofheadspacevolatilesfromtheidentifiednaturalmosquitohost plants HeadspaceVOCswerecollectedfromfiveoftheconfirmednaturalhostplantsforAe.aegypti, Ae.mcintoshi,Ae.ochraceusandAn.gambiae.ThefiveplantsincludedPithecellobiumdulce (Fabaceae),Opuntiaficus-indica(Cactaceae),Leonotisnepetifolia(Lamiaceae),Sennaalata (Fabaceae)andRicinuscommunis(Euphorbiaceae).Thiswasdonebycollectingtheheadspace volatilesfromtheseplantsinsituattheirnaturalhabitatsusingaportablefieldpump(Analyti- calResearchSystems,Gainesville,Florida,USA).Theaerialpartsofanintactplantweregently enclosedinanair-tightovenbag(Reynolds,Richmond,VA,USA)andcharcoalfilteredair passedovertheplantataflowrateof350ml/minintoaSuper-Qadsorbenttrap(30mg,Ana- lyticalResearchSystems,Gainesville,Florida,USA).Theaerialplantpartsenclosedinthe ovenbagsincludedleaves,flowersandpodsofP.dulceandS.alata,leavesandflowersofL. nepetifolia,leavesandleafstalksofR.communis,andleaves,flowersandfruitsofO.ficus- indica.Forallplantspecies,volatileswerecollectedfor12hrduringthedayand12hratnight andreplicatedthreetimesusingdifferentplantsineachreplicate.TheSuper-Qtrapswere elutedwith200μlGC/GC-MS-gradedichloromethane(DCM)(BurdickandJackson,Muske- gon,Michigan,USA)andtheeluentsstoredat-80˚Cuntilanalysis. Analysisofvolatiles Forquantificationandidentificationoftheconstituentcompoundsoftheplantvolatiles,an aliquot(1μl)ofeachsamplewasinjectedintoagaschromatograph(Agilenttechnologies- 7890)coupledtoinertXLEI/CImassspectrophotometer(5975C,EI,70eV,Agilent,PaloAlto, Califonia,USA)(GC/MS)inasplitlessinjectionmode.TheGCwasequippedwithanHP-5 column(30mx0.25mmIDx0.25μmfilmthickness,Agilent,PaloAlto,California,USA), withheliumasthecarriergasataflowrateof1.2ml/min.Theoventemperaturewasheldat 35˚Cfor5min,thenprogrammedtoincreaseat10˚C/minto280˚Candmaintainedatthis temperaturefor10min.Thevolatileorganiccompoundswereidentifiedbycomparingtheir massspectrawithlibrarydata(Adams2.L,Chemecol.LandNIST05a.L)andwiththoseof authenticstandardswherepossible(seesourcesandpurityunderchemicalsectionbelow). TheabsoluteareasofeachconstituentascalculatedbytheNIST05a.Lsoftwarewasusedto estimatetheiramountsusinganexternalcalibrationequationgeneratedfromknownamounts ofauthenticcompounds. Electrophysiologicalassays ToisolatethespecificVOCsthataredetectedbythedifferentmosquitodiseasevectorsand theirpreferrednaturalhostplants,wildcaughtadultAe.aegypti,Ae.mcintoshiandAn.gam- biaes.l.,werecollectedfromtheirrespectivehabitatsusingmethodsdescribedaboveand transportedalivetotheicipelaboratoriesinNairobiunderhighcontainmentlevelanddirectly usedinelectrophysiologicalassays.Thetrappedmosquitoeswereaspiratedinto30x30x30 cmcagesandprovidedwith10%glucosesolutionsoakedincottonwoolduringtransporta- tion.Thetopsofthecageswerecoveredwithamoisttoweltomaintainhighhumidity.Once aticipe,themosquitoeswerekeptinahighcontainmentanimalrearingunitatatemperature of27–31˚Candaveragehumidityof80%.Onlyfemalemosquitoeswereusedforelectrophysi- ologicalassaysandtheywerestarvedfor2hrbeforeexperimentation.Anophelesgambiaes.s. antennalresponsestoR.communisheadspacevolatileshadbeentestedinourpreviousstudy [40],hencewasnotrepeatedinthisstudy.Inaddition,Ae.ochraceuswasnotusedinthese studiesasnonewerecollectedduringthisfieldsampling. PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 6/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Coupledgaschromatography/electro-antennographicdetection(GC/EAD)analyseswere performedasdescribedbyNyasembeetal.[40].Briefly,5μlofvolatilesampleswereanalyzed usingaHewlett-Packard(HP)5890SeriesIIgaschromatographequippedwithanHP-5col- umn(30mx0.25mmIDx.0.25μmfilmthickness,Agilent,PaloAlto,California,USA)with nitrogenasthecarriergasat1ml/min.Volatileswereanalyzedinthesplitlessmodeatan injectortemperatureof280˚Candasplitvalvedelayof5min.Theoventemperaturewasheld at35˚Cfor3min,thenprogrammedat10˚C/minto280˚Candmaintainedatthistempera- turefor10min.Thecolumneffluentwassplit1:1afteradditionofmake-upnitrogengasfor simultaneousdetectionbyflameionizationdetector(FID)andEAD.ForEADdetection,sil- ver-coatedwiresindrawn-outglasscapillaries(1.5mmI.D.)filledwithRingersalinesolution servedasreferenceandrecordingelectrodes.Livemountinginwhichthemosquitowas restrainedwithanadhesivetapewiththereferenceelectrodeconnectedtothebaseofthehead andtherecordingelectrodeconnectedtothetipoftheantennae.Theanaloguesignalwas detectedthroughaprobe(INR-II,Syntech,Hilversum,theNetherlands),capturedandpro- cessedwithanintelligentdataacquisitioncontroller(IDAC-4,Syntech,theNetherlands),and lateranalyzedwithEAG2000,software(Syntech).FIDsignalsfromtherespectivehostplant volatilesthatelicitedrepeatedantennalresponsesinatleastthreereplicatesusingfreshanten- naeweredesignatedasEAD-activecompoundsandidentifiedbymatchingthemwithcorre- spondingGC/MSdataandthoseofauthenticstandards. EAGpuffswereusedtoconfirmthedetectionofsevenEAD-activecomponentswhichelic- itedantennalresponsesusingsyntheticstandards.Thesevencompoundswereselectedbased oneitherbeingdetectedbymorethanonemosquitospeciesfromthevolatilesfromtheir respectivehostplants,orbythesamemosquitospeciesfromvolatilesofdifferenthostplants. Thesyntheticstandardswerepreparedataconcentrationof1ng/μl,2ng/μland4ng/μlin dichloromethane(SigmaAldrich,99.9%)andseparatelydeliveredaspuffson1cmX1cmfil- terpaperplacedinPasteurpipettes.Thepuffsweredeliveredat1mininterval,allowingthe antennaetoequilibratepost-exposure.Tocorrectforvariabilityinresponse,responsesto blanks(filterpaperlacedwithsolventonly)weresubtractedfromeachsampleandantennal responsevalueswerenormalizedtoastandardstimulussetat100%(2ng/μl1-octen-3-ol,cho- senbasedonitsknownattractivenesstohematophagousinsects[41].EAGpuffswererepli- catedninetimesforeachdoseofeverystimulus. Chemicalsused ThesyntheticstandardsofthefollowingEAD-activecompoundswereused:hexanal(Sigma Aldrich,99%),(E)-2-hexenol(Aldrich,96%),benzaldehyde(SigmaAldrich,99.5),β-myrcene (SigmaAldrich,99%),ocimene(InternationalFlavorsandFragrance,NewYork,USA,(Z)-β- ocimene=27%,(E)-β-ocimene=67%andallo-ocimene=6%),linalooloxide(SigmaAldrich, mixtureofstereoisomerswithfuranoidform,99.5%and0.5%pyranoidform),indole(Sigma Aldrich,99%)and1-octen-3-ol(FlukaChemica,racemicmixtureofRandS98%). Statisticalanalysis Todetermineiftherewasanysignificantdifferenceinthevolatileprofilesofthefiveplantspe- cies,tenmostabundantvolatileconstituentsineachplantspecieswereselected.Attempts werethenmadetoretrieveeachofthesecompoundsfromtheVOCsanalyzedfortherestof theplantspecies,yieldingatotalof26differentcompounds.Theabsoluteareasofthesecom- poundswerethenmeasuredandconvertedintoapercentageofthetotal.Thesepercentages werethensubjectedtoPrincipalComponentAnalysis(PCA)todeterminewhichones,ifany, areimportantinexplainingthevariationintheodorprofilesofthefivedifferentplantspecies. PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 7/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors QuantitativedifferencesinVOCsofthefivedifferentplantspeciesweredetectedusingUni- variateanalysisofvarianceandTukeyposthoctest.Differencesbetweentheantennaldose responsesandbetweenthethreedifferentmosquitospecies,weredetectedusingANOVAand Tukeyposthoctest.Allstatisticalanalyseswerecarriedoutat95%confidenceintervalusingR 2.15.1software[50]. Results Evidenceofplantfeedingamongwild-caughtAfro-tropicalmosquito species Byapplyingthecoldanthronetesttodetectfructoseasevidenceofrecentplantfeeding,we establishedthedegreeofplantfeedingamongthefemalesoffourAfro-tropicalmosquitospe- ciesAedesaegypti(denguevector),Aedesmcintoshi,Ae.ochraceus(RVFvectors)andAnopheles gambiaes.l.(malariavector)trappedfromdifferenthabitatsinKenyaduringthelongrainy season(April-June,2014).SincenomalemosquitoeswerecollectedforRVFandmalariavec- tors,thisanalysiswaslimitedtoonlyfemalemosquitoesforallthefourspecies.Wefoundevi- denceofrecentplantfeedinginAe.aegypti(17%,n=245),Ae.mcintoshi(56%,n=68),Ae. ochraceus(65%,n=50)andAn.gambiae(24%,n=146). Afro-tropicalmosquitospeciesfeedondiverseplantspeciesintheir naturalhabitats Todeterminetheidentitiesoftheplantspeciesfeduponbythesemosquitospeciesintheir naturalhabitats,wesubjectedaliquotsofsamplesthattestedpositivefortheanthronetestto DNAextractionfollowedbyamplificationtargetingtwoplantgenes;trnH-psbAandmatK; andthensequencing.WeobservedthatthesuccessratesinamplificationofplantDNAfrom themosquitocropdifferedsignificantlybetweenthetwogenetargets;trnH-psbA(24.5%)and matK(8.8%)(P<0.05;Table2).Similarly,sequencingsuccessratesdifferedsignificantly betweentrnH-psbA(16.4%)andmatK(1.9%)(P<0.05;Table2).Thesequencedfragment sizesrangedfrom276–617bpfortrnH-psbAand133–846bpformatKgenes. BlastsearchesofthesequencesforeachtargetinGenBankandfurtherphylogenyshowed strongsupport(bootstrapvalues95%andabove)andidentifiedhostplantsasPithecellobium dulce(Fabaceae),Sennauniflora(Fabaceae)andHibiscusheterophyllus(Malvaceae)forAe. aegypti(Fig1A);Opuntiaficus-indica(Cactaceae)forAe.mcintoshi;andO.ficus-indicaandan unidentifiedplantspeciesforAe.ochraceus(Fig1A);andSennaalata(Fabaceae),Sennatora (Fabaceae),Ricinuscommunis(Euphorbiaceae),Partheniumhysterophorus(Asteraceae)and Leonotisnepetifolia(Lamiaceae)forAn.gambiae(Fig1Aand1B).Theplantidentitieswere Table2. VariablesuccessratesoftwogenetargetsinamplifyingandsequencingplantDNAinthecropofdiffer- entmosquitospecies. Mosquitospecies N Amplified(Sequenced) trnH-psbA(total(success)) matK(total(success)) Aedesaegypti 42 8(6) 0(0) Aedesmcintoshi 38 2(2) 2(0) Aedesochraceus 32 11(3) 9(0) Anophelesgambiaes.l. 35 18(15) 3(3) Overall 147 39(26) 14(3) N=numberofmosquitoesfromwhichplantDNAwereextracted. https://doi.org/10.1371/journal.pntd.0006185.t002 PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 8/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 9/21 Hostplantforensicsandolfactory-baseddetectioninAfrotropicalmosquitodiseasevectors Fig1.NJphylogenetictreesfromtwogenetargetsshowingplantspeciesidentifiedasnaturalhostplantsoftheAfro- tropicalmosquitospecies.A)PlantspeciesidentifiedusingtrnH-psbAgenetargetsashostplantsforAedesaegypti,Aedes mcintoshi,AedesochraceusandAnophelesgambiae.B)PlantspeciesidentifiedusingmatKgenetargetsashostplantsfor Anophelesgambiae.PlantspeciesnameswithprefixAafromAedesaegypti,AmfromAedesmcintoshi,AofromAedesochraceus andAgrepresentthosethatwereidentifiedfromAnophelesgambiae,thenumbersbeingsampleID.Plantspecieswithprefix P1-4representtheplantsamplessequencestoconfirmtheidentityofthemosquitohostplantswhilethosewithsuffixesare outgroupsfromGenBankwithextensionbeingaccessionnumbers. https://doi.org/10.1371/journal.pntd.0006185.g001 furthercorroboratedbyon-sitebotanicalidentificationtoconfirmtheirpresenceandinclu- sionofmatchedsequencesofextractedDNAintheanalyses.Theseandputativesequences fromthemosquitogutclusteredtogetherwithstrongbootstrapsupportinthephylogenetic analysis(Fig1Aand1B). Diversevolatileorganiccompoundscharacterizethenaturalhostplantsof Afro-tropicalmosquitospecies WeanalyzedheadspacevolatilesfromfiveoftheidentifiednaturalhostplantsvizP.dulce,O. ficus-indica,L.nepetifolia,S.alataandR.communis.TheVOCsofthefivedifferentplantspe- ciesweredifferentiatedbyuniquechemicalconstituentsofvaryingabundance(Fig2A).Prin- cipalComponentAnalysis(PCA)resolvedthesechemicalconstituentsintothreeclusters whichaccountedformorethan90%ofthetotalvariation(Fig2B).PC1explained38%ofthe variation;PC2explained32%whilePC3explained22%ofthevariation.PC1wasweighedpos- itivelybymonoterpenoidsandbenzenoids,predominantlyuniquetoP.dulce,whilePC2was positivelycontributedtobysesquiterpeneswhichwerecharacteristicallyabundantinL.nepoti- folia(S1Table).PC3waspositivelycharacterizedbymonoterpeneswhichwerethekeyconstit- uentsdetectedintheVOCsofR.communis(S1Table).Theheadspacevolatileconstituentsof S.alataandO.ficus-indicacontainedbenzenoids(S1Table).(E)-β-Ocimenewaspresentin theVOCsofallthefivehostplantspecies,whilehexanal,(E)-2-hexen-1-ol,β-myrcene,benzal- dehyde,α-pinene,nonanal,linalooloxide,decanal,methylsalicylate,(E)-β-caryophylleneand germacreneDwerevariablypresentinthevolatilesoftwoormoreplantspecies(S1Table). Multivariateanalysisofvariancerevealedsignificantquantitativedifferencesinthevolatile profilesofthefiveplants(F =142.907,P<0.001;Fig2C). (4,1095) Afro-tropicalmosquitospeciesdetectuniquevolatileorganiccompounds fromtheirnaturalhostplants TotestifAfro-tropicalmosquitospeciesdetectodorsoftheirnaturalhostplants,weemployed coupledgaschromatography/electroantennographicdetection(GC/EAD)andGC/massspec- trometrytoisolateandidentifyVOCsthataredetectedbyantennaeofAe.aegypti,Ae.mcin- toshiandAn.gambiae.Ourassaysrevealedthattheantennaeofthethreedifferentmosquito speciesdetectedatotalof21differentVOCs,someofwhichwereuniquetotheirpreferred hostplantswhileotherswerecommonacrosstwoormoreoftheplantspecies.Antennaeof Ae.aegyptidetected8componentsinP.dulceheadspacevolatiles(Fig3A),with12compo- nentsdetectedbyAe.mcintoshifromO.ficus-indica(Fig3B)whilethoseofAn.gambiaes.l. detected13and7componentsinthevolatilesofL.nepetifoliaandS.alata,respectively(Fig3C and3D).β-Myrceneandocimeneweredetectedbyantennaeofallthethreedifferentmos- quitospeciesfromtheirrespectivehostplantswhilehexanal,(E)-2-hexenol,andlinalooloxide isomers,andbenzaldehydewerevariablydetectedbythethreedifferentmosquitospecies.On theotherhand,antennaeofthethreedifferentmosquitospeciesalsodetecteduniquecom- poundsfromtheirrespectivehostplantswhichincludedbenzenoids(benzylalcoholand indole)byAe.aegypti,aldehydes(octanal,nonanalanddecanal)byAe.mcintoshi,and PLOSNeglectedTropicalDiseases|https://doi.org/10.1371/journal.pntd.0006185 February20,2018 10/21

Description:
Sole CL, Torto B (2018) Host plant forensics and olfactory-based detection cycle of malaria parasites and thereby increasing disease transmission potential of these vectors. [19–22]. On the other insight into chemical communication that underpins mosquito-plant interactions and present a unique
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.