ebook img

Horizontal flows concurrent with an X2.2 flare in active region NOAA 11158 PDF

0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Horizontal flows concurrent with an X2.2 flare in active region NOAA 11158

Astron.Nachr./AN999,No.1,1–6(2012)/DOIpleasesetDOI! Horizontal flows concurrent with an X2.2 flare in active region NOAA 11158 L.Beauregard1,2,M.Verma2,andC.Denker2,⋆ 1 McGillUniversity,DepartmentofPhysics,845SherbrookeSt.W.,Montreal,Quebec,CanadaH3A2T5 2 Leibniz-Institutfu¨rAstrophysikPotsdam,AnderSternwarte16,14482Potsdam,Germany Received2011Sep5,accepted2012Jan9 Publishedonline2012xxx Keywords Sun:activity–Sun:flares–Sun:magneticfields–Sun:photosphere–sunspots–methods:dataanalysis 2 1 Horizontalpropermotionsweremeasuredwithlocalcorrelationtracking(LCT)techniquesinactiveregionNOAA11158 0 on2011February15atatimewhenamajor(X2.2)solarflareoccurred.Themeasurementsarebasedoncontinuumimages 2 andmagnetograms oftheHelioseismicandMagneticImager onboardtheSolarDynamicsObservatory. Theobserved shearflowsalongthepolarityinversionlinewereratherweak(afew100ms−1).Thecounter-streamingregionshifted n a towardthenorthaftertheflare.Asmallcircularareawithflowspeedsofupto1.2kms−1 appearedaftertheflareneara J regionofrapidpenumbraldecay.TheLCTsignalinthisregionwasprovidedbysmall-scalephotosphericbrigthenings, whichwereassociated withfasttravelingmovingmagnetic features.Umbral strengthening andrapidpenumbral decay 3 wasobservedaftertheflare.Bothphenomenawerecloselytiedtokernelsofwhite-lightflareemission.Thewhite-light 1 flareonlylastedforabout15minandpeaked4minearlierthantheX-rayflux.Incomparisontoothermajorflares,the X2.2flareinactiveregionNOAA11158onlyproduceddiminutivephotosphericsignatures. ] R (cid:13)c2012WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim S . h p 1 Introduction ciated with flares as well. First spectroscopic observations - withHMIofaM2.0white-lightflareon2010June12were o r Majorsolarflareshaveavarietyofphotosphericsignatures, reported by Mart´ınez Oliveros et al. (2011), who noticed st e.g.,rapidandpermanentchangesofthemagneticfieldre- thattheentireFeilineprofilewasshiftedtowardstheblue. a sulting in an increase of the transverse field and magnetic However,interpretingsparselysampledspectraldataduring [ shear (Wang et al. 2002), penumbral decay and strength- flares (transients in magnetograms or Doppler maps) will 1 ening of umbral areas because initially inclined penum- not lead to conclusive results without detailed knowledge v bralfield linesbecomemore vertical(Liu et al. 2005),co- ofinstrumentcharacteristics,dataprocessingpipelines,and 0 herent lateral displacement of penumbral filaments (Go- spectral line formation (cf., Maurya, Reddy & Ambastha 0 sain,Venkatakrishnan,&Tiwari2009),elongatedmagnetic 2011).Blue-shifted velocities of up to 1 km s−1 were also 8 2 structures along the polarity inversion line (PIL) (Wang identifiedasacommonprecursorofflaresintheearlywork . etal.2008;Zirin&Wang1993),andchangesofthevector of Harvey & Harvey (1976). Hints that horizontal shear 1 0 magnetic field around the PIL on spatial scales below one motions are important for the build-up of magnetic stress 2 secondofarc(Kuboetal.2007).Thestatisticalsignificance in flare-productive active regions were likewise presented 1 of such photosphericchanges associated with major flares by Harvey & Harvey (1976). The role of shear flows as v: wasdemonstratedintheworkofSudol&Harvey(2005). driversformagneticreconnectionwasrecentlydiscussedby i Battaglia & Kontar (2011) presented a comparison of Yurchyshynetal.(2006)andLiuetal.(2010)inthecontext X theheightdependenceofflareemission.HardX-raysorig- ofthetether-cuttingmodel(Mooreetal.2001). r a inate from 0.7 to 1.8 Mm above the photosphere,whereas New telescopes with advanced post-focus instruments EUVradiationisproducedinthetoplayersofthechromo- andnoveldataanalysistechniquesmadeitpossibletostudy sphereatabout3.0Mmabovethephotosphere.Emissionin such shear motions in more detail. Using local correla- theopticalrangecoverstheintermediaterangefrom1.5to tion tracking (LCT, November & Simon 1988), Yang et 3.0MmandwasmeasuredwiththeHelioseismicandMag- al. (2004) measured shear flows with horizontal speeds of neticImager(HMI)onboardtheSolarDynamicsObserva- up to 1.6 km s−1 on both sides of the PIL. Such head-on tory (SDO) in thecontinuumnearthe Fei λ617.3nmline. flows were separated by less than one second of arc. The In contrast, observations by Xu et al. (2004) in the near- well-definedregionsofelevatedflowspeedshowedagood infrared at 1.6 µm, i.e., at the opacity minimum, indicate correlationwith kernelsof white-lightemission of an X10 that deep photospheric layers can exhibit emission asso- flare – both in the visible and near-infrared continua. The ⋆ Correspondingauthor:e-mail:[email protected] heightdependenceof horizontal(shear)flows in active re- gion NOAA 10486 was described by Deng et al. (2006). (cid:13)c2012WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 2 Beauregardetal.:HorizontalflowsconcurrentwithanX2.2flare Fig.1 GOES15X-rayflux(5-minutedata)obtainedduringthe time period from 2011 February 14–16 in the 0.1–0.8 nm (top) and0.05–0.4nm(bottom)energychannels.Theshadedregionin- dicates a time interval of three hours centered on the peak time (01:56UT)oftheX2.2flareinactiveregionNOAA11158. Shear flows are notlimited to flare-prolificregionsbutare alsoencounteredinquietersettings(Denkeretal.2007).Ul- timately,themagneticfieldtopologyandtheinteractionof magneticfieldsandplasmamotionshastobeconsideredto decide,ifshearflowscontributetothebuild-upoffreemag- Fig.2 Limb-darkening corrected continuum image (top) and neticenergyorleadtomorepotentialmagneticfieldconfig- magnetogram(bottom)ofactiveregionNOAA11158,whichwere urations.Finally,basedondataoftheHinodemission,Tan observedat01:33UTjustbeforetheonsetoftheflare.Theblack et al. (2009) provided crucial links between photospheric andwhitecontourlinesenclosestrong(above/below±10G)pos- signaturesofmajorflaresandhorizontalshearflows. itive and negative flux concentrations, respectively. Strong PILs InVerma&Denker(2011),wedevelopedaLCTalgo- existinregionswherethecontourlinesoverlap.Thecolor-coded rithm for bulk-processing of Hinode G-band images. This contourlinesindicatekernelsofwhite-lightflareemissionatdif- work also includes references to alternative methods for ferenttimes.Theaxesarelabeledinheliographiccoordinates. measuringhorizontalpropermotions,e.g.,differentialaffine velocityestimator(DAVE,Schuck2006),non-linearaffine 56C-classflaresandfiveM-classflaresincludingtwoM6.6 velocityestimator(NAVE,Chae&Sakurai2008),andball- eventson February13 and 18. The impulsivephase of the tracking(Potts,Barrett,&Diver2004).WerefertoWelsch X2.2 flare started at 01:33 UT on 2011 February 15. This etal.(2007)foranin-depthcomparisonofthevarioustech- timewaschosenasareferenceforthesubsequentdataanal- niques to track horizontalproper motions. In this brief re- ysis. We divided the dataset into three parts: the 1-hour searchnote,weadaptedthecodeofVerma&Denker(2011) pre- and post-flare periods (00:33–01:33 UT and 02:18– to SDO/HMI continuum images. The X2.2 flare of 2011 03:18UT)andtheintervening45-minuteperiodcoveredby February15waschosenasapromisingtargettosearchfor the flare. We assume that data outside of the flare period alterations of the horizontal flow field after a major solar is unaffected by flare emissions. The X-ray flux measured flare.Thethree-dimensionalmagneticfieldtopologyofac- by the Geostationary Operational Environmental Satellite tive region NOAA 11158 (observations and MHD model- (GOES)is shownin Fig.1 fora three-dayperiodcentered ing), coronal emission structures, and the eruptive events onthemajorflare.Thegraybarindicatesthethree-hourob- associated with the X2.2 flare (coronalmass ejection, EIT servingperiod. wave,andcoronalfront)aremeticulouslydescribedandex- ThisstudyisbasedonHMIcontinuumimagesandline- plainedinSchrijveretal. (2011),so thatwe focusonlyon of-sight magnetograms. The instrument characteristics are thephotosphericsignaturesoftheflare. presentedin a series of articles:Wachter et al. (2011)give a detailed account of the image quality as measured dur- 2 Observations ingthegroundcalibrationoftheinstrument.Thecharacter- istics of the optical filter system are laid out in Couvidat ActiveregionNOAA11158beganitsdiskpassageon2011 et al. (2011), who also discuss them in the context of the February 11 when it was still classified as a β-region. Be- Feiλ617.3nmline,whichwaschosenasthemostsuitable sides the X2.2 flare, active region NOAA 11158 produced spectrallineforHMIobservations.Finally,polarizationcal- (cid:13)c2012WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2012) 3 Fig.3 Horizontal proper motions in active region NOAA 11158 during the pre-flare phase (00:33–01:33 UT). Arrows indicating magnitudeanddirectionoftheflowfieldaresuperposedonanaveragepre-flarecontinuumimage(left).Thearrowinthelowerright cornercorrespondstoaflowspeedof1kms−1.Theflowspeed(right)isgivenaccordingtothescaleontherighttovisualizethefine structureofthepropermotions.Thecontourlinesrepresentthegranulation/penumbraandpenumbra/umbraboundaries.Theflowmaps havebeencorrectedforgeometricforeshortening.ThecoordinatesaregivenwithrespecttothecenteroftheROI. ibration is described in Schou et al. (2010).Since detailed (2011).Sincewearefocussingonexcessemission,sideef- informationisavailable,weonlypresentabriefaccountof fects of the helioseismic interpolation scheme such as an theobservingcharacteristicsrelevanttoourstudy. apparent“black-light”flareprecursorcanbeneglected. The LCT algorithm is an adaptation of the code de- HMI utilizes a 14-cm telescope (F/37.4). The diffrac- tion limit at Fei λ617.3 nm is α = λ/D = 0.9′′ pixel−1. scribedinVerma&Denker(2011),whoprovideadetailed account of how to choose LCT input parameters and how Thus,thedataisslightlyundersampledwithanimagescale of 0.5′′ pixel−1. The Fei line is sampled at six line posi- that choice will affect the outcome of the LCT procedure. HMI continuum images are corrected for limb darkening tionscoveringarangeofλ ±17.5pm.Full-diskdatahavea 0 and geometricalforeshortening.Theyare resampledon an size of 4096×4096 pixels. Data are captured with a 45 s equidistantgridwithaspacingof320km.Thelocalcross- cadence resulting in 240 images and magnetograms dur- correlationsarecomputedoverimagetilesof16×16pixels ingtheperiodfrom00:30to03:30UT.Aregion-of-interest (ROI)withasizeof260′′×180′′(seeFig.2)wasextracted (5Mm×5Mm).AGaussianwithaFWHMof6.25pixels (2Mm)isusedbothasaweightingfunctionandahigh-pass fromthefull-diskdataforfurtherdataanalysis.Thecontin- filter. Thecadenceforcorrelatingimagepairsis∆t = 90s uumimageswerecorrectedforthecenter-to-limbvariation andindividualflowmapsareaverageover∆T = 1h.Hori- (seeDenkeretal.1999)tofacilitatefeaturerecognitionus- zontalflowmapsbasedon80continuumimageswerecom- ing thresholding techniques. The black and white contour putedforthepre-andpost-flareepisodes.Theflowfieldjust lines in Fig. 2 were computed using a 10 G threshold for beforetheonsetoftheflareisdepictedinFig.3. the smoothed magnetogram (Gaussian with a FWHM of 2Mm).Locations,wheretheblackandwhitecontourlines overlap, indicate strong PILs, most prominently, the east- 3 Results westoriented,flaringPILinthecenteroftheROI. ThephotosphericcontinuumemissionoftheX2.2flare ActiveregionNOAA 11158containsthreemajorsunspots isdifficulttomeasure.Thepeakcontrastofthewhite-light (seeFig.2).Thewesternspothaspositivepolarityandthe flarekernelsislessthanafewpercentofthelocalintensity eastern one negativepolarity.The flaring PIL is located in contrast.Averagevaluesareevenlower.Forthisreason,the the central spot separating negative (north) from positive quiet Sun intensity contrast of about 3.5% is sufficient to (south) polarity. The PIL runs along an alignment of um- obfuscatethefaintflareemission.UsingGaussiansmooth- bralcores,i.e.,theregionisalmostvoidofpenumbralfila- ing (FWHM of 2.0 Mm), division by a 30-minuterunning ments.Thenomenclatureofumbralfine structuresfollows average, and a local intensity contrast of 5% as a thresh- the definition in Sobotka, Bonet & Vazquez (1993). Basi- old, we could determine contours of the flare kernels for cally,theactiveregioniscomposedoftwobipolarregions, about15minstartingat01:49UT.Earlyflareemissionsare which bothappearedon 2011February11 andco-evolved color-codedfromdarktolightblueinthetoppanelofFig.2 withtheresultthatthetrailingspotofoneregionoverlapped and the leftand middlecolumnsof Fig. 4, whereaslighter withtheleadingspotoftheotherregion.Thecomplexmag- to darkergradationsofred outlinelater stages ofthe flare. neticfieldtopologyofthecentralspotistheconsequenceof TheinfluenceofthetemporalinterpolationfunctiononHMI thisinteraction.WedonotfindanyindicationsintheHMI continuum images is discussed in Mart´ınez Oliveros et al. magnetogramsofnarrowandelongatedmagneticstructures www.an-journal.org (cid:13)c2012WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 4 Beauregardetal.:HorizontalflowsconcurrentwithanX2.2flare Fig.4 ROI depicting the central region of active region NOAA 11158 where the X2.2 flare occurred. The left column shows a continuumimage(top)andamagnetogram(bottom)atthepeakoftheflare(01:58UT).Themiddlecolumncontainsdifferencemaps (post-minuspre-flarephase)ofthecontinuumintensity(top)andline-of-sightmagneticfluxdensity(bottom),respectively.Thesemaps weresmoothed withaGaussian (FWHMof4.0Mm) toemphasize regionsof flare-induced changes inthephotosphere. Superposed onallthesemapsarewhite-lightflarekernels,whicharedepictedinthesamewayasinFig.2.Finally,therightcolumncomparesthe horizontalflowspeedsbefore(top)andafter(bottom)theflare,respectively.Thewhitecircleencompassesacircularareaofenhanced flowspeed,whichappearedaftertheflare.Orangearrowsindicatethedirectionofthehorizontalpropermotions.Theredcurveinall panelsreferstotheflaringPIL. alongtheflaringPIL,whichwereoftenobservedinleague about 500 m s−1 but speeds in excess of 1.0 km s−1 are with major solar flares (Wang et al. 2008; Zirin & Wang also commonly encountered. All other sunspots show in- 1993). Such features are also absent in maps of the lin- dications of moat flow as well – in particular, when regu- ear polarization for the pre- and post-flare phases (Wang lar, well formedpenumbraeexist with a radialfilamentary et al. 2011).There, only an enhancementof the linear po- structure. Using time-lapse continuum and magnetogram larization is observedafter the flare, which is indicativeof movies(e.g.,Movie1inSchrijveretal.2011)twistingmo- anenhancementofthetransversemagneticfieldsalongthe tionsbecomeapparentinboththetrailingandcentralspots. PIL. Flaretransientsarevisible inthemagnetogramsfrom Spotswithnegativepolarityturncounterclockwise,whereas 01:48–02:04UTonbothsidesofthePIL,whicharerelated aclockwisetwistcanbeseeninthepositive-polarityregion tothetwocentralflarekernels(seeFigs.2and3). ofthecentralspot.Intheselocations,wherepenumbralfila- Before looking at flows, which are related to the X2.2 mentsarenolongerradiallyaligned,themoatflowiseither flare,wepresentanoverviewoftheoverallhorizontalflow suppressedordoesnotexistatall. Thispatternis also im- fieldwithintheactiveregion.Theaverageflowspeedinre- printedonLCTmapsandcanbeseen,whentheflow vec- gionscoveredbygranulationis424±55ms−1,wherethe torsarevisualizedathighresolution.Furthermore,moving standarddeviationdenotesthevariationinthefield-of-view magnetic features (MMFs), which are tracers of the moat (FOV)ratherthanaformalerror.Thesevaluesareingood flowinmagnetograms,followthesecurvedtracksaswell. agreementwithVerma&Denker(2011)(seeTab.3therein) Shear flows are difficultto detect in the flow maps de- consideringtheimagescale of320kmpixel−1.Thevalues pictedin Fig. 3,whichencompasstheentire activeregion. for the average flow speeds in penumbral and umbral re- Therefore, we display zoomed-in versions of the pre- and gionsare 159±11 m s−1 and 117±5 m s−1, respectively. postflareflowfieldsintherightcolumnofFig.4.Sincethe Thesevaluesaresignificantlylowerthanflowspeedsprevi- flowsnearthePILareverylow(afew100ms−1)andsome- ouslyderivedfromHinodeG-bandimages.However,con- timesevenlowerthan100ms−1,wesuperposedarrowsof sidering the vast differenceamong active regions, they are equallength,whichindicatetheflowdirection,onthehori- stillreasonable. zontalspeedmaps.Thelowvaluesoftheshearflowscould The moat flow is most prominent around the lead- be explained by the larger image scale of HMI continuum ing sunspot, where it extends about 10.0 Mm beyond the imagesascomparedtohigh-resolutionHinodeG-bandim- sunspotboundary.Typicalflowspeedswithinthemoatare ages.ThePILseparatesthelargerumbralcoresofnegative (cid:13)c2012WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org Astron.Nachr./AN(2012) 5 polarity to the north from the linear alignment of smaller only slightly varies in size. The other flare kernel initially umbral cores of positive polarity to the south. These um- straddles the PIL and then moves towards the north. The bral cores are only separated by a strong light-bridge,i.e., other two flare kernels are located on the other side of the the intervening space is void of any penumbralfine struc- PILina regionofpositivemagneticflux.Thewesternone ture.Asaconsequence,onlyveryfewcontrast-richfeatures shows rapid motion to the west. On average, the flare rib- contributetothespeedmeasuredbytheLCTalgorithm. bons move with a speed of about 10 km s−1 and cover a Shear flows are encountered along the strongest gra- distance of 5–12 Mm. Based on the continuum emission, dients of the PIL. In the pre-flare flow map, the PIL oc- thetwo-ribbonflarecanbecharacterizedasanX-typeflare, cupies in many location areas of zero flow speed, as ex- wheretheeasternflarekernelsareassociatedwiththehard pected for counter-streaming flows. After the flare, shear X-ray (50–100 keV) footpoints (see Fig. 1 in Wang et al. flows, which were originally associated with the positive 2011).TheconnectinglineoftheseX-rayfootpointsisper- magnetic polarity, extend more into the territory of nega- pendiculartothePIL. tive polarity.Thisshiftof the counter-streamingregionto- wards the north is cospatial with the region of enhanced 4 Discussionand conclusions transverse fields reported by Wang et al. (2011). Another intersting post-flare flow featureis a small circular area of We have presented some exploratory work adapting the enhanced flows, which is marked by a white circle in the LCTalgorithmofVerma&Denker(2011)toHMIcontin- lower-rightpanelofFig.4.Here,theflowspeedreachesup uumimages.Wewereabletodetectphotosphericsignatures to 1.2 km s−1. Small-scale brightenings are visible in the ofmajorsolarflaresinHMIdata,e.g.,rapidpenumbralde- continuumimages,whichcrossthevoidwithinthepositive cay,umbralstrengthening,shearflows,andwhite-lightflare polarity from north to south. This motion is accompanied kernels. However, compared to previous studies, the phe- in magnetograms with fast traveling MMFs. The circular nomena are rather weak, which is rather surprising for a area ofenhancedflowsisinclose proximityto a regionof flareofthismagnitude. rapidpenumbraldecay.Inatime-lapsmovieofHMIcontin- Counter-streamingmotionsalongthePILcancontribute uum images and magnetograms,the overallshear motions totheshearofmagneticfieldlinesstraddlingthemagnetic areveryapparentleadingtotheimpressionthatthefluxsys- neutral line, thus contributing to the build-up of energy, temofoppositepolarityareslidingalongeachotheronboth which is then released during a flare (Deng et al. 2006; sidesofthePIL. Denkeretal.2007;Liuetal.2010;Yurchyshynetal.2006). As mentionend in Sect. 1, rapid penumbral decay and The counter-streaming region, which was shifted towards umbralstrengtheningarecommonphotosphericphenomena the north after the flare, is cospatial with the area of en- aftermajorsolarflares.Differencemapsforcontinuumand hanced transverse magnetic field identified by Wang et al. magnetogramsarepresentedinthemiddlecolumnofFig.4. (2011).These authorstake this enhancementas an indica- Allearlyflarekernelsarelocateddirectlyinanumbralcore tionoftether-cutting(Mooreetal.2001)atlowatmospheric orincloseproximity.Theseregionsgetdarkeraftertheflare layers(seealsoLiuetal.2010;Yurchyshynetal.2006).We and the magnetic flux density increases. Only for the flare concludefurtherthatarearrangementofthelow-lyinghor- kernelwhichlastedlongest(darkredcontoursinFigs.2and izontalmagneticfield canlead to analterationofthe hori- 4),wefindadecayingpenumbralregioninwhichthemag- zontalflowfield. netic flux density diminishes. However, these flare-related Another signature of such effects is the localized area changes are small compared to photospheric changes re- withelevatedhorizontalpropermotionsnearthePIL(white portedintheliterature. circle in Fig. 4), which might be an indication, that after White-light emission was observed from the initiation stress relief within the magnetic field topology, shear mo- of the flare (01:49 UT), through its peak time (01:54 UT tions along the PIL can increase again.This notion is also as compared to 01:56 UT for the GOES X-ray flux in the supportedbytheobservationthattheflowspeedintheprox- 0.1–0.8nmrangeshowninFig.1),untiltheemissionfaded imityofthePILincreasesbyabout5%aftertheflare.How- away shortly thereafter (02:03 UT). At its maximum, the ever,weshouldpointoutthatthesephotosphericshearmo- white-lightflareemissioncoveredanareaofabout75Mm2. tions as measured by LCT are still rather small (cf., Deng TheGaussiansmoothingresultsinflarekernels,whichare etal. 2006;Yangetal. 2004).Thelowflow speedsforthe somewhatlargerandmorecontiguousthanwhatcanbeseen shearmotionscouldbeattributedtoaPIL,whichislocated in time-lapse moviesof the originaldata. The time profile between umbral cores so that only few features contribute of the flare kernel contours matches well the CaiiH flare to the LCT signal. In addition,the lower spatialresolution emissiondepictedinFig.1ofWangetal.(2011). ofHMIascomparedtoHinodedatamightalsoincreasethe Allflarekernelsarelocatedattheborderofumbralre- difficultytoextractthesephotosphericsignatures.However, gionsonbothsidesofthePIL.Thefirsttwoflarekernelsap- acomparisonwithhigh-spatialresolutionHinodedataisbe- pearatthesametimeinthecentralsunspotneartwoumbral yondthescopeofthisresearchnote. coresof negativepolarity,which are separatedby a strong Photosphericobservationscan onlyprovidelimited in- light-bridge.The flare kernelto the east is verystable and formation about the magnetic field evolution above an ac- www.an-journal.org (cid:13)c2012WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim 6 Beauregardetal.:HorizontalflowsconcurrentwithanX2.2flare tive region,since therestructuringofthecoronalmagnetic shipsinScienceandEngineeringprogram.CDwassupportedby field is only weakly linked to changes of the photospheric grantDE787/3-1oftheGermanScienceFoundation(DFG).The magnetic field. Nowadays, EUV images of SDO’s Atmo- authorswouldliketothankDrs.HorstBalthasarandHaiminWang sphericImagingAssembly(AIA)andthetwospacecraftsof for carefully reading the manuscript and providing ideas, which significantlyenhancedthepaper. theSolarTErrestrialRElationsObservatory(STEREO)as wellascoronagraphobservationsofSTEREOandtheSolar and Heliospheric Observatory (SoHO) provide a compre- References hensivethree-dimensionalpicture oferuptiveeventsin the corona.Basedondataofthesespacecraftsandinstruments Battaglia,M.,Kontar,E.P.:2011,ArXive-prints,1107.3808 Schrijveretal.(2011)presentadetailedaccountofcoronal Chae,J.,Sakurai,T.:2008,ApJ689,593 Couvidat,S.,Schou,J.,Shine,R.A.,etal.:2011,Sol.Phys.,DOI: activityanddynamicsrelatedtotheX2.2flareinactivere- 10.1007/s11207-011-9723-8 gion NOAA 11158,which include expanding loops above Deng,N.,Xu,Y.,Yang,G.,etal.:2006,ApJ644,1278 thePILbeforetheonsetoftheflare,anEITwave(alsoseen Denker, C., Johannesson, A., Marquette, W., et al.: 1999, Sol. asaMoretonwaveinHα),andanearth-directedhaloCME Phys.184,87 with aspeedof900kms−1. Theauthorsinterpretetheob- Denker, C., Deng, N., Tritschler, A., Yurchyshyn, V.: 2007, Sol. servations supported by MHD modeling as an expanding Phys.245,219 volume,wherea warmingcompressionfrontmovesin ad- Gosain, S., Venkatakrishnan, P., Tiwari, S.K.: 2009, ApJ 706, vanceoftheeruptingfluxrope. L240 Interestingly, no Hα filament was observed as often Harvey,K.L.,Harvey,J.W.:1976,Sol.Phys.47,233 found in the core of an erupting flux rope. Even though Hudson,H.S.:1972,Sol.Phys.24,414 Kubo, M., Yokoyama, T., Katsukawa, Y., et al.: 2007, PASJ 59, filament channelscorrespondto a state of maximummag- 779 neticshear(Martin1998),gradualchangesandslowlymov- Krucker,S.,Hudson,H.S.,Jeffrey,N.L.S.,etal.:2011,ApJ739, ingoppositemagneticelementsareaprerequisiteforasta- 96 blefilament.Incontrast,small-scale,rapidlychangingmag- Liu,C.,Deng,N.,Liu,Y.,etal.:2005,ApJ622,722 netic fields are notfavorable for filamentformation.Thus, Liu,R.,Liu,C.,Wang,S.,etal.:2010,ApJL725,L84 the strong shear motion of two opposite polarity sunspot Martin,S.F.:1998,Sol.Phys.182,107 groupsslidingpasteachothermighthavepreventedthefor- Mart´ınezOliveros,J.C.,Couvidat,S.,Schou,J.,etal.:2011,Sol. mationofafilament. Phys.269,269 Onlydiminutivewhite-lightflarekernelswereobserved Maurya, R.A., Reddy, V., Ambastha, A.: 2011, ArXiv e-prints, fortheX2.2flareinactiveregionNOAA11158(cf.,Fig.3 1106.4166 in Xu et al. 2004). The flare kernels to the west on both Moore,R.L.,Sterling,A.C.,Hudson,H.S.,Lemen,J.R.:2001,ApJ 552,833 sidesofthePILwerecloselyrelatedtothehardX-rayemis- November,L.J.,Simon,G.W.:1988,ApJ333,427 sion. Such a close spatial relationship was also found by Potts,H.E.,Barrett,R.K.,Diver,D.A.:2004,A&A424,253 Kruckeretal.(2011)betweenhardX-rayandG-bandflare Potts,H.,Hudson,H.,Fletcher,L.,Diver,D.:2010,ApJ722,1514 kernels.ConsideringthespatialresolutionofHMIdataand Schou, J., Borrero, J.M., Norton, A.A., et al.: 2010, Sol. Phys., the image processing techniques used to extract the flare DOI:10.1007/s11207-010-9639-8 kernels with sizes of 2–5 Mm, our results are compatible Schrijver, C.J., Aulanier, G., Title, A.M., et al.: 2011, ApJ 738, withtheirhigh-resolutionG-bandobservations,whichshow 167 fine structures in flares even below 1 Mm. The altitude of Schuck,P.W.:2006,ApJ646,1358 the flare continuum emission is still debated. However, in Sobotka,M.,Bonet,J.A.,Vazquez,M.:1993,ApJ415,832 transitionregionSDO/AIA160nmfiltergramsandchromo- Sudol,J.J.,Harvey,J.W.:2005,ApJ635,647 spheric Hinode CaiiH images well-defined J-shaped rib- Tan, C., Chen, P.F., Abramenko, V., Wang, H.: 2009, ApJ 690, 1820 bonsextendmuchfurtheralongbothsidesofthePIL.Potts Verma,M.,Denker,C.:2011,A&A529,A153 etal.(2010)usedasimplifiedradiativetransfermodeltoex- Wachter, R., Schou, J., Rabello-Soares, M.C., et al.: 2011, Sol. plain suchobservationsin thecontextofthe “thick-target” Phys.,DOI:10.1007/s11207-011-9709-6 model(Hudson1972)assumingthathigh-energyelectrons Wang,H.,Spirock,T.J.,Qiu,J.,etal.:2002,ApJ576,497 inthe10–100keVrangeareresponsibleforthewhite-light Wang,H.,Jing,J.,Tan,C.,etal.:2008,ApJ687,658 flareemissioninanopticallythin,excitedregionwithtem- Wang,S.,Liu,C.,Liu,R.,etal.:2011,ArXive-prints,1103.0027 peraturesofabout104Ksome750–1300kmabovethepho- Welsch,B.T.,Abbett,W.P.,DeRosa,M.L.,etal.:2007,ApJ670, tosphere. 1434 Xu,Y.,Cao,W.,Liu,C.,etal.:2004,ApJ607,L131 Acknowledgements. SDO/HMIdataareprovidedbytheJointSci- Yang,G.,Xu,Y.,Cao,W.,etal.:2004,ApJ617,L151 enceOperationsCenter–ScienceDataProcessing.TheGOESX- Yurchyshyn,V.,Liu,C.,Abramenko,V.,Krall,J.:2006,Sol.Phys. rayfluxmeasurementsweremadeavailablebytheNationalGeo- 239,317 physical DataCenter.MV expressesher gratitudeforthegener- Zirin,H.,Wang,H.:1993,Nature363,426 ousfinancialsupportbytheGermanAcademicExchangeService (DAAD)intheformofaPhDscholarship.LB’sresearchintern- shipinGermanywasmadepossiblebyDAAD’sResearchIntern- (cid:13)c2012WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim www.an-journal.org

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.