ebook img

Homological Properties of Differential Graded Algebras PDF

163 Pages·2008·0.702 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Homological Properties of Differential Graded Algebras

Homological Properties of Differential Graded Algebras DavidPauksztello Submittedinaccordancewiththerequirements forthedegreeofPhD. TheUniversityofLeeds DepartmentofPureMathematics July2008 Thecandidateconfirmsthattheworksubmittedishisownworkandthatappropriate credithasbeengivenwherereferencehasbeenmadetotheworkofothers. Thiscopyhasbeensuppliedontheunderstandingthatitiscopyrightmaterialand thatnoquotationfromthethesismaybepublishedwithoutproperacknowledgement. i Abstract In this thesis we consider various homological properties of differential graded algebras, andmoregenerally,propertiesofarbitrarytriangulatedcategorieswhichhavesetindexed coproducts. A major example of such a triangulated category is the derived category of a differential graded algebra. We present the background material to the theory of triangulated categories, derived categories and differential graded algebras as well as a briefresume´ ofclassicalhomologicalalgebrainChapters2and3. InChapter4weconsiderthefollowingsituation: letRandS bedifferentialgradedal- gebrasandM beadifferentialgradedR-S-bimodulesatisfyingsomefinitenesscondition. InthischapterwegiveacharacterisationofwhenadifferentialgradedR-S-bimoduleM inducesafullembeddingofderivedcategories L M ⊗ − : D(S) → D(R). R S S In particular, this characterisation generalises the theory of Geigle and Lenzing’s homo- logicalepimorphismsofrings,describedin[24]. Furthermore,thereisanexampleofthe main result in relation to Dwyer and Greenlees’s Morita theory and we are able to apply the main result to give a characterisation of when the co-induction functor yields a full embeddingofderivedcategories. InChapter5weconsiderthenewnotionofaco-t-structureonatriangulatedcategory. In the work of Hoshino, Kato and Miyachi, [31], the authors look at t-structures induced by a compact object, C, of a triangulated category, T , which is rigid in the sense of Iyama and Yoshino, [32]. Hoshino, Kato and Miyachi show that such an object yields a non-degenerate t-structure on T whose heart is equivalent to Mod(End(C)op). Rigid objects in a triangulated category can the thought of as behaving like chain differential gradedalgebras(DGAs). Analogously, looking at objects which behave like cochain DGAs naturally gives the ii dual notion of a corigid object. Here, we see that a compact corigid object, S, of a triangulated category, T , induces a structure similar to a t-structure which we shall call a co-t-structure. We also show that the coheart of this non-degenerate co-t-structure is equivalenttoMod(End(S)op),andhenceanabeliansubcategoryofT . At the end of this chapter we present a generalisation of the main result to the case when we have more than one corigid object and make some conjectures about further generalisations. We also highlight the role which co-t-structures may play in the theory oftorsiontheoriesandtheirpositioncomplementingthetheoryoft-structures. In Chapter 6 we consider generalised Moore spectra in a triangulated catgeory. This was first addressed at this level of generality by Jørgensen in [35]. Let R be a principal idealdomainandT beanR-lineartriangulatedcategory,thenundercertainniceassump- tionsonR,givenanR-moduleA,Jørgensenlookedforthe“bestapproximation”ofAin T ,M(A),calledthe“Moorespectrum”ofA. InChapter6weobtainthefollowinggeneralisedconstruction. LetT beatriangulated category and let C be a compact object of T satisfying certain nice “tilting” hypotheses. Let S = End(C). Then we obtain a full embedding M : Mod(Sop) → M which is left adjoint to the functor Hom (C,−) : M → Mod(Sop), where M is some auxilliary T full subcategory of T . We show that the functor M is well-behaved and relate the new constructionwithJørgensen’sconstructionin[35]. Asanexample,werecoverthecanon- icaltriangleembeddingofthecategoryoffinitelypresentedrightmodulesofahereditary algebraintoitsu-clustercategoryofu > 2from[40]. iii Contents Abstract i Acknowledgements vi “TheLogicalExpressionist”byBethJervis vii 1 Introduction 1 1.1 Outlineofthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 ClassicalHomologicalAlgebra 10 2.1 Abeliancategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.2 Homologyandcohomology . . . . . . . . . . . . . . . . . . . . 14 2.3 Classicalderivedfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Projectiveandinjectiveobjects . . . . . . . . . . . . . . . . . . . 15 2.3.2 Projectiveandinjectivepresentationsandresolutions . . . . . . . 16 2.3.3 Projectiveandglobaldimensions . . . . . . . . . . . . . . . . . 17 2.3.4 Derivedfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.5 ThefunctorsExti (−,−)andTorR(−,−) . . . . . . . . . . . . . 19 R i 3 TriangulatedandDerivedCategoriesandDifferentialGradedAlgebras 22 3.1 Triangulatedcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Derivedcategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1 Thehomotopycategory . . . . . . . . . . . . . . . . . . . . . . 26 iv 3.2.2 Quasi-isomorphisms,localisationandthederivedcategory . . . . 28 3.3 Derivedfunctors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Rightderivedfunctors . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.2 ThefunctorsRHom (−,−)andExti (−,−) . . . . . . . . . . . 32 R R 3.4 Differentialgradedalgebrasandmodules . . . . . . . . . . . . . . . . . 34 3.4.1 Differentialgradedalgebras . . . . . . . . . . . . . . . . . . . . 35 3.4.2 Differentialgradedmodules . . . . . . . . . . . . . . . . . . . . 36 3.5 ThecategoriesK (R)andD(R) . . . . . . . . . . . . . . . . . . . . . . 38 3.5.1 ThefunctorHom (−,−) . . . . . . . . . . . . . . . . . . . . . . 39 R L 3.5.2 Thefunctors−⊗ −,− ⊗ −andTorR(−,−) . . . . . . . . . 40 R R i 3.6 K-projectivity,K-injectivityandK-flatness . . . . . . . . . . . . . . . . 42 3.6.1 K-projective,K-injectiveandK-flatobjects . . . . . . . . . . . 42 3.6.2 K-projectiveresolutionsforDGmodules . . . . . . . . . . . . . 45 L 3.6.3 ComputingRHom (−,−)and− ⊗ − . . . . . . . . . . . . . . 46 R R 4 HomologicalEpimorphismsofDifferentialGradedAlgebras 48 4.1 Compactobjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Canonicalmaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 Definingcanonicalmaps . . . . . . . . . . . . . . . . . . . . . . 52 4.2.2 Anexamplecomputation . . . . . . . . . . . . . . . . . . . . . . 54 4.2.3 Anotherexamplecomputation . . . . . . . . . . . . . . . . . . . 57 4.3 Characterisationfortherestrictionofscalarsfunctor . . . . . . . . . . . . 59 4.3.1 HomologicalepimorphismsofDGAs . . . . . . . . . . . . . . . 67 4.3.2 Versionsfortheboundedandfinitederivedcategories . . . . . . 70 4.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.4.1 DwyerandGreenlees’Moritatheory . . . . . . . . . . . . . . . 73 4.4.2 Homologicalepimorphismsofrings . . . . . . . . . . . . . . . . 74 4.4.3 Characterisationfortheco-inductionfunctor . . . . . . . . . . . 80 5 CorigidObjectsinTriangulatedCategoriesandCo-t-structures 82 5.1 Thedefinitionofaco-t-structure . . . . . . . . . . . . . . . . . . . . . . 83 5.1.1 Preenvelopesandperpendicularcategories . . . . . . . . . . . . 83 v 5.1.2 t-structuresandco-t-structures . . . . . . . . . . . . . . . . . . . 85 5.2 Someexamplesoft-structuresandco-t-structures . . . . . . . . . . . . . 88 5.2.1 Acanonicalexample . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2.2 ChainandcochainDGAs . . . . . . . . . . . . . . . . . . . . . . 89 5.2.3 At-structureobtainedfromarigidobject . . . . . . . . . . . . . 90 5.3 Aco-t-structureobtainedfromacorigidobject . . . . . . . . . . . . . . 91 5.3.1 ExistenceofanS⊥n-preenvelope . . . . . . . . . . . . . . . . . 93 5.3.2 Homotopycolimits . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.3 ExistenceofanS⊥∞-preenvelope . . . . . . . . . . . . . . . . . 97 5.3.4 Theinducedco-t-structure . . . . . . . . . . . . . . . . . . . . . 99 5.4 Thecoheartoftheco-t-structureofTheorem5.3.12 . . . . . . . . . . . . 102 5.5 Aversionformorethanoneobject . . . . . . . . . . . . . . . . . . . . . 106 5.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.6.1 Functoriality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.6.2 ThefullsubcategoryB . . . . . . . . . . . . . . . . . . . . . . . 112 6 GeneralisedMooreSpectrainaTriangulatedCategory 114 6.1 Jørgensen’sconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.2 Thegeneralconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.2.1 Theinductionhypothesesandbasestep . . . . . . . . . . . . . . 118 6.2.2 TheconstructionofthemapM . . . . . . . . . . . . . . . . . 120 k+1 6.2.3 FunctorialityofM . . . . . . . . . . . . . . . . . . . . . . . 123 k+1 6.2.4 Thescaffolding . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3 Someconsequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 6.3.1 Jørgensen’sconstructionrevisited . . . . . . . . . . . . . . . . . 132 6.3.2 ThefunctorM iswellbehaved . . . . . . . . . . . . . . . . . . . 133 6.3.3 AnalternativeproofofTheorem6.3.3 . . . . . . . . . . . . . . . 138 6.4 Anexamplefromu-clustercategories . . . . . . . . . . . . . . . . . . . 143 6.4.1 Aversionofthemainresultforfinitelypresentedmodules . . . . 144 6.4.2 u-clustercategories . . . . . . . . . . . . . . . . . . . . . . . . . 145 Bibliography 150 vi Acknowledgements Firstly, I would like to thank my supervisor, Prof Peter Jørgensen, for all his helpful advice, encouragement and support during the preparation of this thesis. Thanks are also due to the members of the Leeds Algebra Group for many useful discussions, seminars and post-seminar pub trips, in particular, my fellow PhD students Graham and Marcel. I am also grateful to an anonymous referee for useful comments on the material presented inChapter5. IwouldliketoacknowledgetheEPSRCandUniversityofLeedsforfinancialsupport during the first three and a half years of my PhD and the Bank of Mum and Dad for the remainingsixmonths! In general, I am grateful to my family, cousins, aunts and uncles and all; in particular, myMum,Dadandbrotherwhohavebeenagreatsupportthroughoutmystudies. Iwould also like to make a special mention to my Grandma and Grandad, the latter for all those years spent in the corner and for instilling in me from a young age the importance of proof: “I’lltellyouandI’lltellyouforwhy”. Thanks also to the inhabitants of Level 11, past and present, for making my time in Leedssoenjoyable. Iamalsoindebtedtovariousfriendsaroundthecountryforallowing metoescapeLeedsfromtimetotime,inparticular,OliverBridleandGarethBarnett. Muchas gracias tambie´n to los Bollo for their hospitality on numerous hugely enjoy- abletripstoMadrid,ZaragozaandAndorra. SpecialthankstoAliciaBolloFustero,firstly for being so Spanish, then for her wicked sense of humour (in both senses of the word) andforalwaysbeingright(especiallywhenshewaswrong!). Thanks also to Beth Jervis whose wonderfully cheesy poem graces the beginning of this thesis. And a final thank you to Matt Daws for kindly providing the template with whichthisthesiswaswritten. vii The Logical Expressionist by Beth Jervis Everymathematicianis Apoettrulyatheart, Whohaschosennumericalreasoning Asthemediumforhisart. Everymathematicianhas Apassionforrhymeandrhythm, Flowingbeautifullyinalgebra Andeccentricandinspiringinalgorithm. Everymathematiciangets Excitedaboutaproof, Eruptswithpleasureateurekatime, Andcriesout,exclaims,woohoo! Everymathematiciandoes Hishardandtiresometrials, Heknowshissoulfromthedeepestpits Ofpainstakingunworkablehours. Butmostofall, Themathematicianrecognisesart. Hisbeautifulmaths viii Iscomposedassuch, Onthecanvasofreasonandlogic. Hebendsthemaslight, Therulesofreality, Butonlywithfaithfultools, Andarrivesatsingularity, Withcontingenceinmind, Thatcaninfinitelyandrandomlydisperse. Hetakeshismodel, Hisartist’sgift, Andappliesittotheworld, Andsometimesitisappliedmechanically, Andsometimesitturnsoutpure. Butstatistically, Themathematicianknowsthisisart. Foreverymathematician, Istrulyapoetatheart. Andeverymathematician, Hasastorythatspringsfromthisheart. Hegrappleswithabstraction, Andinvestshisbelief, Andreducestheworldtonumber. Hecountsonthisnumberlike Sleeplesscountingsheep, Andpocketstheworldtokeep. Chapter1.Introduction 1 Chapter 1 Introduction TheareaofmathematicsnowknownashomologicalalgebrafirstaroseintheearlyTwen- tieth Century from algebraic topology, in which the homology of chain complexes was used to provide invariants for topological spaces. In particular, topological spaces whose homologies are different cannot be homeomorphic to one another. In the introduction to [57], Weibel describes homological algebra as a “tool used to prove nonconstructive existence theorems in algebra and in algebraic topology”. Weibel also tells us that ho- mological algebra can be used to provide us with obstructions to whether certain con- structions can be carried out. Since the beginning of the second half of the Twentieth Century, homological algebra has blossomed, starting with Cartan and Eilenberg’s semi- naltext[17]whichintroducedthehomologicalfunctorsExt(−,−)andTor(−,−)which are the mainstay of classical homological algebra. It has become ubiquitous in many ar- eas of mathematics, for example in the theory of representations of algebras, algebraic geometry,algebraictopologyandinthetheoryofBanachalgebras. SinceGrothendieckinthe1960s,thelanguageofhomologicalalgebrahasbeenhighly categorical; the notions of abelian categories, projective and injective objects and resolu- tionsbysuchobjects,andderivedfunctorshavebecomecentral,providingpowerfultools in diverse branches of mathematics. During the second half of the Twentieth Century the notions of triangulated categories and derived categories have become increasingly im- portant tools in homological algebra. Derived categories of abelian categories (or, more generally, of additive categories) are mathematical objects which encode the homologi- cal information about the given mathematical object or property one is studying, and as

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.