ebook img

Homomorphism Complexes and k-Cores PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Homomorphism Complexes and k-Cores

HOMOMORPHISM COMPLEXES AND K-CORES 6 GREGMALEN 1 0 2 b e Abstract. Weprovethatthetopologicalconnectivityofagraphhomomorphismcomplex F Hom(G,Km)isatleastm−D(G)−2,whereD(G)=maxδ(H).Thisisastronggeneraliza- H⊆G 3 tionofatheoremofC˘ukic´andKozlov,inwhichD(G)isreplacedbythemaximumdegree 1 ∆(G).Italsogeneralizesthegraphtheoreticboundforchromaticnumber,χ(G)≤D(G)+1, asχ(G) = min{m : Hom(G,Km) , ∅}. Furthermore, weusethisresulttoexamineho- O] mologicalphasetransitionsintherandompolyhedralcomplexesHom(G(n,p),Km)when p=c/nforafixedconstantc>0. C . h 1. Introduction t a Thestudyofgraphhomomorphismcomplexes,Hom(G,H)forfixedgraphsG and H, m grew out of a rising interest in finding topologicalobstructionsto graph colorings, as in [ Lova´sz’s proof of the Kneser Conjecture [11]. Specifically, Lova´sz used the topologi- 2 cal connectivity of the NeighborhoodComplex, N(G), to provide a lower bound on the v chromatic numberof a Kneser graph. It turns out that N(G) is a specialization of a ho- 4 momorphismcomplex, as it is homotopyequivalentto Hom(K ,G) (see Proposition 4.2 2 5 in[2]). Thestructureoftheunderlyinggraphshasmanyquantifiableeffectsonthetopol- 8 ogyofthesecomplexes.The0-cellsofHom(G,H)arepreciselythegraphhomomorphisms 7 0 fromG → H,andsothemoststraighforwardsuchresultisthatthechromaticnumberof . G, χ(G),istheminimummforwhichHom(G,K )isnon-empty.For∆(G)themaximum 1 m 0 degreeofG, BabsonandKozlovconjectured[2], andC˘ukic´ andKozlovlaterproved[6] 6 that if ∆(G) = d, then Hom(G,Km) is at least (m − d − 2)-connected. Note that when 1 m=d+1thisrecoversthewellknownboundχ(G)≤∆(G)+1. v: In graph theory, there is an improvementof this boundusing the minimum degreeof i inducedsubgraphs,namelythatχ(G)≤maxδ(H)+1,forδ(H)theminimumdegreeofH. X H⊆G ThevalueD(G) ≔ maxδ(H)isknownasthedegeneracyofG,agraphpropertywhichis r H⊆G a commonlyutilized in computerscience and the study of large networks. Using D(G) in placeof∆(G),inSection3weproveageneralizationofthisgraphtheoreticresultwhich willalsospecializetotheC˘ukic´–KozlovTheorem. InSection4wefocusonthecasethat H = K andshow,withonlyafewnotableexceptions,thatHom(G,K )isdisconnectedif 3 3 itisnon-empty. Furthermore,inthesettingofrandomgraphstheevolutionofD(G)forasparseErdo˝s– Re´nyi graph G ∼ G(n,p) has been well studied. For p = c/n for a constant c > 0, Pittel, Spencer,andWormwaldexhibitedsharpthresholdsforthe appearanceandsize of subgraphswith minimum degree k [13]. In Section 5 we combine our results with their worktoexhibitbothphasetransitionsandlowerboundsforthetopologicalconnectivityof therandompolyhedralcomplexesHom(G(n,c/n),K ) forconstantc > 0. When m = 3, m Date:February16,2016. 1 2 GREGMALEN we are able to use the results from Section 4 to evaluate the limiting probability for the connectivityofHom(G(n,c/n),K )forallc>0. 3 2. BackgroundandDefinitions Inthefollowing,allgraphsareundirectedsimplegraphs,andK isthecompletegraph m onmvertices. ForagraphGandavertexv∈V(G),whenitisclearfromcontextwemay writesimplythatv∈G.Inthissectionwedefineagraphhomomorphismcomplex,orhom- complex,andvariouspropertieswhichwillbeusedtoacquireboundsonthetopological connectivityofthesecomplexes. Definition 2.1. For fixed graphsG and H, a graph homomorphism from G → H is an edgepreserving map onthe vertices, f : V(G) → V(H) such that{f(v), f(u)} ∈ E(H)if {v,u}∈ E(G). Definition2.2. ForfixedgraphsGandH,cellsinHom(G,H)arefunctions η:V(G)→2V(H)\∅ withthe restrictionthatif{x,y} ∈ E(G), thenη(x)×η(y) ⊆ E(H). The dimensionofηis definedtobedim(η)= (|η(v)|−1),withorderingη⊆τifη(v)⊆τ(v)forallv∈V(G). v∈XV(G) The set of 0-cells of Hom(G,H) is then precisely the set of graph homomorphisms fromG → H, withhigherdimensionalcellsformedoverthemasmultihomomorphisms. Furthermore,everycellinahom-complexisaproductofsimplices,andhom-complexes areentirelydeterminedbytheir1-skeletons.Ifηisaproductofsimplicesandits1-skeleton is contained in Hom(G,H), then η ∈ Hom(G,H). The 1-skeleton of Hom(G,H) can be thoughtofinthefollowingmanner.Twographhomomorphismsη,τ:G →Hareadjacent inHom(G,H)ifandonlyiftheirimagesdifferonexactlyonevertexv∈G. Soη(v),τ(v), η(u)=τ(u)forallu∈G\{v},andthe1-celljoiningηandτisthemultihomomorphismσ forwhichσ(v)=η(v)∪τ(v)andσ(u)=η(u)=τ(u)forallu∈G\{v}. Sincethepropertyofbeingahomomorphismisindependentondisjointconnectedcom- ponentsofagraph,hom-complexesobeyaproductrulefordisjointunions.Foranygraphs G,G′andH, Hom(G∐G′,H)=Hom(G,H)×Hom(G′,H) Thus,whenconvenientwecanalwaysrestrictourattentiontoconnectedgraphs. Herewe alsointroducethenotionofagraphfolding. Definition2.3. Denotetheneighborhoodofavertexv∈GbyN(v)={w∈G :w∼v}. Let v,u ∈ G bedistinctverticessuchthatN(v) ⊆ N(u). ThenafoldofG isahomomorphism fromG →G\{v}whichsendsv7→uandisotherwisetheidentity. Lemma2.4. (Babson,Kozlov;Proposition5.1in[2]).IfGandHaregraphsandv,u∈G aredistinctverticessuchthatN(v)⊆N(u),thenthefoldingG →G\{v}whichsendsv7→u inducesahomotopyequivalenceHom(G\{v},H)→Hom(G,H). IfT isatree,forexample,thenT foldstoasingleedge,soHom(T,K )≃Hom(K ,K ). m 2 m AndbyProposition4.5in[2],Hom(K ,K )ishomotopyequivalenttoawedgeof(m−n)- n m spheres, andinparticularHom(K ,K ) ≃ Sm−2. So Hom(T,K ) ≃ Sm−2 foranytree T. 2 m m Forathoroughintroductiontohom-complexes,see[2]. HOMOMORPHISMCOMPLEXESANDK-CORES 3 Notation2.5. ForagraphGdefinethemaximumdegreetobe∆(G)≔ max{deg(v)},and v∈V(G) theminimumdegreetobeδ(G)≔ min{deg(v)}. v∈V(G) Definition2.6. Thek-coreofagraphGisthesubgraphc (G)⊆Gobtainedbytheprocess k ofdeletingverticeswithdegreelessthenk,alongwithallincidentedges,oneatatimeuntil therearenoverticeswithdegreelessthank. Regardlessoftheorderinwhichverticesaredeleted,thisprocessalwaysterminatesin theuniqueinducedsubgraphc (G) ⊆ G whichismaximaloverallsubgraphsofGwhich k haveminimumdegreeatleastk. Thek-coreofagraphmaybetheemptygraph,andthe existenceofanon-emptyk-coreisamonotonequestion,asc(G)⊆c (G)whenever j≤l. l j Hereweareinterestedinthemosthighlyconnectednon-trivialsubgraph. Definition2.7. ThedegeneracyofGisD(G)≔maxδ(H),forHaninducedsubgraph. H⊆G ThenD(G)isthemaximumksuchthatc (G)isnon-empty.Giventhesedefinitions,we k arenowabletostatethemaintheorem: Theorem2.8. ForanygraphG,Hom(G,K )isatleast(m−D(G)−2)-connected. m And D(G) ≤ ∆(G), hencethis willimply the C˘ukic´–KozlovTheorem. Ourinterestis primarilyinapplyingthisresulttothecasethatG isasparseErdo˝s–Re´nyirandomgraph, whereD(G)hasbeenstudiedextensivelyandismuchsmallerthan∆(G). Itshouldalsobe notedthatEngstro¨mgaveasimilarstrengtheningoftheC˘ukic´–KozlovTheoremin[8],re- placing∆(G)withagraphpropertywhichisindependentofD(G)andwhichmayprovide abettertoolforstudyingthedenseregime. 3. ProofofTheorem2.8 To provethe theorem,we firstintroducea resultofCsorbawhichfindssubcomplexes thatarehomotopyequivalenttoHom(G,K )byremovingindependentsetsofG. m Notation3.1. LetGandH begraphs.Define Ind(G)≔{S ⊆V(G):S isanindependentset} AndforI ∈Ind(G)define HomI(G,H)≔ η∈Hom(G\I,H): thereisη∈Hom(G,H)withη|G\I =η n o So Hom (G,H)isthe subcomplexofHom(G\I,H)comprisedofallmultihomomor- I phismsfromG\I →H whichextendtomultihomomorphismsfromG →H. Theorem3.2. (Csorba;Theorem2.36in[5])ForanygraphsGandH,andanyI ∈Ind(G), Hom(G,H)ishomotopyequivalenttoHom (G,H). I The proof of this is an application of both the Nerve Lemma and the Quillen Fiber Lemma,andamorethoroughexaminationofthispropertyisgivenbySchultzin[14].Note thatwhenH = K andI ={v}foranyvertexv∈G,amultihomomorphismη:G\{v}→K m m 4 GREGMALEN hasanextensionη:G →K aslongasthereissomevertexinK whichisnotinη(w)for m m anyw∈ N(v). Thus . Hom{v}(G,Km)=η∈ Hom(G\{v},Km):(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)w[∈N(v)η(w)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)≤m−1 Lemma3.3. LetGbeagraphwithavertexvsuchthatdeg(v)≤k. Thenthe(m−k−1)- skeletonofHom(G\{v},K )iscontainedinHom (G,K ). m {v} m ProofofLemma3.3.Letη∈Hom(G\{v},K )\Hom (G,K ). Then m {v} m m=(cid:12) η(w)(cid:12)≤ |η(w)| (cid:12) (cid:12) (cid:12)(cid:12)w[∈N(v) (cid:12)(cid:12) w∈XG\{v} (cid:12) (cid:12) (cid:12) (cid:12) And (cid:12) (cid:12) (cid:12) (cid:12) dim(η)= (|η(w)|−1)= |η(w)| −|N(v)| ≥ m−k   Henceifη∈Hom(G\{wv∈X}G,\K{vm})withdim(η)≤wm∈XG\−{v}k−1,thenη∈Hom{v}(G,Km). (cid:3) So if Hom(G \{v},K ) is (m−k −2)-connected, then Hom (G,K ) is (m−k − 2)- n {v} n connected. Combining this with Csorba’s theorem, we have the following corollary and theproofofTheorem2.8: Corollary3.4. LetGbeagraphwithavertexvsuchthatdeg(v)≤k. IfHom(G\{v},K ) n is(m−k−2)-connected,thenHom(G,K )is(m−k−2)-connected. n Proof of Theorem 2.8. Let G be a graph with D(G) = k. Then ck+1(G) is the empty graph,andthereisasequenceG =G , G = G \{v},withdeg (v) ≤ k,terminating inG =∅. SoG isasinglev0erteix,andi−H1om(iG ,KG)i−1=∆im,them-simplex, |V(G)| |V(G)|−1 |V(G)|−1 n whichiscontractible,andthus(m−k−2)-connected. Hence,byinduction,Hom(G,K ) m isalso(m−k−2)-connected.(cid:3) 4. Hom(G,K ) 3 WhenG is a graph such that χ(G) ≤ 3, Hom(G,K ) has a particularlynice structure. 3 IfGdoesnothaveanisolatedvertex,thenHom(G,K )isacubicalcomplex,andBabson 3 andKozlovshowedthatitadmitsametricwithnonpositivecurvature[2]. Noticethatfor a connected graph G with χ(G) ≤ 3, the bound obtained by Theorem 2.8 when m = 3 provides no new information. When D(G) = 1, G is a tree and folds to a single edge, so Hom(G,K ) ≃ Hom(K ,K ) ≃ S1. When D(G) = 2, the boundmerelyconfirmsthat 3 2 3 Hom(G,K )isnon-empty,andforD(G) > 2itgivesnoinformationatall. Hereweshow 3 thatHom(G,K )is,infact,disconnectedforalargeclassofgraphsGwithχ(G)≤3. 3 Theorem4.1. IfGisagraphwithχ(G)=3,thenHom(G,K )isdisconnected. 3 Thisresulthasbeenformulatedpreviouslyinthelanguageofstatisticalphysics,where Glauberdynamicsexaminespreciselythe1-skeletonofHom(G(n,p),K ). See,forexam- m ple, the workof Cereceda, vanden HeuvelandJohnson[3]. We providea proofhere in the contextof workon hom-complexesof cyclesdoneby C˘ukic´ and Kozlov,and offer a HOMOMORPHISMCOMPLEXESANDK-CORES 5 moregeneralapproachforliftingdisconnectedcomponentsviasubgraphsinthefollowing lemma. Lemma 4.2. Let G ⊆ G′ and H be graphs such that Hom(G,H) is non-empty and dis- connected. Letη ,η ∈ Hom(G,H)be0-cells, i.e. graphhomomorphismsfromG → H, 1 2 suchthattheyareindistinctconnectedcomponentsofHom(G,H). Ifthereareextensions η1,η2 ∈Hom(G′,H)withηi|G =ηi fori∈{1,2},thenHom(G′,H)isalsodisconnected. ProofofLemma4.2. Letη ,η begraphhomomorphismsfromG → H suchthatthey 1 2 areindistinctconnectedcomponentsofHom(G,H),withextensionsη ,η ∈Hom(G′,H). 1 2 Wemayassumethatdim(η)=0foreachi,sinceotherwiseany0-cellstheycontainwould i also be extensions of η. Suppose that η ,η are in the same connected component of i 1 2 Hom(G′,H). Thenthereisapathη = τ ∼ τ ∼ τ ∼ ... ∼ τ = η inHom(G′,H),with 1 0 1 2 l 2 dim(τj) = 0forall j. Letτj = τj|G,for0 ≤ j ≤ l. ThenasfunctionsonV(G′),foreach j thereisonevertexvj ∈G′forwhichτj(vj),τj+1(vj),andtheyagreeonallothervertices. If vj ∈ G′ \G, then for the restrictionsτj = τj+1. If vj ∈ G, then τj(vj) , τj+1(vj), but theyagreeonallothervertices,soτj ∼τj+1inHom(G,H).HencethepathinHom(G′,H) projectsontoapossiblyshorterpathfromη toη inHom(G,H),whichisacontradiction. 1 2 Thereforetheextensionsη andη mustbeindifferentconnectedcomponentsofHom(G′,H), 1 2 whichisthusdisconnected.(cid:3) ThesubgraphsweexaminetoobtaindisconnectedcomponentsofHom(G,K )willbe 3 cycles. In[7], C˘ukic´ and Kozlovfullycharacterizedthe homotopytype ofHom(C ,C ) n m foralln,m∈N. Inparticular,theyshowedthatall0-cellsinagivenconnectedcomponent havethesame numberof whattheycallreturnpoints. Forthese complexes,letV(C ) = n {v1,...,vn}suchthatvi ∼v(i+1)modn forall1≤i≤n,andletV(Cm)={1,...,m}suchthat j ∼ (j+1)modmforall1 ≤ j ≤ m. Forthepurposeofdefiningthereturnnumberofa 0-cellη,wemomentarilydropthesetbracketnotationandwriteη(v)= j. i Definition4.3. A return pointofa 0-cellη ∈ Hom(C ,C ) is a vertex v ∈ C suchthat n m i n η(vi+1)−η(vi) ≡ −1modm. Thenr(η), thereturnnumberofη, is thenumberofvi ∈ Cn whicharereturnpointsofη. Notethatsinceηisahomomorphism,thequantityη(vi+1)−η(vi)isalways±1modm. ItsimplymeasuresinwhichdirectionCn iswrappingaroundCm ontheedge{vi,vi+1}. Lemma 4.4. (C˘ukic´,Kozlov, Lemma 5.3in[7])Iftwo 0-cellsofHom(C ,C ) are in the n m sameconnectedcomponent,thentheyhavethesamereturnnumber. For a 0-cell η ∈ Hom(G,K ), one may always obtain another 0-cell by swapping the m inverseimagesoftwoverticesinK . Whenthetargetgraphisacompletegraph,werefer m totheinverseimageofavertexinK asacolorclassofη. Whenm=3,wehaveK =C m 3 3 andwecantracktheeffectthatinterchangingtwocolorclasseshasonthereturnnumber. Notation4.5. Fora0-cellη ∈Hom(G,K ),letη denotethe(l, j)-interchanging0-cell m {l,j} obtainedbydefiningη−1 (l)=η−1(j), η−1 (j)=η−1(l),andη−1 (i)=η−1(i)foralli<{l, j}. {l,j} {l,j} {l,j} Lemma4.6. Fixapair{l, j}⊂{1,2,3}, l, j. Thenforany0-cellη∈Hom(C ,K ),every n 3 v ∈C isareturnpointforexactlyoneofηandη . Hencer η =n−r(η). i n {l,j} {l,j} (cid:16) (cid:17) 6 GREGMALEN ProofofLemma4.6. Considertheedge{vi,vi+1}. SIncethetargetgraphis K3, we have that{η(vi),η(vi+1)}∩{l, j},∅. If{η(vi),η(vi+1)}={l, j},then η{l,j}(vi+1)−η{l,j}(vi)=−(η(vi+1)−η(vi)) Thusv is a returnpointof η if and onlyif it is nota returnpointof η . Alternatively, i {l,j} if|{η(vi),η(vi+1}∩{l, j}| = 1,thenoneofvi andvi+1 hasastationaryimageunderan(l, j)- interchangewhiletheotherdoesnot. Byfixingtheimageofonevertexandchangingthe other,thisflipsthedirectionthatCniswrappingaroundK3ontheedge{vi,vi+1}. Soreturns becomenon-returnsandviceversa. Thereforeeachv ∈C isareturnpointofexactlyone i n ofηandη{l,j}foranyfixed{l, j}⊂{1,2,3}.(cid:3) TheproofofTheorem4.1willthenproceedbyfindinganoddcycleinG andusinga colorclassinterchangetoproduce0-cellsindistinctconnectedcomponents,whichcanbe liftedfromHom(C2k+1,K3)toHom(G,K3). Proof of Theorem 4.1 Since χ(G) = 3, Hom(G,K ) is non-empty and G contains an 3 odd cycle H = C2k+1 for some k ∈ N. Note that we do not require H to be an induced cycle. Let η ∈ Hom(G,K3) be a 0-cell, and let τ = η|H be the induced homomorphism on H. Fix a distinct pair {l, j} ⊂ {1,2,3} and consider the (l, j)-interchange η . It is {l,j} straightforwardthat η{l,j}|H = τ{l,j} ∈ Hom(H,K3). Thus by Lemma 4.6, r τ{l,j} = 2k+ 1 − r(τ) , r(τ). Hence, by lemma 4.4 they are in different connected c(cid:16)ompo(cid:17)nents of Hom(H,K ), and by Lemma 4.2 their extensions η and η are in different connected 3 {l,j} componentsofHom(G,K3),whichisthusdisconnected.(cid:3) Bipartitegraphsareabitmorecomplicated. WehaveseenthatforanygraphGwhich foldstoasingleedge,Hom(G,K )≃S1. WhenGisbipartiteanddoesnotfoldtoanedge, 3 it must contain an even cycleC for k ≥ 3. So by the same method one can start with 2k η ∈ Hom(G,K3) and take its restriction η|C2k = τ ∈ Hom(C2k,K3). But if r(τ) = k, then interchangingtwo color classes no longer guaranteesdisjointcomponents. In particular, theexistenceoftoomany4-cyclesclosetoC mayforcer(τ) = k. Forexample,for Q 2k 3 the1-skeletonofthe3-cube,Hom(Q ,K )isconnected.NotethatD(Q )=3,sothelower 3 3 3 boundachievedbyTheorem2.8doesnotprovideanyinformation. Restrictingtothecase thatG omitsthesubgraphsin Figure4.1issufficienttoensurethatthisdoesnothappen, andthatHom(G,K )isdisconnected. 3 H = H = 1 2 Figure4.1. IfHom(G,K )isconnected,thenGmustcontainH orH . 3 1 2 Theorem4.7. IfG isafinite, bipartite, connectedgraphwhichdoesnotfoldtoanedge anddoesnotcontainH orH asasubgraph,thenHom(G,K )isdisconnected. 1 2 3 To showthis requiresa greatdealof case-by-casestructuralanalysis whena minimal evencycle inG has length6, 8, or 10. The methodof the proofwill suggesta stronger, albeitmoretechnicalresult. HOMOMORPHISMCOMPLEXESANDK-CORES 7 ProofofTheorem4.7. LetG bea finite,bipartite,connectedgraphwhichdoesnotfold to an edge and doesnotcontain H or H as a subgraph. SinceG is finite, bipartite and 1 2 does not fold to an edge, it must contain an even cycle of length greater than 4. Let H = C , k ≥ 3 be a fixed cycle inG which has minimallength over all cycles inG of 2k lengthgreaterthan4.LabeltheverticesofHasv1,...,v2ksuchthatvi ∼v(i+1)mod2kforall i. H cannothaveinternalchords,asanysuchedgewouldcreateacycleC for4<l< 2k, l orinthecasethatk = 3anantipodalchordwouldcreateacopyofH . For2k ≡ imod3, 1 takeτ ∈Hom(H,K )suchthatτ(v ) = {jmod3}for j ≤ 2k−i,withτ(v ) = {2}ifi = 1, 3 j 2k andτ(v )={1}, τ(v )={2}ifi=2. Figure4.2depictsτfork ∈{3,4,5}. 2k−1 2k {1} {1} {1} {2} {2} {2} {2} {3} v1 {2} v1 v v1 v v v 10 2 v v 8 2 6 2 {3} v v {3} 9 3 {1} v7 v3 {3} v v v8 v4 5 3 v6 v4 {2} v v {1} {2} v {3} v 7 v 5 4 {3} 5 {1} 6 {1} {2} {1} {2} {3} (a) C , 2k≡0mod3 (b) C , 2k≡2mod3 (c) C , 2k≡1mod3 6 8 10 Figure4.2. ImageofτonH =C 2k As defined, only the last two vertices of C can be return points of τ. So r(τ) ≤ 2 in 2k all cases, and hence is not equal to k for any k ≥ 3. Then for any {l, j} ⊂ {1,2,3}, r(τ ) , r(τ). Thus τ and τ are in distinct connected components of Hom(H,K ). {l,j} {l,j} 3 Soif we canconstructanextensionηto allofG, thenη willextendτ andhenceη {l,j} {l,j} andη willbeindistinctconnectedcomponentofHom(G,K ). {l,j} 3 Defined(u,v)tobetheminimalnumberofedgesinapathconnectingtwoverticesu,v∈G. LetσbeabipartitionofG,viewedasa0-cellofHom(G,K )withimagecontainedin{1,2}. 3 We willletη = σonG\H andthenmakeadjustmentsasnecessarywhenthedefinition conflictswithτ. Definethefollowingsets: B ≔{u∈G :min{d(u,v):v∈H}=i} i A ≔{u∈ B :∃v∈ N(u)∩H withσ(u)=τ(v)} 1 A ≔{u∈A:|N(u)∩H|=i,|N(u)∩A|= j} i,j SoB isthesetofpointsdistanceifromH,andAisthesetofpointsinG\Honwhichwe i cannotdefineη=σ. ToarriveatanappropriatedefinitionforηonthesetA,wemustfirst makesomestructuralobservationsconcerningthepartitioningofAintothesubsetsA . i,j Claim4.8. Foreveryu ∈ B , |N(u)∩H| ≤ 2. Andif|N(u)∩H| = 2, then N(u)∩H = 1 {vi,v(i+2)mod2k}forsomei≤2k. ProofofClaim4.8. Letu∈ B . ThenconnectingutoanytwopointsinH createsacycle 1 of length at most k +2 < 2k, as in Figure 4.3 (a). Since G is bipartite and H is mini- malwithrespectto havinglengthatleast6, thisisvalidonlyifitcreatesa4-cycle,with 8 GREGMALEN N(u)∩H = {vi,v(i+2)mod2k}forsomei ≤ 2k. Similarly,anyfurtherpointsofattachment would need to be in a 4-cycle with each of the other two vertices in N(u)∩H. But this isonlypossibleif H = C , inwhichcase it wouldcreate severalcopiesof H , shownin 6 1 Figure4.3(b).(cid:3) (a) H=C , |N(u)∩H|>2⇒C (b) H=C , |N(u)∩H|>2⇒H 8 6 6 1 Figure4.3. Obstructionsto|N(u)∩H|>2 Thisimposesthati ≤ 2forA ⊆ A,whilethefollowingtwoclaimswillshowthat jisat i,j most1,andthat j=1onlyifi=1. Claim4.9. Letk ≥ 4,andletu ∈ B . Then|N(u)∩B | ≤ 1,andif N(u)∩B , ∅then 1 1 1 |N(u)∩H|=1. ProofofClaim. Letk ≥ 4, letu ∈ B , andlet w ∈ N(u)∩B , with u ∼ v andw ∼ v . 1 1 i j G is bipartite, so v , v . If v / v , as in Figure 4.4 (a), there is a cycle of length l i j i j with 4 < l ≤ k + 3 < 2k. So v ∼ v . Suppose further that |N(u) ∩ H| = 2. Then i j N(u)∩H = {v(j−1)mod2k,v(j+1)mod2k} since both must be adjacent to vj, as in Figure 4.4 (b). But then the induced graphon {u,w,v(j−1)mod2k,vj,v(j+1)mod2k} is a copy of H2. So if N(u)∩B , ∅ foru ∈ B , then|N(u)∩H| = 1. Nowsuppose|N(u)∩B | > 1. Then 1 1 1 thereis a vertex x ∈ N(u)∩ B with x , w. As with w, the vertexin N(x)∩H mustbe 1 adjacenttov. If x ∼ v , asinFigure4.4(c),then{u,w,x,v,v }isacopyof H ,andif x i j i j 2 isconnectedtotheotherneighborofv,asinFigure4.4(d),thenitcreatesacopyofH . i 1 Thus|N(u)∩B1|≤1. (cid:3) x u w u vi v v u v u j i i x v v vj j w j w w (a) v /v; (b) |N(u)∩H|=2; (c) |N(u)∩B |=2; (d) |N(u)∩B |=2; i j 1 1 Ck+3 H2 H2 H1 Figure4.4. InvalidstructuresinGifClaim4.9isfalse. Fork =3asimilarresultholdswhenB isreplacedbythesubsetA: 1 Claim 4.10. Let k = 3, andlet u ∈ A. Then |N(u)∩A| ≤ 1, andif N(u)∩A , ∅ then |N(u)∩H|=1. HOMOMORPHISMCOMPLEXESANDK-CORES 9 ProofofClaim. Letu∈ Aandletw∈ N(u)∩A. Recallthatfor2k =6, τ(v)={imod3} i foralli. Thenwithoutlossofgeneralityassumethatσ(u)={1}andu∼v . Soσ(w)={2}, 1 andsincew∈Aitmustbeadjacenttoatleastoneofv andv .ButGisbipartiteandu∼v 2 5 5 createsa5-cycle,asindicatedinFigure4.5(a).Thusw∼v ,andthesameargumentholds 2 to show that u ∼ v if one first assumes that w ∼ v . Furthermore, if w ∼ v or w ∼ v 1 2 4 6 there is a copy of H or H , respectively, depicted in Figure 4.5 (b), (c). By symmetry 1 2 u / v , u / v . Hence,ifu ∈ Awith N(u)∩A , ∅,then|N(u)∩H| = 1. Nowsuppose 3 5 thereisx∈N(u)∩Awithx,w. Thenσ(x)={2},andbytheprecedingargumentwehave thatx∼v . But,asshowninFigure4.5(d),{u,w,x,v ,v }isthenacopyofH . Hencefor 2 1 2 2 u∈ A, |N(u)∩A|≤1. (cid:3) w u u u x u v v v v w 1 1 v v 1 v 1 v 2 6 2 2 w v 5 v 4 w (a) w∼v ; C (b) w∼v ; H (c) w∼v ; H (d) |N(u)∩A|>2; H 5 5 4 1 6 2 2 Figure4.5. InvalidstructuresinGifClaim4.10isfalse. Then for all k ≥ 3 we have that A = A ∪ A ∪ A , and vertices in A which are 1,0 2,0 1,1 1,1 adjacent to each other have adjacent attaching vertices in H. When possible, we will define η(v) = {3} for vertices v ∈ A. However, this not possible on all vertices in A , 1,1 norforverticesinA whichhaveaneighborinH thatisalreadyassigned{3}. Sodefine 2,0 A= u∈A :{τ(v):v∈N(u)∩H}={σ(u),{3}} ∪ u∈ A :σ(u)={2} 2,0 1,1 (cid:8) (cid:9) (cid:8) (cid:9) Nowdefineη:G →K by: 3 τ(u) ifu∈ H {1} ifu∈ A∩A ;  1,1  η(u)= {{23}} iiffuuu∈∈∈AAA\∩∩AAA;22,,00wwiitthhσσ((uu))=={{12}}   σ(v) elseu∈G\(A∪H)withN(u)∩A,∅  Noticethatforu∈ A,η(u)={1,2}\σ(u)=σ(w)foranyw∈ N(u).Hencethelastqualifier assigns{3}toanyneighborsofverticesinAwhichneedtobeswitched,andη = σonall remainingvertices. It is clear that this defines a homomorphism on A ∪ H, and on any edges between ver- tices u ∈ G \ (A ∪ H) for which N(u) ∩ A = ∅. Thus it suffices to check that this is consistentonedgeswithavertexu ∈ G\(A∪H)forwhichN(u)∩A , ∅. Notethatby definition,anysuchuwillhaveη(u)={3}. Sotoensurethatη(w), {3}foranyw∈ N(u), 10 GREGMALEN wemustcheckthatN(u)∩ A\A =∅,andforallw∈ N(u)thatN(w)∩A=∅. Thecases k=3andk≥4mustagain(cid:16)behan(cid:17)dledseparately. Claim4.11. Letk≥4,andletu∈G\(A∪H)withx∈ N(u)∩A.ThenN(u)∩ A\A =∅, andifw∈ N(u)thenN(w)∩A=∅. (cid:16) (cid:17) Proof of Claim. Let u and x be as in the claim. Since x ∈ A ⊆ B , it must be that 1 u∈(B ∪B )\A. Supposefirstthatu∈ B . Then|N(u)∩B |≤1byClaim4.9,andhence 1 2 1 1 N(u)∩A={x}. SoN(u)∩ A\A =∅.Similarly,Claim4.9impliesthatN(x)∩B ={u}and 1 that|N(x)∩H|=1,sox∈(cid:16) A ,(cid:17)whichcontradictsourassumptionthatx∈A⊆ A ∪A . 1,0 2,0 1,1 Sou< B . 1 Suppose instead that u ∈ B , and thus N(u) ⊆ B ∪ B ∪ B . For w ∈ N(u)∩ B it is 2 1 2 3 3 immediatethatw < A and that N(w)∩A ⊆ (N(w)∩B ) = ∅. Thenassume thatthere 1 is w ∈ N(u)∩ B , w , x. The(cid:16)n σ(w) =(cid:17)σ(x) since G is bipartite, and thus for any at- 1 taching points in H, v ∼ x, v ∼ w, it must be that i and j are either both odd or both i j even. Since x ∈ A ∪A we mayassume that eitheri , j or x ∈ A . Recall thatan 2,0 1,1 1,1 adjacentpairinA formsasquarewithitsadjacentpairinH. Soifi= jandx∈ A with 1,1 1,1 {z} = N(x)∩A ,thenzisadjacenttooneofthetwoverticesinN(v)∩H. Asshownin 1,1 i Figure4.6(a),thiscreatesacopyofH . Sowemayassumethati , j. Butthentheshort 1 pathbetweenv andv inH alongwith{u,w,x}createsacycleoflengthl, 6≤l≤k+4. i j z x x x v v i i vi u u u v v w j j w w (a) i= j, x∈A ; H (b) i, j; C fork=5 (c) i, j; C fork=4 1,1 1 9 8 Figure4.6. w∈ N(u)∩B , w, x. 1 Ifk ≥ 5thislengthislessthan2k,asinFigure4.6(b),whichcontradictstheminimality of H. If k = 4, this creates a cycle of length 8 only if j = (i+4) mod 8, as in Figure 4.6(c). Recallthatasdefinedfork = 4 (seeFigure4.2(b)), τ(vi) , τ(v(i+4)mod8)forall i. But σ(x) = σ(w), and therefore x and w cannotboth be in A. As this is true for any pair of vertices in N(u)∩ B , it must be that |N(u)∩ A| ≤ 1, and hence by assumption 1 N(u)∩A={x}. Furthermore,foranyw∈ B \A,ifw∼zwithz∈A,thenbyClaim4.9it 1 mustbethatz∈A . ThusN(w)∩A=∅forallw∈ N(u)∩B . 1,0 1 Now suppose that w ∈ N(u) ∩ B . Note that w < A ⊆ B . Then let x = x and let 2 1 u x ∈N(w)∩B . Notethatσ(x ),σ(x )sincethereisapathoflength3fromx tox ,so w 1 u w u w theconnectingverticesforx andx inH mustbedistincttoavoidcreatinganoddcycle. u w ThenthepathbetweentheirconnectingverticesinH alongwith x ,u,w,and x createsa u w cycleoflengthl, 6≤l≤k+5. Fork >5suchacyclecontradictstheminimalityofH. Suppose k = 4. Then to avoid creating a cycle of length less than 8, this construction requiresthatthepathinHbetweentheconnectingpointsofx andx islength3.Suppose u w by way of contradictionthat x ∈ A. So both x ,x ∈ A ⊆ A ∪A . Withoutloss of w u w 2,0 1,1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.