ebook img

Hopf algebras [Lecture notes] PDF

116 Pages·2014·0.699 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hopf algebras [Lecture notes]

Hopf algebras S. Caenepeel and J. Vercruysse Syllabus106bijWE-DWIS-12762“Hopfalgebrasenquantumgroepen-Hopfalgebrasandquantumgroups” MasterWiskundeVrijeUniversiteitBrusselenUniversiteitAntwerpen. 2014 Contents 1 Basicnotionsfromcategorytheory 3 1.1 Categoriesandfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.3 Naturaltransformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.4 Adjointfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1.5 Equivalencesandisomorphismsofcategories . . . . . . . . . . . . . . . . 7 1.2 Abeliancategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.1 Equalizersandcoequalizers . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Kernelsandcokernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.2.3 Limitsandcolimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2.4 AbeliancategoriesandGrothendieckcategories . . . . . . . . . . . . . . . 11 1.2.5 Exactfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.6 Grothendieckcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.3 Tensorproductsofmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.1 Universalproperty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.2 Existenceoftensorproduct . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.3 Iteratedtensorproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.4 Tensorproductsoverfields . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.3.5 Tensorproductsoverarbitraryalgebras . . . . . . . . . . . . . . . . . . . 15 1.4 Monoidalcategoriesandalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Monoidalcategoriesandcoherence . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Monoidalfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.4.3 Symmetricandbraidedmonoidalcategories . . . . . . . . . . . . . . . . . 18 2 Hopfalgebras 20 2.1 Monoidalcategoriesandbialgebras . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Hopfalgebrasandduality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.1 Theconvolutionproduct,theantipodeandHopfalgebras . . . . . . . . . . 23 2.2.2 Projectivemodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Propertiesofcoalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Examplesofcoalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Subcoalgebrasandcoideals . . . . . . . . . . . . . . . . . . . . . . . . . 30 1 2.4 Comodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5 ExamplesofHopfalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3 Hopfmodulesandintegraltheory 44 3.1 Integralsandseparability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Hopfmodulesandthefundamentaltheorem . . . . . . . . . . . . . . . . . . . . . 47 4 GaloisTheory 58 4.1 Algebrasandcoalgebrasinmonoidalcategories . . . . . . . . . . . . . . . . . . . 58 4.2 Corings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Faithfullyflatdescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.4 Galoiscorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 MoritaTheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.6 GaloiscoringsandMoritatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.7 Hopf-Galoisextensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.8 Stronglygradedrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.9 ClassicalGaloistheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Examplesfrom(non-commutative)geometry 102 5.1 Thegeneralphilosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2 Hopfalgebrasinalgebraicgeometry . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.2.1 Coordinatesasmonoidalfunctor . . . . . . . . . . . . . . . . . . . . . . . 104 5.3 Aglimpseonnon-commutativegeometry . . . . . . . . . . . . . . . . . . . . . . 111 5.3.1 Non-commutativegeometrybyHopf(Galois)theory . . . . . . . . . . . . 111 5.3.2 Deformationsofalgebraicgroups: algebraicquantumgroups . . . . . . . . 112 5.3.3 Morequantumgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 2 Chapter 1 Basic notions from category theory 1.1 Categories and functors 1.1.1 Categories AcategoryC consistsofthefollowingdata: • aclass|C| = C = C ofobjects,denotedbyX,Y,Z,...; 0 • foranytwoobjectsX,Y,asetHom (X,Y) = Hom(X,Y) = C(X,Y)ofmorphisms; C • foranythreeobjectsX,Y,Z acompositionlawforthemorphisms: ◦ : Hom(X,Y)×Hom(Y,Z) → Hom(X,Z), (f,g) (cid:55)→ g ◦f; • foranyobjectX aunitmorphismonX,denotedby1 orX forshort. X Thesedataaresubjectedtothefollowingcompatibilityconditions: • for all objects X,Y,Z,U, and all morphisms f ∈ Hom(X,Y), g ∈ Hom(Y,Z) and h ∈ Hom(Z,U),wehave h◦(g ◦f) = (h◦g)◦f; • forallobjectsX,Y,Z,andallmorphismsf ∈ Hom(X,Y)andg ∈ Hom(Y,Z),wehave Y ◦f = f g ◦Y = g. Remark1.1.1 Ingeneral,theobjectsofacategoryconstituteaclass,notaset. Thereasonbehind this is the well-known set-theoretical problem that there exists no “set of all sets”. Without going into detail, let us remind that a class is a set if and only if it belongs to some (other) class. For similar reasons, there does not exist a “category of all categories”, unless this new category is “of a larger type”. (A bit more precise: the categories defined above are Hom-Set categories, i.e. for any two objects X,Y, we have that Hom(X,Y) is a set. It is possible to build a category out of this type of categories that will no longer be a Hom-Set category, but a Hom-Class category: in a Hom-ClasscategoryHom(X,Y)isaclassforanytwoobjectsX andY. Ontheotherhand,ifwe restrict to so called small categories, i.e. categories with only a set of objects, then these form a Hom-Setcategory.) 3 Examples1.1.2 1. The category Set whose objects are sets, and where the set of morphisms betweentwosetsisgivenbyallmappingsbetweenthosesets. 2. Let k be a commutative ring, then M denotes the category with as objects all (right) k- k modules,andwithasmorphismsbetweentwok-modulesallk-linearmappings. 3. If A is a non-commutative ring, we can consider also the category of right A-modules M , A the category of left A-modules M, and the category of A-bimodules M . If B is an- A A A other ring, we can also consider the category of A-B bimodules M . Remark that if A is A B commutative,thenM and Mcoincide,buttheyaredifferentfrom M ! A A A A 4. Top is the category of topological spaces with continuous mappings between them. Top is 0 the category of pointed topological spaces, i.e. topological spaces with a fixed base point, andcontinuousmappingsbetweenthemthatpreservethebasepoint. 5. Grpisthecategoryofgroupswithgrouphomomorphismsbetweenthem. 6. Ab is the category of Abelian groups with group homomorphisms between them. Remark thatAb = M . Z 7. Rng isthecategoryofringswithringhomomorphismsbetweenthem. 8. Alg is the category of k-algebras with k-algebra homomorphisms between them. We have k Alg = Rng. Z 9. All previous examples are concrete categories: their objects are sets (with additional struc- ture), i.e. they allow for a faithful forgetful functor to Set (see below). An example of a non-concrete category is as follows. Let M be a monoid, then we can consider this as a categorywithoneobject∗,whereHom(∗,∗) = M. 10. The trivial category ∗ has only one object ∗, and one morphism, the identity morphism of ∗ (thisisthepreviousexamplewithM thetrivialmonoid). 11. Another example of a non-concrete category can be obtained by taking a category whose classofobjectsisN ,andwhereHom(n,m) = M (k): alln×mmatriceswithentriesin 0 n,m k (wherek ise.g.acommutativering). 12. If C is a category, then Cop is the category obtained by taking the same class of objects as in C,butbyreversingthearrows,i.e.Hom (X,Y) = Hom (Y,X). Wecallthistheopposite Cop C categoryofC. 13. If C and D are categories, then we can construct the product category C ×D, whose objects are pairs (C,D), with C ∈ C and D ∈ D, and morphisms (f,g) : (C,D) → (C(cid:48),D(cid:48)) are pairsofmorphismsf : C → C(cid:48) inC andg : D → D(cid:48) inD. 4 1.1.2 Functors LetC andD betwocategories. A(covariant)functorF : C → D consistsofthefollowingdata: • foranyobjectX ∈ C,wehaveanobjectFX = F(X) ∈ D; • foranymorphismf : X → Y inC,thereisamorphismFf = F(f) : FX → FY inD; satisfyingthefollowingconditions, • forallf ∈ Hom(X,Y)andg ∈ Hom(Y,Z),wehaveF(g ◦f) = F(g)◦F(f); • forallobjectsX,wehaveF(1 ) = 1 . X FX A contravariant functor F : C → D is a covariant functor F : Cop → D. Most or all functors that we will encounter will be covariant, therefore if we say functor we will mean covariant functor, unless we say differently. For any functor F : C → D, one can consider two functors Fop : Cop → D andFcop : C → Dop. ThenF iscontravariantifandonlyifFop andFcop arecovariant(andvisa versa). ThefunctorFop,cop : Cop → Dop isagaincontravariant. Examples1.1.3 1. The identity functor 1 : C → C, where 1 (C) = C for all objects C ∈ C C C and1 (f) = f forallmorphismsf : C → C(cid:48) inC. C 2. The constant functor C → D at X, assigns to every object C ∈ C the same fixed object X ∈ D, and assigns to every morphism f in C the identity morphism on X. Remark that definingtheconstantfunctor,isequivalenttochoosinganobjectD ∈ D. 3. The tensor functor −⊗− : M ×M → M , associates two k-modules X and Y to their k k k tensorproductX ⊗Y (seeSection1.3). 4. All“concrete”categoriesfromExample1.1.2(1)–(8)allowforaforgetfulfunctortoSet,that sends the objects of the concrete category to the underlying set, and the homomorphisms to theunderlyingmappingbetweentheunderlyingsets. 5. π : Top → Grp is the functor that sends a pointed topological space (X,x ) to its funda- 1 0 0 mentalgroupπ (X,x ). 1 0 6. Anexample of a contravariant functor isthe following (−)∗ : M → M , which assigns to k k everyk-moduleX thedualmoduleX∗ = Hom(X,k). All functors between two categories C and D are gathered in Fun(C,D). In general, Fun(C,D) is aclass,butnotnecessarilyaset. Hence,ifonewantstodefine‘acategoryofallcategories’where themorphismsarefunctors,somecareisneeded(seeabove). 5 1.1.3 Natural transformations Let F,G : C → D be two functors. A natural transformation α : F → G (sometimes denoted by α : F ⇒ G),assignstoeveryobjectC ∈ C amorphismα : FC → GC inD renderingforevery C f : C → C(cid:48) inC thefollowingdiagraminD commutative, Ff (cid:47)(cid:47) FC FC(cid:48) αC αC(cid:48) (cid:15)(cid:15) (cid:15)(cid:15) (cid:47)(cid:47) GC GC(cid:48) Gf Remark1.1.4 If α : F → G is a natural transformation, we also say that α : FC → GC is a C morphismthatisnaturalinC. Insuchanexpression,thefunctorsF andGareoftennotexplicitly predescribed. E.g. the morphism X ⊗ Y∗ → Hom(Y,X), x ⊗ f (cid:55)→ (y (cid:55)→ xf(y)), is natural both in X and Y. Here X and Y are k-modules, x ∈ X, y ∈ Y, f ∈ Y∗ = Hom(Y,k), the dual k-moduleofY. Ifα isanisomorphisminD forallC ∈ C,wesaythatα : F → Gisanaturalisomorphism. C Examples1.1.5 1. If F : C → D is a functor, then 1 : F → F, defined by (1 ) = 1 : F F X F(X) F(X) → F(X)istheidentitynaturaltransformationonF. 2. The canonical injection ι : X → X∗∗,ι (x)(f) = f(x), for all x ∈ X and f ∈ X∗, from X X a k-module X to the dual of its dual, defines a natural transformation ι : 1 → (−)∗∗. If M k we restrict to the category of finitely generated and projective k-modules, then ι is a natural isomorphism. 1.1.4 Adjoint functors Let C and D be two categories, and L : C → D, R : D → C be two functors. We say that (equivalently) • LisaleftadjointforR; • R isarightadjointforL; • (L,R)isanadjointpair; • thepair(L,R)isanadjunction, ifandonlyifanyoffollowingequivalentconditionshold: (i) thereisanaturalisomorphism θ : Hom (LC,D) → Hom (C,RD), (1.1) C,D D C withC ∈ C andD ∈ D; 6 (ii) there are natural transformations η : 1 → RL, called the unit, and ε : LR → 1 , called the C D counit,whichrenderthefollowingdiagramscommutativeforallC ∈ C andD ∈ D, LC (cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)L(cid:81)(cid:81)η(cid:81)(cid:81)C(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:47)(cid:47)L(cid:81)(cid:81)RL(cid:15)(cid:15)εLCC RD(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)η(cid:81)(cid:81)R(cid:81)(cid:81)D(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:81)(cid:47)(cid:47)R(cid:81)(cid:81)LR(cid:15)(cid:15)RDεD LC RD This means that we have the following identities between natural transformations: 1 = L εL◦Lη and1 = Rε◦ηR. R A proof of the equivalence between condition (i) and (ii) can be found in any standard book on category theory. We also give the following list of examples as illustration, without proof. Some oftheexampleswillbeusedorprovedlaterinthecourse. Examples1.1.6 1. Let U : Grp → Set be the forgetful functor that sends every group to the underlyingset. ThenU hasaleftadjointgivenbythefunctorF : Set → Grpthatassociates to every set the free group generated by the elements of this set. Remark that equation (1.1) expresses that a group homomorphism (from a free group) is determined completely by its actionongenerators. 2. Let X be a k-module. The functor − ⊗ X : M → M is a left adjoint for the functor k k Hom(X,−) : M → M . k k 3. Let X be an A-B bimodule. The functor − ⊗ X : M → M is a left adjoint for the A A B functorHom (X,−) : M → M . B B A 4. Let ι : B → A be a morphism of k-algebras. Then the restriction of scalars functor R : M → M is a right adjoint to the induction functor −⊗ A : M → M . Recall that A B B B A forarightA-moduleX,R(X) = X ask-module,andtheB-actiononR(X)isgivenbythe formula x·b = xι(b), forallx ∈ X andb ∈ B. 5. Let k− : Grp → Alg be the functor that associates to any group G the group algebra kG k over k. Let U : Alg → Grp be the functor that associates to any k-algebra A its unit group k U(A). Thenk−isaleftadjointforU. 1.1.5 Equivalences and isomorphisms of categories LetF : C → D beafunctor. ThenF inducesthefollowingmorphismthatisnaturalinC,C(cid:48) ∈ C, F : Hom (C,C(cid:48)) → Hom (FC,FC(cid:48)). C,C(cid:48) C D Thefunctorissaidtobe • faithfulifF isinjective, C,C(cid:48) 7 • fullifF issurjective, C,C(cid:48) • fullyfaithfulifF isbijective C,C(cid:48) forallC,C(cid:48) ∈ C. If (L,R) is an adjoint pair of functors with unit η and counit ε, then L is fully faithful if and only ifη isanaturalisomorphismandR isfullyfaithfulifandonlyifεisanisomorphism. Examples1.1.7 1. All forgetful functors from a concrete category (as in Example 1.1.2 (1)– (8))toSetarefaithful(infact,admittingafaithfulfunctortoSet,isthedefinitionofbeinga concretecategory,andthisfaithfulfunctortoSetisthencalledtheforgetfulfunctor). 2. Let ι : B → A be a surjective ring homomorphism, then the restriction of scalars functor R : M → M isfull. A B 3. TheforgetfulfunctorAb → Grpisfullyfaithful. A functor F : C → D is called an equivalence of categories if and only if one of the following equivalentconditionsholds: 1. F isfullyfaithfulandhasafullyfaithfulrightadjoint; 2. F isfullyfaithfulandhasafullyfaithfulleftadjoint; 3. F is fully faithful and essentially surjective, i.e. each object D ∈ D is isomorphic to an objectoftheformFC,forC ∈ C; 4. F hasaleftadjointandtheunitandcounitoftheadjunctionarenaturalisomorphisms; 5. F hasarightadjointandtheunitandcounitoftheadjunctionarenaturalisomorphisms; 6. thereisafunctorG : D → C andnaturalisomorphismsGF → 1 andFG → 1 . C D Thereisasubtledifferencebetweenanequivalenceofcategoriesandthefollowingstrongernotion: A functor F : C → D is called an isomorphism of categories if and only if there is a functor G : D → C suchthatGF = 1 andFG = 1 . C D Examples1.1.8 1. Letk beacommutativeringandR = M (k)then×nmatrixringoverk. n ThenthecategoriesM andM areequivalent,(butnotnecessarilyisomorphicifn (cid:54)= 1). k R 2. ThecategoriesAbandM areisomorphic. Z ∼ 3. ForanycategoryC,wehaveanisomorphismC ×∗ = C. 8 1.2 Abelian categories 1.2.1 Equalizers and coequalizers Let A be any category and consider two (parallel) morphisms f,g : X → Y in A. The equalizer of the pair (f,g), is a couple (E,e) consisting of an object E and a morphism e : E → X, such thatf ◦e = g ◦e,andthatsatisfiesthefollowinguniversalproperty. Forallpairs(T,t : T → X), suchthatf ◦t = g ◦t,theremustexistauniquemorphismu : T → E suchthatt = e◦u. ∃!uE(cid:79)(cid:79) (cid:112)(cid:112)(cid:112)(cid:112)(cid:112)(cid:112)(cid:112)et(cid:112)(cid:112)(cid:112)(cid:112)(cid:112)(cid:112)(cid:47)(cid:47)(cid:56)(cid:56)X fg (cid:47)(cid:47)(cid:47)(cid:47)Y T The dual notionof an equalizer isthat of acoequalizer. Explicitly: the coequalizerof a pair(f,g) is a couple (C,c), consisting of an object C and a morphism c : Y → C, such that c◦f = c◦g. Moreover, (C,c) is required to satisfy the following universal property. For all pairs (T,t : Y → C),suchthatt◦f = t◦g,theremustexistauniquemorphismu : C → T suchthatt = u◦c. X fg (cid:47)(cid:47)(cid:47)(cid:47)Y (cid:77)(cid:77)(cid:77)(cid:77)(cid:77)(cid:77)t(cid:77)c(cid:77)(cid:77)(cid:77)(cid:77)(cid:77)(cid:77)(cid:47)(cid:47)(cid:38)(cid:38)C(cid:15)(cid:15)∃!u T Bytheuniversalproperty,itcanbeprovedthatequalizersandcoequalizers,iftheyexist,areunique uptoisomorphism. Explicitly,thispropertytellsthatifforagivenpair(f,g),onefindstocouples (E,e)and(E(cid:48),e(cid:48))suchthatf ◦e = g◦eandf ◦e(cid:48) = g◦e(cid:48) andbothcouplessatisfytheuniversal property,thenthereexistsanisomorphismφ : E → E(cid:48) inA,suchthate = e(cid:48) ◦φ. Let (E,e) be the equalizer of a pair (f,g). An elementary but useful property of equalizers tells thateisalwaysamonomorphism. Similarly,foracoequalizer(C,c),cisanepimorphism. 1.2.2 Kernels and cokernels AzeroobjectforacategoryA,isanobject0inA,suchthatforanyotherobjectAinA,Hom(A,0) andHom(0,A)consistsofexactlyoneelement. Ifitexits,thezeroobjectofAisunique. Suppose that A has a zero object and let A and B be two objects of A. A morphism f : B → A is called the zero morphism, if f factors trough 0, i.e. f = f ◦f where f and f are the unique elements 1 2 1 2 in Hom(0,A) and Hom(B,0), respectively. From now on, we denote any morphism from, to, or factorizingtrough0alsoby0. The kernel of a morphism f : B → A, is the equalizer of the pair (f,0). The cokernel of f is the coequalizer of the pair (f,0). Remark that in contrast with the classical definition, in the categoricaldefinitionofakernel,akernelconsistsofapair(K,κ),whereK isanobjectofA,and κ : K → B is a morphism in A. The monomorphism κ corresponds in the classical examples to thecanonicalembeddingofthekernel. Theimageofamorphismf : B → A,isthecokernelofthekernelκ : K → B off. Thecoimage isthekernelofthecokernel. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.