PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) RecollementsofTriangulatedCategories Homological Theory of Recollements of Abelian Categories Chrysostomos Psaroudakis University of Ioannina ICRA XV, Bielefeld, Germany August 14, 2012 ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) RecollementsofTriangulatedCategories Table of contents 1 Preliminaries on Recollements of Abelian Categories Definitions and Basic Properties Examples 2 Homological Algebra in Rab(A,B,C) Extensions, Global and Finitistic Dimension Representation Dimension 3 Recollements of Triangulated Categories Rouquier Dimension Triangular Matrix Rings ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) DExeafimniptlieosnsandBasicProperties RecollementsofTriangulatedCategories Definition A recollement situation between abelian categories A,B and C is a diagram q l (cid:123)(cid:123) (cid:124)(cid:124) A (cid:98)(cid:98) i (cid:47)(cid:47)B(cid:98)(cid:98) e (cid:47)(cid:47)C Rab(A,B,C) p r satisfying the following conditions: 1. (l,e,r) is an adjoint triple. 2. (q,i,p) is an adjoint triple. 3. The functors i, l, and r are fully faithful. 4. Imi = Kere. ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) DExeafimniptlieosnsandBasicProperties RecollementsofTriangulatedCategories Properties of R (A,B,C) ab 1 The functors e: B −→ C and i: A −→ B are exact. 2 The composition of functors ql = pr = 0. (cid:39) (cid:39) (cid:39) (cid:39) 3 qi −→ IdA, IdA −→ pi, er −→ IdC and IdC −→ el. 4 The functor i induces an equivalence between A and the Serre subcategory Kere = Imi of B. 5 A is a localizing and colocalizing subcategory of B and there is an equivalence B/A (cid:39) C. 6 For every B ∈ B we have exact sequences: 0 (cid:47)(cid:47)Kerµ (cid:47)(cid:47)le(B)µB (cid:47)(cid:47)B λB(cid:47)(cid:47)iq(B) (cid:47)(cid:47)0 B 0 (cid:47)(cid:47)ip(B) κB (cid:47)(cid:47)B νB (cid:47)(cid:47)re(B) (cid:47)(cid:47)Cokerν (cid:47)(cid:47)0 B ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) DExeafimniptlieosnsandBasicProperties RecollementsofTriangulatedCategories Example: (One idempotent) Let R be a ring and e2 = e ∈ R an idempotent. Then we have the recollement: R/ReR⊗R− Re⊗eRe− (cid:119)(cid:119) (cid:120)(cid:120) inc (cid:47)(cid:47) e(−) (cid:47)(cid:47) Mod-R/R(cid:103)(cid:103)eR Mod-R(cid:102)(cid:102) Mod-eRe Hom (R/ReR,−) Hom (eR,−) R eRe ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) DExeafimniptlieosnsandBasicProperties RecollementsofTriangulatedCategories Example: (Generalized Matrix Rings) Let R, S be rings, M a S-R-bimodule and N a R-S-bimodule. Let φ: M ⊗ N −→ S be a S-S-bimodule homomorphism and let R ψ: N ⊗ M −→ R be a R-R-bimodule homomorphism. Then the S above data allow us to define the generalized matrix ring: (cid:18) (cid:19) R N Λ = R S (φ,ψ) M S S R where the multiplication is given by (cid:18)r n(cid:19) (cid:18)r(cid:48) n(cid:48)(cid:19) (cid:18)rr(cid:48)+ψ(n⊗m(cid:48)) rn(cid:48)+ns(cid:48) (cid:19) · = m s m(cid:48) s(cid:48) mr(cid:48)+sm(cid:48) ss(cid:48)+φ(m⊗n(cid:48)) e1 = (cid:0)10R 00(cid:1), e2 = (cid:0)00 10S(cid:1) idempotents elements of Λ(φ,ψ). Then: ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) DExeafimniptlieosnsandBasicProperties RecollementsofTriangulatedCategories Example: (Generalized Matrix Rings) Λ/Λe1Λ⊗Λ− Λe1⊗e1Λe1− (cid:120)(cid:120) (cid:121)(cid:121) Mod-Λ/Λe Λ inc (cid:47)(cid:47)Mod-Λ e1(−) (cid:47)(cid:47)Mod-e Λe (cid:102)(cid:102) 1 (φ,(cid:102)(cid:102)ψ) 1 1 HomΛ(Λ/Λe1Λ,−) Home1Λe1(e1Λ,−) Λ/Λe2Λ⊗Λ− Λe2⊗e2Λe2− (cid:120)(cid:120) (cid:121)(cid:121) Mod-Λ/Λe Λ inc (cid:47)(cid:47)Mod-Λ e2(−) (cid:47)(cid:47)Mod-e Λe (cid:102)(cid:102) 2 (φ,(cid:102)(cid:102)ψ) 2 2 HomΛ(Λ/Λe2Λ,−) Home2Λe2(e2Λ,−) Mod-Λ/Λe Λ (cid:39) Mod-S/Imφ, Mod-e Λe (cid:39) Mod-R 1 1 1 Mod-Λ/Λe Λ (cid:39) Mod-R/Imψ, Mod-S (cid:39) Mod-e Λe 2 2 2 ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) DExeafimniptlieosnsandBasicProperties RecollementsofTriangulatedCategories Example: (Symmetric Recollement) Let R, S rings and N a bimodule. Then we have the triangular R S matrix ring Λ = (cid:0)R RNS(cid:1) and the following recollements: 0 S q T S (cid:120)(cid:120) (cid:120)(cid:120) Mod-(cid:101)(cid:101)R ZR (cid:47)(cid:47)Mod-(cid:101)(cid:101)Λ US (cid:47)(cid:47)Mod-S U Z R S U Z S R (cid:120)(cid:120) (cid:120)(cid:120) Mod-(cid:101)(cid:101)S ZS (cid:47)(cid:47)Mod-(cid:101)(cid:101)Λ UR (cid:47)(cid:47)Mod-R p H R ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) Problem Find necessary and sufficient conditions such that the induced homomorphisms in and en are isomorphisms for X,Y Z,W 0 ≤ n ≤ k. Relate (if possible) the global/finitistic dimension of the categories involved in R (A,B,C). ab PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) ERxetpernessieonntsa,tiGolnobDailmaenndsiFoinnitisticDimension RecollementsofTriangulatedCategories Let as before R (A,B,C) be a recollement of abelian categories. ab Since the functors i: A −→ B and e: B −→ C are exact, they induce natural maps: in : Extn (X,Y) (cid:47)(cid:47)Extn (i(X),i(Y)) X,Y A B and en : Extn (Z,W) (cid:47)(cid:47)Extn(e(Z),e(W)) Z,W B C ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C) Relate (if possible) the global/finitistic dimension of the categories involved in R (A,B,C). ab PreliminariesonRecollementsofAbelianCategories HomologicalAlgebrainRab(A,B,C) ERxetpernessieonntsa,tiGolnobDailmaenndsiFoinnitisticDimension RecollementsofTriangulatedCategories Let as before R (A,B,C) be a recollement of abelian categories. ab Since the functors i: A −→ B and e: B −→ C are exact, they induce natural maps: in : Extn (X,Y) (cid:47)(cid:47)Extn (i(X),i(Y)) X,Y A B and en : Extn (Z,W) (cid:47)(cid:47)Extn(e(Z),e(W)) Z,W B C Problem Find necessary and sufficient conditions such that the induced homomorphisms in and en are isomorphisms for X,Y Z,W 0 ≤ n ≤ k. ChrysostomosPsaroudakis HomologicalTheoryofRab(A,B,C)
Description: