TheAstrophysicalJournalSupplementSeries,173:441Y456,2007December #2007.TheAmericanAstronomicalSociety.Allrightsreserved.PrintedinU.S.A. THE DIVERSE PROPERTIES OF THE MOST ULTRAVIOLET-LUMINOUS GALAXIES DISCOVERED BY GALEX Charles G. Hoopes,1 Timothy M. Heckman,1 Samir Salim,2 Mark Seibert,3 Christy A. Tremonti,4 David Schiminovich,5 R. Michael Rich,2 D. Christopher Martin,3 Stephane Charlot,6,7 Guinevere Kauffmann,6 Karl Forster,3 Peter G. Friedman,3 Patrick Morrissey,3 Susan G. Neff,8 Todd Small,3 Ted K. Wyder,3 Luciana Bianchi,1 Jose´ Donas,9 Young-Wook Lee,10 Barry F. Madore,11 Bruno Milliard,9 Alex S. Szalay,1 Barry Y. Welsh,12 and Sukyoung K. Yi10 Received2006June6;accepted2006September7 ABSTRACT Wereportonthepropertiesofasampleofultraviolet-luminousgalaxies(UVLGs)selectedbymatchingtheGalaxy EvolutionExplorer(GALEX)All-SkyImagingandMediumImagingSurveyswiththeSloanDigitalSkySurveythird datarelease.Theoverlapbetweenthesetwosurveysisroughly450deg2.Of25,362galaxies(withSDSSspectroscopy) intherange0:0<z<0:3detectedbyGALEX,thereare215galaxieswithL>2;1010L at15308(observedwave- length). The properties of this population are well correlated with ultraviolet surface b!rightness. We find that the galaxieswithlowUVsurfacebrightnessareprimarilylargespiralsystemswithamixtureofoldandyoungstellarpop- ulations,whilethehighsurfacebrightnessgalaxiesconsistprimarilyofcompactstarburstsystems,withanapproximate boundaryatasurfacebrightnessofI 108L kpc 2.Thelargegalaxiesappeartobethehigh-luminositytailofthe 1530 # galaxystarformationfunctionandowe¼theirlar!geluminositytotheirlargesurfacearea.Intermsof thebehaviorof surfacebrightnesswithluminosity,sizewithluminosity,themass-metallicityrelation,andotherparameters,thecom- pactUVLGsclearlydepartfromthetrendsestablishedbythefullsampleof galaxies.Thesubsetof compactUVLGs withthehighestsurfacebrightness(I >109 L kpc 2;‘‘supercompactUVLGs’’)havecharacteristicsthatarere- 1530 # markablysimilartoLymanbreakgalaxiesathigher!redshift.Theyaremuchmoreluminous(andthushavemuchhigher starformationrates)thantypicallocalultraviolet-brightstarburstgalaxiesandbluecompactdwarfgalaxies.Theyhave metallicitiesthataresystematicallylowerthannormalgalaxiesof thesamestellarmass,indicatingthattheyareless chemicallyevolved.Inalltheserespects,theyarethebestlocalanalogsforLymanbreakgalaxies. Subject headinggs: galaxies: evolution — galaxies: starburst — ultraviolet: galaxies 1. INTRODUCTION This picture still contains some uncertainty resulting from severalfactors.Thestarformationratedensityatlowredshift Overthepastdecadeenormousprogresshasbeenmadetoward (z 0Y1)hasbeendeterminedthroughdifferenttechniques(e.g., mapping the cosmological history of star formation in the uni- ¼ H!luminosity)thanthoseusedforhigherredshiftgalaxies(e.g., verse(e.g.,Madauetal.1996;Giavaliscoetal.2004).Thishas rest-frame ultraviolet luminosity). These techniques are affected mainlybeenaccomplishedusinglargesamplesof high-redshift differentlybyextinctionandradiativetransfereffects,andthey galaxiesselectedbytheirrest-frameultraviolet(UV)colors(e.g., fundamentallyprobestarformationoverdifferenttimescales. Steideletal.1996,2003;Dickinsonetal.2004).Thesesurveys Onewayaroundthisproblemistoobtainrest-frameultravi- indicatethattheglobalstarformationrateoftheuniversehasbeen olet (UV) measurements for a large sample of galaxies at low indeclinesincez 1Y2andwasgenerallyconstantathigherred- $ redshift,enablingthemeasurementof starformationratesusing shiftouttoatleastz 6(Giavaliscoetal.2004). ¼ thesametechniquesthatareusedathigherredshift.Thisrequires aUVtelescopeinspacewithalargefieldofview,somethingthat has not been available until the Galaxy Evolution Explorer 1 DepartmentofPhysicsandAstronomy,JohnsHopkinsUniversity,Home- (GALEX) mission (Martin et al. 2005). GALEX is obtaining woodCampus,Baltimore,MD21218. 2 Department of Physics and Astronomy, University of California, Los UVfluxesformorethan 107galaxiesintheredshiftrangeof $ Angeles,CA90095. 0<z<2. Initial results on the UV luminosity density show 3 CaliforniaInstituteofTechnology,MC405-47,Pasadena,CA91125. strongevolutionfromz 2to0,withthestrongestevolutionoc- 4 StewardObservatory,Universityof Arizona,933NorthCherryAvenue, ¼ curringinthemostUV-luminousgalaxies(Schiminovichetal. Tucson,AZ85721. 5 DepartmentofAstronomy,ColumbiaUniversity,NewYork,NY10027. 2005;Arnoutsetal.2005).ThefractionofgalaxieswithL1530 > 6 Max-Planck-Institut fur Astrophysik, D-85748 Garching bei Munchen, 0:2L ;z 3 fellbyafactorof 30fromz 1to0(usingL ;z 3 Germany. 6;1%01¼0 L ;Steideletal.1999). ¼ % ¼ ¼ 7 Institutd’AstrophysiquedeParis,UMR7095,F-75014Paris,France. These U!V-luminous galaxies at high redshift are more com- 8 LaboratoryforAstronomyandSolarPhysics,NASAGoddardSpaceFlight monlycalledLymanbreakgalaxies(LBGs;Steideletal.1999). Center,Greenbelt,MD20771. 9 Laboratoired’AstrophysiquedeMarseille,BP8,13376MarseilleCedex12, Thesehigh-redshiftgalaxiesaresonamedbecausetheyareiden- France. tifiedbytheeffectsoftheLymanbreakontheirbroadbandcolors 10 CenterforSpaceAstrophysics,YonseiUniversity,Seoul120-749,Korea. (Steidel&Hamilton1993).LBGsareUV-brightgalaxiesunder- 11 Observatoriesof theCarnegieInstitutionof Washington,Pasadena,CA goingintensestarformationwithlowtomoderatestellarmasses 91101. 12 Space Sciences Laboratory, University of California at Berkeley, 601 (logM 9:5Y11:0M ) andare candidates for theprecursors CampbellHall,Berkeley,CA94720. of pres%e¼nt-day elliptica!l galaxies (see, e.g., Giavalisco 2002). 441 442 HOOPES ETAL. Vol. 173 LBGsarecommonatz>2,andtheyareclearlyimportantasthe thedataandautomaticallydetects,measures,andproducescata- sitesof asignificantfractionof allthestarformationintheuni- logsof FUVandNUVfluxesforsourcesintheGALEXimages. verse.SincestrongevolutionhasmadeobjectslikeLBGsextremely 2.2.Optical Data rareinthelocaluniverse,allof theinformationonthisimportant galaxypopulationhascomefromverydistantsamples,whichare The GALEX catalogs were then matched to the SDSS third inherentlydifficulttostudy.Thus,therehasbeenlittledetailedin- datarelease(DR3;Abazajianetal.2005)spectroscopicsample. formationavailableontheprocessesdrivingtheevolutionof star Theareaof theoverlapregionbetweenGR1andDR3isabout formationinthepopulationof LBGs. 450deg2(Bianchietal.2007).TheSDSScatalogprovides(among UsinglocalUV-brightstarburstsaslocalanalogstoLBGshas manyotheravailableparameters)ugrizmagnitudes,spectroscopic contributed significantly toward understanding these objects redshifts,concentrationparameters,observedhalf-lightradii,and (Heckmanetal.1998;Meureretal.1999).However,localstar- model-fitexponentialscalelengths.Tobeincludedinourfinal burstsdifferfromLBGsinimportantways.Localstarburstsare matchedcatalog,werequiredthateachsourcehaveaspectroscopic usually dwarf galaxies or small (subkiloparsec) regions in the redshift in the range 0<z<0:3 and that the SDSS source be nucleioflargergalaxies,whileLBGshavetypicalsizesofafew spectroscopicallyclassifiedasagalaxy,excludingobjectsclas- kiloparsecs(Fergusonetal.2004).Luminouslocalstarburstsare sifiedbytheSDSSpipelineasQSOsortypeI(broadline)active usuallyverydustysystemsinwhichonlyasmallfractionof the galacticnuclei(AGNs).TheresultingGR1/DR3samplecontains UV light escapes, while LBGs with similar bolometric lumi- 25,362galaxies.Ofthese,18,463have3"FUVdetections.The nosities(starformationrates)typicallycontainmodestamounts remaininggalaxiesweredetectedintheNUVimagesonly. ofdust(e.g.,Reddyetal.2006;Erbetal.2006a).Giventhesedif- WiththedistancesestimatedfromtheSDSSredshift,theFUV ferences,itisnotclearthattheconditionsinlocalstarburstsorthe (andNUV)luminosityforeachgalaxyisknown.FollowingPaperI, triggersof starformationareidenticaltothoseinLBGs,andso galaxieswithL >2;1010 L qualifyasUV-luminousgal- 1530 thereisaneedforbetterLBGanalogsinthelocaluniverse. axies13,whereL isthelumino!sityattheobservedwavelength 1530 Since LBGs are found in part by their large UV luminosity, of15308.Thisluminosityis 5L forz 0(Wyderetal.2005) LBGanalogsinthelocaluniverseshouldalsobeUV-luminous. and 0.3L forLBGsatz $3(S%teidel¼etal.1999).Thereare Thelarge-areaUVskysurveysbeingcarriedoutbyGALEXpro- 235g$alaxie%sintheGR1/DR¼3samplethatmeetthiscriterion.We vide anideal data set for finding rare UV-luminousgalaxiesin then inspected the SDSS spectra of these galaxies to eliminate thelocaluniverse.Heckmanetal.(2005,hereafterPaperI)de- broad-line (type I) AGNs that were missed by the SDSS pipe- scribedthepropertiesofthemostUV-luminousgalaxies(UVLGs) line,aswellasobjectswithBLLacYtypespectra(UV-brightbut inthelocaluniversebasedoncross-matchingtheinitialGALEX withweakornonexistentemissionlines).TypeIIAGNsinthe surveys with the Sloan Digital Sky Survey (SDSS) first data samplearediscussedin 4.4.The215galaxiesthatremainare release(DR1;Abazajianetal.2003).TheUVLGswerecomposed hereafterreferredtoasuxltraviolet-luminousgalaxies(UVLGs). of two basic types of galaxies: large UVLGs, which are charac- Thesegalaxiesspantheredshiftrangefromz 0:053to0.3. terizedbylowerUVsurfacebrightnessandhighmass,andcompact Alargenumberof galaxyparametersderive¼dfromtheSDSS UVLGs,whichhavehigherUVsurfacebrightnessandlowermass. spectraareavailableinthevalue-addedcatalogsproducedbythe ManyofthecompactUVLGshavepropertiesverysimilartothose SDSScollaboration.ThesecatalogsareavailableattheSDSSWeb of LBGs. site14attheMaxPlanckInstitute.Fromthesecatalogsweusethe Althoughthissamplewasveryilluminating,severalquestions emission-linefluxes,widths,andderivedmetallicities.Formore remain.TheextentofthesimilaritybetweenthecompactUVLGs informationonthederivationoftheseparameters,seeKauffmann andLBGsisacrucialquestion.Moregenerally,itisnotknown et al. (2003a, 2003b, 2003c), Brinchmann et al. (2004), and whetherthesegalaxiesaretrulyadistinctpopulationofobjectsin Tremontietal.(2004).Thesecatalogsdonotincludemetallicities anearlierphaseofevolution,i.e.,remnantsoftheepochofgalaxy forgalaxieswithanAGNcontribution,sincethiscanstronglyaf- formation,orwhethertheyaresimplythehighendoftheUVlu- fectthelinestrengths,soonlyasubsetof oursamplehavemet- minosity function. Many of these questions could be better ad- allicitydeterminations.Inaddition,somegalaxieshavepoorline dressedifthereweremoresuchgalaxiesavailableforstudy,sowe fluxmeasurementsbecausetheemissionlinesinthefiberaperture presentananalysisof alargersampleof UVLGs,basedonmore areweakornonexistent,e.g.,ingalaxieswithnostarformation recentGALEXandSDSSdata. inthecentralregionofthegalaxy.Thus,linefluxmeasurements existforonlyasubsetof oursample. 2. DATA 2.3. Spectral Energy Distribution Modeling 2.1.Ultraviolet Data Togainfurtherinformationaboutthepropertiesofthegalaxies Sinceitslaunchin2003April,GALEXhasbeenconducting inoursample,wecomparedtheobservedopticalandUVproper- severalsurveysof theUVsky.Inthispaperwemakeuseof the tiesof oursampletoalibraryof modelspectralenergydistribu- GALEX All-Sky Imaging Survey (AIS) and Medium-deep Im- tions(SEDs),followingSalimetal.(2005).Thiswasdonebyfirst aging Survey (MIS). The data were taken from thefirst public constructingthebroadbandopticalandUVSEDsfromtheSDSS releaseof GALEXdata(GR1)availableattheMultimissionAr- andGALEXmagnitudes.EachobservedSEDwasthencompared chive atSpaceTelescope(MAST).Details onthe GALEXmis- toanextensivelibraryofSEDsgeneratedbytheBruzual&Charlot sionandsurveysaregiveninMartinetal.(2005). (2003)populationsynthesiscode.Eachmodelgalaxyisbasedona TheGALEXdataincludefar-ultraviolet(FUV;keA 15288, starformationhistorycomposedofanexponentiallydecliningstar ¼ !k 2688)andnear-ultraviolet(NUV;keA 22718,!k formationrate(SFR)withsuperimposedburstsofstarformation ¼ ¼ ¼ 7328)imageswithacircularfieldofviewwithradius 380.The andincludestheeffectsofattenuationbydust(seeCharlot&Fall $ spatialresolutionis 500.DetailsoftheGALEXsatelliteanddata 2000). The library contains 105 models at each of five evenly $ characteristicscanbefoundinMorrisseyetal.(2005). linTehatethdeatCaawlieforernpiaroIcnesstisteudtetohfroTuegchhnthoeloGgyA.LTEhXepriepdeulicnteiornedpuipcees- 1134 TSeherohutgtph:o//uwtwthwis.mpappae-grawrcehuinseg.Hm0p¼g.d7e0/SkDmSsS#.1,"m¼0:3,and"#¼0:7. No. 2, 2007 UV-LUMINOUS GALAXIES DISCOVERED BY GALEX 443 Fig. 2.—Normalizedcontourplotoftheu-bandhalf-lightradiusvs.FUV Fig.1.—NormalizedcontourplotoftheFUVsurfacebrightnessvs.FUVlu- luminosityfor18,463galaxiesintheGR1/DR3samplethathaveFUVdetections. minosityfor18,463galaxiesintheGR1/DR3samplewithFUVdetections.The Theluminositybinsarenormalizedtohavethesamenumberofgalaxiesineach luminositybinsarenormalizedtohavethesamenumberofgalaxiesineachbin. bin.CountoursareasinFig.1.TheSDSSu-bandhalf-lightradiusisderivedfrom Eachpairofcontoursrepresentsafactorof2increaseintheenclosedfractionof anexponentialmodelfitandincludesaseeingcorrection.Thedashedlinesde- galaxiesintheluminositybinthathavesurfacebrightnessinagivenrange,with noteFUVsurfacebrightnesslevelsofI 108L kpc 2(upperline)andI thecentralpairofcontoursenclosing84%ofthegalaxiesintheluminositybin 109L kpc 2(lowerline).Thesolidli1n53e0s¼howsthe!regi#ontypicallypopula1te53d0b¼y andtheouterpairofcontoursenclosing99.5%ofthegalaxies.FUVluminosity LBGs!.The#datapointsinthisfigurehavebeencorrectedforGalacticforeground (L1530)isdefinedaskPkat15308(observedwavelength).FUVsurfacebright- extinctionbutnotforinternalextinction. nessisdefinedasI1530¼L1530/(2#r520;u),wherer50;uistheSDSSu-bandhalf-light radius(correctedforseeing).Thedatapointsinthisfigurehavebeencorrectedfor Galactic foreground extinction but not for internal extinction. The dashed line ever,forwell-resolvedgalaxieswefoundthattheseeing-corrected showstheregiontypicallypopulatedbyLBGs. radius derived from the exponential model fits issystematically largerthanthedirectlyobservedhalf-lightradius.Wefoundthat spacedredshiftsfromz 0:05to0.25,andthegridof models thisoccursforgalaxieswithhalf-lightradiilargerthanabout2.2 . ¼ 00 wasconstructedtospanthelikelyrangeofstarformationhistories. We thus use the observed u-band half-light radius as r for 50;u ThegoodnessoffitforagivenmodeltoanobservedSEDis galaxieslargerthan2.2 ,andtheseeing-correctedscalelength 00 thentranslatedtoaprobabilitythattheparametersforthatmodel asr forgalaxiessmallerthan2.2 .Wecanthencalculatethe 50;u 00 applytothegalaxy.Thus,theparametersofthebest-fittingmodel effectivesurfacebrightnessbydividingone-halftheluminos- willhavethehighestprobability,andaprobabilitydistributioncan itybytheareaof thegalaxyenclosedbythehalf-lightradius be constructed for the entire library at the appropriate redshift. (I L /2#r2 ). From this the median and 95% confidence limits on each pa- 1F53i0gu¼re115s3h0owsa50n;uormalizedcontourplotoftheFUVsurface rametercanbedetermined.Thiswasdoneforalistofparameters brightnessversusFUVluminosityforthe18,463galaxiesinthe including stellar mass and star formation rate over a range of GR1/DR3samplethatweredetectedintheFUVimages.Thelu- timescales.FormoreinformationontheSEDfittingprocess,see minositybinswerenormalizedtohavethesamenumberof gal- Salimetal.(2005).Inthispaperthestellarmassesandstarfor- axies in each bin, thus clarifying the dependence of surface mationratesweredeterminedthroughSEDfitting. brightness on luminosity by removing the effects of having a smallernumberofgalaxiesatthelow-andhigh-luminosityends 3. PROPERTIES OF THE GR1/DR3 GALAXY SAMPLE of thedistribution. The GALEX-SDSS matched catalog provides a valuable re- The plot shows a well-defined trend of slightly increasing sourceforstudyingtheUV-opticalpropertiesofstar-forminggal- surfacebrightnesswithincreasingluminosityovertheentirelumi- axiesinthelocaluniverse.Inafuturepaperwewillreportonthe nosityrange.However,atthehighluminositiescorrespondingto analysisof theentiregalaxysample.Hereweconcentrateonthe theUVLGsthereisananomalouspopulationofgalaxiesthatdefy relationshipbetweenUVLGsandthebroadergalaxypopulation. thegeneraltrendbyhavingamuchhighersurfacebrightnessthan The galaxy sampleconsidered here should be nearly devoid wouldbeexpectedgiventheirluminosity.Thesegalaxieshave ofunobscured(typeI)AGNs,sothedominantsourceoftheUV I 108L kpc 2.OnlyamongtheUVLGsaregalaxieswith lightdetectedbyGALEXismassivestars.TheUVluminosityof th15e30hi&ghestsu!rfaceb#rightnesses(I 109L kpc 2)relatively 1530 # a galaxy therefore traces the total amount of star formation in common. & ! thatgalaxyoverthepast108yr(Martinetal.2005).Wealsohave Figure 2 shows the dependence of half-light radius on lumi- measurementsof thesizesof thesegalaxies.Mostof thesegal- nosity.ThesurfacebrightnessparametershowninFigure1depends axiesareonlymarginallyresolvedintheGALEXimages,sowe onthehalf-lightradius,soFigure2isanalternativerepresentation usedthehalf-lightradiimeasuredonthehigherresolutionSDSS of Figure1.Overmostof therangeinluminositytheradiusin- images.TheSDSSubandwaschosenbecauseitistheclosestin creaseswithincreasingluminosity.AboveL >1010L there 1530 wavelengthtotheGALEXbandsandthereforethemostlikelyto isagroupofgalaxiesthatdonotobeythistrendinthesen!sethat reflectthetruespatialextentof starformation.Inmostcaseswe theyaretoosmallfortheirluminosity.ThedashedlinesinFigure2 usethescalelengthfromtheseeing-correctedexponentialmodel arelinesof constantI ,andthegalaxiesresponsibleforthis 1530 fitcalculatedbytheSDSSpipelineasthehalf-lightradius.How- deviationfromthetrendhaveI >109 L kpc 2. 1530 # ! 444 HOOPES ETAL. UVLGsrelatetotherestofthesampleintermsofmass(butkeep in mindthatthecontoursare normalizedbythe numberof gal- axiesineachmassbin).TheUVLGswithI <108 L kpc 2 1530 # areamongthemostmassivestar-forminggalaxiesintheGR!1/DR3 sample,withlogM 10:5M .Whilethesearethelowersur- face brightness com%p&onent of !the UVLG sample, they are still somewhat offset toward higher surface brightness than the full sample(theyarenotlowsurfacebrightnessgalaxies).Inthemain, theirpropertiesappeartobesimilartothoseoflarge,diskgalaxies (theyaretheextremaof thepopulation). The UVLGs with I >108 L kpc 2 are generally lower 1530 # masssystems(logM 10:5M ).!Theyclearlystandoutfrom thefull sample byha%v’ing much!higher surface brightness than wouldbeexpectedfornormalgalaxiesof similarmass.Thisis evenmoreobviousforgalaxieswithI >109L kpc 2,which 1530 # wouldqualifyasLBGsbasedontheirFUVsurfa!cebrightness. Based on the analysis above, the UVLG population can be thoughtof astwoverydifferenttypesof galaxies.Thehighsur- face brightness systems (‘‘compact UVLGs’’) have high star formation rates per unit area and would be called starburst gal- Fig. 3.—NormalizedcontourplotoftheFUVsurfacebrightnessvs.stellar axies,whilethelowsurfacebrightnesssystems(‘‘largeUVLGs’’) massforthe18,463galaxiesintheGR1/DR3samplethathaveFUVdetections. arelargespirals,withhighratesof totalstarformationbutlow Thestellarmassbinsarenormalizedtohavethesamenumberofgalaxiesineach ratesof starformationperunitarea.Thereisnocleartransition bin.Eachpairofcontoursrepresentsafactorof2increaseintheenclosedfraction fromonepopulationtotheother,butasurfacebrightnessvalue ofgalaxiesinthemassbinthathavesurfacebrightnessinagivenrange,withthe centralpairofcontoursenclosing84%ofthegalaxiesinthemassbinandtheouter of I1530 108 L kpc#2servesasausefulboundary.Thereare pairofcontoursenclosing99.5%ofthegalaxies.Theindividualgalaxiesinthe intermed¼iate cas!es that do not fit cleanly into either category. UVLGsampleareshownaspointsintheplot.Theboundariesofmassandsurface Figure3showsthatthissurfacebrightnessboundarycorresponds brightnessfortypicalLBGsarealsoshowninthefigure,asistheboundarybetween toastellarmassof roughlyM 1010:5M (similartothemass largeandcompactUVLGs. scalethatdividesthebimodal%ga¼laxypopul!ationasawhole;e.g., Kauffmann et al. 2003b). Using this criterion there are 110 ThesetwofiguresshowthatingeneralgalaxieswithhigherUV largeUVLGsand105compactUVLGsintheGR1/DR3sample. luminosity are larger and have somewhat higher surface bright- Thesetwo diverse populations were recognized in Paper I, but nessthantheirlessluminouscounterparts.Athighluminosities, wecannowplacethemfirmlyinthecontextoftheoverallgalaxy however,somegalaxiesbehavedifferently.Theyhavesmallradii, population. but this is more than compensated by their increased surface Throughouttherestofthispaperwedistinguishbetweenlarge brightnesstoputthemamongthemostUV-luminousgalaxiesin and compact UVLGs. Note, however, that while the compact thesample.ThisisastrongindicationthattheseUVLGsaredis- UVLGshavethepropertiesofintensestarbursts,notallofthem tinct from the general galaxy population. By contrast, UVLGs have FUV surface brightnesses high enough to be considered withlowersurfacebrightnessdonotdistinguishthemselvesfrom typicalLBGs, whichgenerally haveI >109 L kpc 2. We 1530 # thefullsampleofgalaxiesexceptbytheirluminosity.Theyappear considerthecompactUVLGsthatmeetthismores!tringentsur- tobethelargestandthereforemostluminousnormalgalaxies. facebrightnesscriterionaspossibleLBGanalogs,andwerefer Figure3showshowtheUVsurfacebrightnesschangeswith tothemas‘‘supercompactUVLGs.’’TheGR1/DR3samplecon- stellarmass,asdeterminedfromtheSEDmodelfitting(Salimetal. tains35supercompactUVLGs. 2005).Ingeneral,thestellarmassdeterminedinthismanneragrees to within a factor of 2 with the dynamical mass calculated as 4. PROPERTIES OF ULTRAVIOLET- Mdyn 3:4"g2asr50;u/G, where "gas is the standard deviation of LUMINOUS GALAXIES ¼ thegasvelocitymeasuredfromtheemissionlines.Thecoefficient SincetheUVLGsamplewaschosenbasedonanultravioletlu- 3.4wastakenfromErbetal.(2006b)andrepresentsarealistices- minositycriterion,theyareallexpectedtohavehighstarforma- timateofthemassdistributionforLBGs.TheUVsurfacebright- tion rates. As in Paper I, the majority of UVLGs (83%) have nessisrelativelyconstantoverawiderangeofstellarmassesand thenslowlyfallsaboveamassof1010.5M .Thisimpliesthatthe concentrationparametersC <2:6,whereCisdefinedasR90/R50, theratioof theradiuscontaining90%of thePetrosianr-bandlu- moremassive galaxies have correspondi!nglylarger sizes over minosity to that containing 50%. These low concentration pa- which the young stellar population is distributed. The drop in rametersareindicativeofdisksystems,asexpectedforasample surfacebrightnessabove1010.5M mayberelatedtotherela- ofstar-forminggalaxies.Yet,aswasmadeclearintheprevious tivelyabrupttransitioninthegalaxy!populationatthismassscale section,UVLGsspanawiderangeofproperties.Inthissection betweenyoungdisk-dominatedgalaxiesandoldbulge-dominated weexplorethepropertiesofUVLGs.Thepropertiesofthe215 ones(e.g.,Kauffmannetal.2003b). UVLGsarelistedinTable1. ThepointsshowninFigure3arethelocationsof individual UVLGs.Unlikethegalaxy population asawhole,theUVLGs 4.1. Ultraviolet Surface Brightness showaclearinversecorrelationbetweensurfacebrightnessand mass.Wehavealreadypointedoutthatthisfactindicatesthatthe Figure4plotstheFUVsurfacebrightnessof the215UVLGs moremassiveUVLGsowetheirlargeluminositiestotheirlarge againsttheFUVluminosity.Thegalaxieswerechosentobelu- mass.ThelessmassiveUVLGshavehighUVsurfacebrightnesses minous, but they span a wide range in surface brightness, and indicative of intense star formation. Figure 3 shows how the thereisnocorrelationbetweenluminosityandsurfacebrightness. ) H O/ log((13) 8.89...8.899.028.678.748.719.029.06...8.968.89...8.96...9.118.948.23.........8.609.27......9.018.658.72......8.898.789.11...9.14............8.67......8.708.878.98... þ 2 1 logSFR1Myr)#!(12) 1.030.761.440.601.071.181.711.151.200.951.251.350.450.660.13#0.211.060.410.910.841.391.131.061.921.180.570.920.780.530.690.29#1.440.782.410.911.630.531.230.990.550.20#0.861.440.911.290.01# ( logM%(M)!(11) 10.0810.7610.6710.569.9810.439.7610.6210.9911.6210.7410.2810.7610.2710.4410.6110.779.1811.2711.2410.7110.4111.1011.0010.0711.0810.0210.1710.9411.109.9310.0910.8611.7010.7811.4811.0711.1211.709.5611.1411.0610.0810.4210.5211.32 A1530(mag)(10) 0.803.251.512.261.421.000.372.962.352.211.731.371.702.272.851.912.180.139.200.63...1.313.411.97...0.001.381.471.9910.440.660.801.831.432.01...3.262.632.230.560.000.000.481.261.192.21 567805413350473 854836217 2625 92109 25122223 121011010001000 000000020 1101 01110 00000000 NUV(mag)(9) 160.)090.)340.)870.)550.)860.)870.)860.)270.)990.)920.)350.)570.)830.)190.)...130.)030.)280.)940.)520.)740.)160.)460.)720.)...300.)760.)110.)720.)...290.)940.)690.)550.)020.)...810.)080.)410.)360.)310.)030.)260.)530.)... 0.0.0.8.9.9.7.9.9.9.7.9.9.8.0. 9.1.0.8.9.8.9.0.8. 9.9.9.9. 9.9.9.9.9. 8.0.8.9.9.9.8.9. 222111111111112 122111121 1111 11111 12111111 5855238287974433580154514408203324763473555365 2221220200010100101101031022020221110000000000 FUVmag)(8) 10.)20.)40.)60.)80.)90.)20.)70.)00.)30.)50.)30.)70.)90.)30.)20.)40.)20.)60.)20.)50.)40.)20.)40.)90.)30.)60.)10.)40.)20.)00.)60.)40.)40.)30.)50.)10.)60.)50.)20.)70.)20.)80.)50.)00.)10.) ( 5042010095261080366973561294180900426257595502 0.9.0.9.0.0.8.0.9.0.8.9.9.9.8.8.9.0.0.8.9.9.9.0.9.9.9.0.7.9.8.9.0.9.9.9.8.9.0.8.9.9.9.8.0.9. 2121221212111111122111121112111121111121111121 ) 1 mple ogI15302kpc#!(7) 8.557.588.297.858.329.378.727.937.586.858.668.397.777.557.538.637.799.167.247.809.048.717.708.399.898.438.888.328.267.619.088.367.738.757.877.557.537.716.618.537.587.228.669.389.358.04 E a lL L S ( B G TA UVL r50u;(kpc)(6) 3.139.625.147.694.131.383.246.5512.5223.682.704.138.9810.409.983.999.261.7213.8113.082.302.869.284.040.804.742.384.1811.2411.281.684.088.695.026.8212.5811.918.5230.633.479.8414.623.211.661.537.58 ogL1530(L)!(5) 10.3410.3410.5110.4210.3510.4510.5410.3610.5710.4010.3210.4210.4710.3810.3310.6310.5210.4310.3210.8310.5610.4210.4310.4010.4910.5810.4310.3611.1610.5110.3310.3810.4110.9510.3410.5510.4810.3710.3810.4110.3610.3510.4710.6210.5210.60 l edshift(4) 0.2500.1340.2880.1610.2110.2430.1080.2110.2460.2670.0940.1870.1640.1440.1230.1190.1840.2830.2590.2130.2270.1660.1810.2780.1670.1890.2180.2430.1440.2230.0860.2070.2200.2530.1590.1840.1300.1530.2630.1280.1720.1980.1930.1470.2430.191 R 5146854480717054089026485808812982985832959857 7220164559217248639664745087906192630175754564 Decl.(deg)(3) 1.1560.735#1.071#0.842#11.0350.767#0.8450.06710.93611.0250.940#0.877#9.198#9.028#11.12915.04210.88615.56915.3650.05915.4860.86515.72714.4410.363#9.823#0.64616.03515.64513.54614.9100.842#0.1271.0561.15813.43414.77614.6369.129#10.18914.25210.21113.91013.14913.41913.197 # ## # # # # 8213071547977624852327733393541798909047644184 2390358625849443135625604200074567456107545327 R.A.(deg)(2) 0.2011.4661.7732.4022.4532.5412.7862.8603.4383.9974.3674.7818.6038.7198.8489.0699.58810.22610.52310.94711.19711.61111.69412.19113.86414.14714.19614.69214.98415.36015.61216.03316.56316.70516.80917.31420.14121.25821.54125.59826.26926.80126.81527.61827.85827.952 SObjID(1) 629504..................294786..................554916..................192547..................306171..................753479..................302646..................626537..................764940..................961583..................109826..................241048..................476771..................705169..................416108..................057678..................386334..................387411..................518558..................165442..................780648..................169371..................140399..................724283..................539596..................322564..................853386..................256545..................289961..................132105..................810262..................815637..................590315..................497820..................497878..................983886..................808483..................332766..................404773..................496000..................429914..................338983..................821098..................180186..................409001..................376839.................. S 4691464044224062799498218930844065548990194686 D 1953594755330011544744103285801371107766844404 S 78817651518103925151515173067988519393929303372187957242987288159242427231310084319426772177 8008201022882879299091330783999101193387323939 1551255522112111211515225112111555512211222121 1551755577117774744545445714444151144477474444 3113211122332222222121221232222313322222222222 7007700077777777777070770777777707777777777777 7887788877777777777878778777777787777777777777 8888888888888888888888888888888888888888888888 5555555555555555555555555555555555555555555555 ) H O/ log((13) 9.10.........8.85...9.008.839.008.618.87...8.879.068.98...8.88......9.318.838.858.788.619.02...9.149.039.079.038.828.588.988.539.119.06...8.99...8.689.06...9.11...8.668.89... þ 2 1 logSFR1Myr)#!(12) 0.07#0.900.991.351.510.060.761.360.981.781.931.000.850.950.830.291.000.510.310.801.641.281.191.310.890.570.680.681.151.071.601.171.411.221.051.311.022.101.231.532.210.771.420.501.131.541.40 ( logM%(M)!(11) 11.1011.2311.2110.6810.3411.4010.5110.3610.9910.7310.9610.8410.9410.5811.3310.4610.2910.9411.0311.2110.299.959.749.7911.1411.0310.6310.8910.9010.5910.3310.0411.079.3911.4410.7810.3310.3011.309.9811.2111.2510.8210.989.799.9910.36 A1530(mag)(10) 3.551.793.752.481.446.021.361.392.332.031.952.611.622.262.140.781.792.941.100.530.900.810.480.331.514.561.492.332.051.431.530.623.030.232.132.691.041.513.120.483.021.731.961.201.160.58... 3222712332110334700698247 418042592047922825375 0000000000111000032201101 231211100100000011000 NUVmag)(9) 10.)30.)90.)20.)80.)10.)70.)80.)80.)30.)70.)60.)80.)80.)60.)90.)50.)90.)40.)00.)20.)00.)50.)00.)20.)...30.)30.)40.)50.)80.)90.)10.)80.)10.)50.)40.)10.)70.)30.)10.)70.)80.)80.)30.)70.)00.) ( 9857872026471570212367064 906771283656113882629 9.8.8.8.8.8.9.9.9.8.9.9.9.9.9.0.8.0.9.0.8.9.9.9.9. 9.0.9.9.9.9.9.8.9.9.7.8.9.9.9.8.9.0.9.9.7. 1111111111111112121211111 121111111111111112111 95466355433406682809607647157009955085755581629 00001000002120001222131021222331110301100112010 FUV(mag)(8) 860.)300.)020.)590.)410.)160.)740.)740.)420.)770.)300.)480.)520.)710.)020.)120.)450.)980.)350.)150.)970.)120.)040.)030.)780.)320.)250.)710.)940.)520.)250.)380.)300.)850.)740.)760.)850.)110.)370.)570.)970.)130.)550.)860.)130.)700.)050.) 0.9.9.9.9.8.9.9.9.8.0.9.9.9.0.0.8.9.9.0.8.0.9.0.9.9.9.9.9.0.0.9.9.8.9.0.7.9.9.9.9.9.9.9.0.9.8. 21111111112111221112121211111221111211111111211 Continued logI15302Lkpc)#!(7) 6.077.207.259.928.527.957.999.177.327.528.378.537.438.247.528.918.697.217.297.348.438.479.118.847.567.858.007.958.718.058.318.207.909.498.098.3610.259.167.469.018.937.407.948.828.679.478.97 — ( 1 TABLE r50u;(kpc)(6) 54.4914.7413.950.853.4313.215.771.6620.1724.915.143.3612.464.9611.452.023.2114.1612.8412.414.533.321.742.7612.338.306.966.403.605.704.044.918.051.205.973.850.501.8712.723.242.2413.096.862.862.961.842.64 ogL1530(L)!(5) 10.3410.3310.3410.5810.3910.9910.3110.4110.7311.1110.5910.3810.4210.4310.4410.3210.5010.3110.3110.3310.5410.3110.3910.5210.5410.4910.4810.3610.6210.3610.3210.3810.5110.4510.4410.3310.4510.5010.4710.8310.4310.4310.4110.5310.4110.8010.61 l edshift(4) 0.2850.1490.1340.2190.1670.1840.1770.1950.2380.2700.2930.1700.1800.1960.2260.2080.1250.1940.1500.2120.1620.2050.1420.2470.2270.1780.1710.1820.2610.2530.2190.1640.1810.1390.2020.2720.0910.1640.1790.2800.2180.1540.1790.2320.2290.2840.118 R 45564768878246829833644396482287994056595824950 40065081607306867523794927799337165957289069465 Decl.(deg)(3) 14.33113.47313.20812.9971.024#8.141#8.156#8.277#8.968#8.097#0.966#0.5176.635#7.335#7.000#7.421#8.069#1.036#1.1180.9660.471#0.132#1.1975.935#0.6420.0981.2491.1651.1390.9270.3965.420#6.301#5.111#37.73523.20039.81450.07049.38746.74946.58442.90041.29342.60246.21437.17943.622 73032374080584480969616921653670259033463860001 23629341800133376047776395689601499445670494027 R.A.(deg)(2) 0.3212.9813.0963.4524.1319.8570.1431.3732.1872.3894.9545.1345.5337.4487.8488.6179.8100.6161.2131.3471.9842.0952.1912.9343.2283.3453.8724.7794.8015.0906.0967.0329.8120.5365.7640.4182.1843.8474.0484.3434.6754.7454.8684.8875.2285.4056.054 33333344444444444555555555555555561222222222222 1111111111111 ObjID1) 04940..................15805..................08116..................41435..................45437..................63751..................94732..................98139..................18558..................91413..................64076..................78540..................95902..................40592..................87109..................43897..................60834..................54498..................71148..................02004..................15213..................51653..................29883..................86402..................17768..................12195..................50803..................44016..................44028..................40313..................91989..................21309..................22665..................78659..................75657..................14396..................67253..................99567..................00285..................10508..................54025..................11190..................51786..................83532..................83209..................84117..................73210.................. S( 02557454084967163956430267711291638415018664980 S 02758006363563696505301542122787769484507655046 D 22483442524214625436823099333650982462339070610 S 3788268215959512011215980695171201154203202642233692424242033123060052638212450146881845412345 39391774441087444111111410111114480368770636076 21215112225511222555555255555552210269740696086 44441774441577444115111415111514477585557888718 22223222223122222331333231333132220322220222032 77777777777077777770777770777077770777770777077 77777777777877777778777778777877778777778777877 88888888888888888888888888888888888888888888888 55555555555555555555555555555555555555555555555 446 ) H O/ log((13) ...9.15...8.618.318.88...9.109.209.08...9.118.85...9.06.........8.919.049.05......9.11...8.868.988.46...8.779.108.868.708.819.11............9.068.259.119.008.63...8.60 þ 2 1 logSFR1Myr)#!(12) 2.05#1.710.820.521.410.801.091.431.060.880.17#0.991.610.990.901.370.531.271.270.910.771.990.571.280.580.850.750.720.642.460.890.981.001.361.051.641.030.920.241.100.491.072.351.351.260.82 ( logM%(M)!(11) 11.1310.9311.059.679.9110.7211.1510.6511.1511.0311.5310.8510.1511.2910.7411.0011.3111.0910.5611.0110.9010.5411.4711.1011.099.9711.189.2010.5510.5410.9810.269.7010.2110.8610.8811.009.8810.8210.619.4610.6810.789.5611.089.62 A1530(mag)(10) 2.111.221.530.440.301.352.792.392.242.85...2.701.002.802.432.214.552.501.781.762.342.222.303.150.841.362.280.461.450.342.870.900.411.621.551.712.64...1.952.200.561.481.740.892.610.19 375612808 087623171367870 6820 198722 7729 88 000000000 101000101101001 0001 100010 1010 00 NUVmag)(9) ...40.)10.)40.)30.)30.)60.)60.)00.)40.)...40.)30.)70.)40.)40.)90.)10.)60.)80.)10.)00.)80.)30.)00.)50.)...40.)90.)40.)20.)...60.)60.)50.)70.)60.)80.)...10.)90.)10.)10.)...70.)20.) ( 839976453 320202868781214 8136 834122 5937 22 7.8.7.8.7.9.9.6.9. 9.9.0.8.9.0.9.8.9.9.8.0.9.9.9. 8.9.9.9. 9.9.9.9.0.9. 0.8.0.9. 9.9. 111111111 112112111112111 1111 111121 2121 11 4738514616307644727593796760542837771433171752 2010100101021210021211211111102121112002122011 FUVmag)(8) 40.)30.)70.)10.)90.)70.)30.)80.)50.)10.)80.)80.)60.)00.)20.)20.)00.)50.)40.)30.)80.)70.)30.)10.)00.)80.)20.)60.)10.)70.)40.)50.)50.)40.)60.)60.)00.)90.)60.)70.)10.)20.)20.)40.)40.)90.) ( 2490513696458386645471696647459827872334972869 0.8.8.8.9.8.0.9.6.9.8.9.9.0.8.9.0.0.9.0.9.9.0.9.9.9.9.8.9.9.9.9.0.9.9.9.0.9.8.0.8.0.0.7.9.8. 2111112111111211221211211111111121112112122111 Continued logI15302Lkpc)#!(7) 7.548.257.438.308.828.957.448.278.327.727.527.708.797.567.648.836.497.798.817.207.549.657.167.937.219.657.969.917.316.947.547.718.988.917.748.377.199.608.267.969.048.028.519.607.738.82 — ( 1 TABLE r50u;(kpc)(6) 10.024.3711.514.062.962.0711.084.743.9510.7932.039.682.589.729.052.2432.827.262.4314.4410.641.5316.566.2516.011.149.291.0312.6127.6811.448.151.982.768.385.7714.441.048.466.321.896.043.901.559.212.46 ogL1530(L)!(5) 10.3410.3310.3510.3110.5610.3810.3310.4210.3110.5811.3310.4710.4110.3310.3510.3310.3210.3110.3810.3210.3910.8210.4010.3210.4210.5610.6910.7310.3110.6210.4610.3310.3710.5910.3810.6910.3110.4310.9110.3610.3910.3810.4910.7810.4610.40 l edshift(4) 0.2230.1030.1320.0840.2150.0970.2290.1930.0530.2200.2990.1950.2050.2260.1240.1710.2520.2370.1730.2370.1950.2350.2770.1910.1850.2220.2270.1810.1540.2260.2230.1880.2310.2340.1990.2620.2140.1730.1850.2490.1350.2830.2570.1300.1980.141 R 4694451275983599676494946105905660808095785726 3618575302330879421014799900807650139893403591 Decl.(deg)(3) 42.16938.00344.14340.71047.96447.17546.97745.25352.53345.56757.07645.62554.4775.3744.58655.3981.23242.75859.29148.64359.86145.15359.61056.27148.95354.81057.73844.46046.17559.00650.58246.42459.84842.78553.45754.36856.99361.66561.22247.39248.66156.43057.40551.58539.74257.534 5960218682354355907658622219328931026716468723 2818878029495607511304309926381034085394193087 R.A.(deg)(2) 6.0676.1386.7118.8839.3899.6150.7100.9111.5092.2513.4046.0726.6326.6737.0827.5997.8059.3549.4469.9500.0760.4970.6020.6500.6530.9011.1391.5011.6822.1822.3752.4633.4413.7863.9923.9997.0517.1027.1637.4087.9067.9268.1428.6448.7398.804 2222223333333333333344444444444444444444444444 1111111111111111111111111111111111111111111111 ObjID1) 76092..................88122..................00946..................66445..................95436..................56918..................74276..................36751..................92770..................59108..................26831..................56879..................23726..................27062..................16286..................96884..................44494..................90553..................88424..................57902..................21978..................82257..................51103..................12515..................20003..................86207..................35009..................13605..................43150..................44766..................10202..................10146..................98641..................23780..................55860..................89360..................47371..................83550..................81719..................84272..................19192..................14044..................74965..................13320..................21680..................06065.................. S( 1741340318200600889235405759053107298000281503 S 6665069104508523497008370431651257035364826496 D 7307025470789580517140061074413204267401837817 S 18574562685758130608229495281747294374311712124131680643176355016443245874696480905774941774 3868336373546000451152501378208818366116636446 9868113949504770908955509143503684933888813023 8181009858525227725151571053179152899551109259 2323110222232330232323203121302323200223310330 7777000777777770777777707070707777700777700770 7777888777777778777777787878787777788777788778 8888888888888888888888888888888888888888888888 5555555555555555555555555555555555555555555555 447 ) H O/ log((13) ......9.13...9.08...9.06......9.07...8.76...9.15.........8.829.05......8.33...9.068.70...9.069.128.628.859.138.839.14...8.91...8.19...9.10...8.628.72......9.02...... þ 2 1 logSFR1Myr)#!(12) 0.550.861.041.081.331.700.730.640.651.220.311.020.810.930.660.430.550.850.821.090.621.100.601.941.420.702.101.071.131.671.451.151.371.031.340.670.511.110.710.970.941.710.690.170.820.960.93 ( logM%(M)!(11) 10.8511.2010.8711.0311.1311.0910.7811.0511.4010.7810.789.8411.0211.2111.4811.2311.2210.0811.0310.9611.249.9110.8111.0510.1310.9010.9910.829.5410.6411.049.5711.1911.1110.2310.958.9410.4011.0511.129.839.9910.9111.4010.6611.3110.65 A1530(mag)(10) 1.582.843.472.203.542.422.550.592.052.442.180.591.804.468.481.420.001.000.691.764.310.252.493.37...1.402.252.700.090.151.591.081.501.821.270.750.011.591.860.250.520.842.372.392.340.841.47 00933905680160909680 6037355592206322461 54 248 11011010101101010001 0110100000010110101 00 001 NUVmag)(9) 50.)20.)20.)80.)70.)80.)20.)50.)30.)00.)40.)80.)70.)30.)00.)30.)40.)60.)80.)30.)...10.)50.)60.)20.)00.)80.)70.)20.)20.)80.)00.)20.)00.)20.)70.)20.)70.)10.)70.)...80.)70.)...00.)30.)70.) ( 85703575147099757625 9907111621348426468 47 086 9.9.9.0.0.9.9.8.0.9.9.0.8.9.9.9.9.8.9.9. 8.9.0.8.0.8.8.8.9.9.9.9.8.0.0.9.0.8.9. 8.9. 9.9.9. 11122111211211111111 1121211111111221211 11 111 87022080254344940267827177993654332843011386463 11222211211212112111111211001100212202121100002 FUVmag)(8) 00.)80.)70.)70.)60.)10.)60.)60.)30.)60.)20.)00.)70.)30.)00.)40.)70.)50.)50.)60.)00.)30.)80.)40.)70.)30.)00.)70.)10.)90.)40.)50.)00.)90.)00.)00.)80.)90.)30.)00.)00.)60.)10.)20.)20.)70.)20.) ( 97133277354535140967018238542286923942706109414 9.9.0.0.0.0.9.8.0.9.9.0.9.0.0.9.0.8.9.9.0.9.9.0.9.9.8.8.9.9.9.9.9.9.0.0.9.0.8.0.8.9.0.9.9.0.9. 11222211211212212111211211111111112212121121121 Continued logI15302Lkpc)#!(7) 7.717.417.587.477.408.218.217.627.277.978.509.357.447.487.337.217.618.107.557.327.769.007.447.898.868.258.377.908.848.567.599.648.137.478.888.3110.779.027.717.579.369.317.467.477.767.7510.01 — ( 1 TABLE r50u;(kpc)(6) 8.8412.829.2210.5012.815.264.5811.7315.287.013.321.2311.8210.9212.7914.239.545.6410.5612.457.572.1711.426.852.464.695.327.332.923.039.440.865.0211.112.244.040.381.988.3610.171.481.8910.9912.547.509.420.60 ogL1530(L)!(5) 10.4010.4210.3110.3110.4110.4510.3310.5610.4410.4610.3410.3310.3810.3510.3410.3110.3710.4010.4010.3110.3210.4710.3510.3610.4410.3910.6210.4310.5710.3210.3410.3110.3310.3610.3810.3210.7210.4110.3510.3810.5010.6610.3410.4610.3110.5010.37 l edshift(4) 0.2050.2010.2110.2280.2520.2470.1810.1510.2550.1900.1580.2460.1610.2550.2110.1560.2140.1380.1850.1770.1970.1600.1940.2270.1730.1980.1450.1170.1860.1480.1890.1700.1910.1540.2380.2860.2410.2450.1200.2120.1330.1980.2030.2210.1540.2550.164 R 21198827002987210489505565779761647753679557855 68178446260626134326673183931619469111449132525 Decl.(deg)(3) 38.67057.82738.15656.59438.41855.12442.73344.11248.11047.70248.49163.41745.79057.11345.34460.22654.49651.10253.32852.87856.66648.74949.69552.86258.93362.65363.18765.55154.78956.81465.39666.10567.48558.13763.26262.91865.22863.15366.43564.20064.68466.8000.073#59.22859.27159.2890.523 69619863243262058165016767134488369187063905906 40442657244694685473520252957025235775453889340 R.A.(deg)(2) 9.2259.5809.8750.0930.1040.5032.1012.1642.5102.6292.7243.0463.5473.7303.9144.8925.7895.8586.0426.3046.5426.5587.3407.4377.7667.8238.3339.7659.8390.1570.6922.9395.0878.1739.5709.8073.2654.9490.2039.5979.8808.4829.9670.1170.1881.1122.500 44455555555555555555555555555666666677888016661 11111111111111111111111111111111111111111222223 ObjID1) 61363..................68126..................03546..................58909..................69282..................06501..................82971..................61656..................45580..................09127..................47490..................59876..................29906..................62459..................86075..................17353..................39661..................09644..................39624..................68688..................17989..................54188..................20184..................77714..................76243..................72903..................40350..................09441..................90084..................89559..................34723..................64802..................96047..................55636..................39594..................71613..................75234..................57702..................66387..................34987..................05821..................05291..................94109..................34103..................34081..................05123..................24833.................. S( 85676838010416987778132924597405645087721116659 S 36151422471449116092380155247335455036252708850 D 37767420175411759941571084848784979143193238826 S 6674955895714722595364693882258507908984205338070652571794607417906035945728647379289958586479 26363868333188560644838770054815185957177597774 53232384111843135800513830050385831013866585558 69595972222529291122223197752955599199588585550 10303293333232303333331300023222222120222242223 00707727777777707777770700077777777070777787777 88787787777777787777778788877777777878777787777 88888888888888888888888888888888888888888888888 55555555555555555555555555555555555555555555555 448 O/H) dforNUVmass logSFR1(Myr)12log(#þ!(12)(13) 1.008.741.33...1.51...0.63...0.939.060.63...0.70...0.60...1.129.271.478.860.82...0.90...0.54...0.02...#1.37...1.158.650.928.821.069.161.568.680.50...0.788.610.649.061.618.960.948.990.45...0.538.221.049.070.948.621.598.89 ofFUVluminosity(correcteGalacticextinction).Col.(9):w.Col.(11):Logofstellar logM%(M)!(11) 10.2511.2511.1511.1510.5611.4411.1611.3711.0610.1211.0811.0210.9710.5510.769.9710.1511.109.9210.859.3110.3310.5610.3710.599.5510.7110.0811.01 Col.(5):Logcorrectedforattenuationlaethod. A1530(mag)(10) 1.091.264.226.372.252.373.080.000.851.320.711.092.193.273.290.670.652.190.76...0.731.481.172.363.090.271.070.742.32 pipeline.agnitude(starburst(2004)m SSm1)al. FUVNUV(mag)(mag)(8)(9) 19.780.2418.740.09))19.930.2419.850.14))19.720.3119.530.17))19.980.0819.760.04))19.720.1819.650.12))19.330.1419.840.16))19.760.1920.170.13))19.500.1919.160.13))20.110.2319.990.17))19.910.2219.240.11))20.350.2519.980.12))19.970.2319.380.15))19.140.2019.460.14))17.850.1017.720.06))20.180.2919.980.21))18.300.0917.840.04))18.660.0218.270.01))19.880.2019.750.13))19.270.0418.820.02))18.790.0319.630.03))20.320.0620.200.03))19.840.2420.030.18))19.560.1919.270.12))19.690.1919.600.10))19.870.2020.390.15))19.890.1920.030.14))20.130.2220.230.16))18.760.1218.380.06))20.530.2619.560.12)) 00.0).Col.(4):RedshiftfromSDGalacticextinction).Col.(8):FUVSSspectra,andtheCalzetti(200MetallicityusingtheTremontiet 1—TABLEContinued rlogIR.A.Decl.logL153050u1530;2(L)(kpc)(Lkpc)(deg)(deg)Redshift#!!(5)(6)(7)(2)(3)(4) 313.793400.317490.19810.412.528.81#315.197480.555890.25410.596.328.19315.849580.998810.17710.327.517.77317.708958.011800.21110.3921.746.92#322.769530.097790.17810.337.767.75322.893190.302880.21310.6610.847.79#323.278598.593990.21710.519.727.74#325.835330.251390.16910.3713.487.31326.069181.095510.24310.4811.417.57326.251071.199330.20410.390.779.82333.181249.003900.24710.4012.677.40#338.327947.737240.21010.3911.187.49#340.031079.631570.15410.4211.177.53#340.1599410.099330.08410.378.627.70#340.1852410.274530.25710.516.558.08#344.726569.342140.11610.503.408.64#346.765621.219780.12610.430.719.93347.517361.179080.20710.416.188.03349.554170.690600.25210.852.409.29#349.904420.228420.18510.7420.007.34351.413450.752000.27710.521.069.67353.216921.232790.18710.336.857.86353.463990.280750.19810.507.967.90354.302640.277630.21210.518.157.89354.411620.051340.18610.318.357.67358.448730.900610.22310.482.179.01358.578000.941670.23210.4211.387.51358.7063610.978450.12110.351.899.00#359.308620.145750.26210.387.697.81 1):SDSSObjectIDnumber.Col.(2):Rightascension(J2000.0).Col.(3):Declination(J20g-correctedhalf-lightradiusinuband.Col.(7):LogofFUVsurfacebrightness(correctedforextinction).Col.(10):FUVattenuationusingtheBalmerdecrementmeasuredontheSD12):Logofextinction-correctedstarformationratedeterminedviaSEDfitting.Col.(13): SDSSObjID(1) 587730846887707478..................587730847962104313..................587730848499237044..................587727212271567298..................587730847428510324..................587730846891704703..................587727212273992007..................587731186725814690..................587731187799687683..................587731187799753015..................587726877808591211..................587726879958302970..................587726877811605723..................587726877274800314..................587730815752667321..................587730817365245979..................587731187808731205..................587731187809059012..................588015508191051903..................587731186736365813..................587731187273892048..................587731187811549347..................587731186737938564..................587731186738266349..................588015509266890925..................588015510342402184..................588015510342468082..................587727225152733191..................588015509269053589.................. UVLGsample.Col.(Notes.—Galacticextinction).Col.(6):Seeinmagnitude(correctedforGalacticdeterminedviaSEDfitting.Col.( 449 450 HOOPES ETAL. Vol. 173 Fig.4.—FUVsurfacebrightnessvs.FUVluminosityfor215UVLGsinthe Fig.5.—Half-lightradiusintheSDSSubandvs.FUVluminosityfor215UVLGs GR1/DR3sample.FUVluminosity(L1530)isdefinedaskPkat15308.FUVsur- intheGR1/DR3sample.FUVluminosity(L1530)isdefinedaskPkat15308.The ufa-cbeanbdrihgahltfn-leisgshtisraddeiufisn.ed as I1530¼L1530/(2#r520;u), where r50;u is the SDSS uouprpcehrodsoetntebdoluinnedasrhyobwestwaeceonnlsatragnetasnudrfcaocmepbarcigthUtnVeLssGos,fa1n0d8tLhe!lkopwce#r2d,owtthediclhinies showsI 109L kpc 2,whichisthelowerboundaryofvaluesseenintypical LBGsa1t5z30¼3(Giav!alisco#2002). ThisimpliesthattheUVLGsspanasimilarlylargerangeofsize. ¼ ThisisconfirmedinFigure5,whichplotstheluminosityagainst thehalf-lightradius.UVLGsrangeinhalf-lightradiusfrom<1to dergoingintensestarburststhataremuchmoresignificantthan >20 kpc. The dotted lines in Figure 5 show a constant surface thepastaveragerateof starformation.TheFUVsurfacebright- brightnessof108and109L kpc#2,thelatterbeingthelowerlimit nessappearstobeagoodindicatorofstarformationintensityfor seeninLBGsatz 3(Gi!avalisco2002).Onlyafractionof the UV-selected galaxies. The typical colors of LBGs are also in- ¼ UVLGshavesurfacebrightnessesthatrivalthoseof LBGs,even dicated in the plot (Shapley et al. 2001; Papovich et al. 2001; thoughtheyallhaveLBG-likeluminosities. Giavalisco2002). TheFUVsurfacebrightnessisrelatedtothestarformationin- Figure7showstheFUVsurfacebrightnessversusthespecific tensity,i.e.,thestarformationrateperunitarea.Figures4and5 starformationrate(starformationratenormalizedbystellarmass). showthenthatonlyasubsetoftheUVLGsareluminousbecause The extinction-corrected star formation rates were determined theyhavehighstarformationintensities.Therestowetheirhigh by SED model fitting. We have also calculated star formation luminositiestotheirlargesize;i.e.,theyhavemodestlevelsof ratesusingtheH!luminosityintheSDSSspectrausingtherec- starformationintensityspreadoveralargearea. ipegiveninKennicutt(1998);thesevaluesgenerallyagreewithin This is also apparent inFigure 3, which shows more clearly afactorof 2,whichisquitegoodconsideringthattheH! mea- thecorrelationbetweensurfacebrightnessandstellarmassnoted surementsweretakenthrough3 fibers.Thespecificstarforma- 00 above. The UVLGs with low surface brightness are the most tionraterelatesthecurrenttopaststarformation,andtheinverse massive,whilethehighsurfacebrightnessUVLGsarelow-mass of thisquantityisthe‘‘galaxybuildingtime,’’thetimeitwould systems.ThetypicalmassandsurfacebrightnessrangeofLBGs taketobuildupthecurrentstellarmassatthecurrentSFR.The isshowninthefigure(Shapleyetal.2001;Papovichetal.2001; specificstarformationrateisclearlycorrelatedwiththeFUVsur- Giavalisco 2002). Figures 3Y5 illustrate the fact that UVLGs facebrightness,withthehighsurfacebrightnesssystemsgener- spanacontinuousrangeof properties;i.e.,thereisnoclearde- ally having the highest specific SFRs and short building times, marcationbetweenthelargeandcompactsamples.Thedivision indicatingthatthesearestarburstsystems.ThelargeUVLGshave ofthesamplesatasurfacebrightnessofI1530 >108L kpc#2is galaxybuildingtimesofroughlyaHubbletime,asexpectedfora anarbitraryboundary. ! galaxy that has been built up over the age of the universe at a constantorslowlyvaryingrateofstarformation.Galaxybuilding 4.2. Star Formation and Attenuation by Dust timesoflessthan1GyraretypicalforLBGs(Shapleyetal.2001; Figure6showstheFUV-rcolorandNUV-rcolorforthe215 Papovich et al. 2001; Giavalisco 2002), and the high surface UVLGsasafunctionofsurfacebrightness.Bothcolorsarewell brightnessUVLGsoverlapthisrange.However,someofthehigh correlatedwithsurfacebrightness,withthebrightestgalaxieshav- surfacebrightnesssystemshavelowerspecificSFRsandlonger ingthebluestcolor.ThisagreeswiththeideathattheUV-optical buildingtimesthantypicalLBGs,whichsuggeststhattheyhave colorsaresensitivetotheratioof currenttopaststarformation. hadsignificantstarformationpriortothecurrentburst.Spitzer Salimetal.(2005)showedthattheNUV-rinparticularisagood imagingofLBGsindicatesthattheydonothavesignificantpop- tracerofthestarformationrateparameterb,whichisthecurrent ulationsofolderstars(Barmbyetal.2004),suggestingthatLBGs SFRdividedbythepast-averageSFR.Thebluecolorofthehigh areundergoingtheirfirstmajorburstof starformation.Ifthisis surface brightness UVLGs can be understood if they are un- thecase,thenthesesystemswithlongerbuildingtimesmaynot
Description: