ebook img

Homological Methods in Banach Space Theory PDF

559 Pages·2023·9.314 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Homological Methods in Banach Space Theory

CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 203 EditorialBoard J. BERTOIN, B. BOLLOBA´S, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO HOMOLOGICALMETHODSINBANACH SPACETHEORY Manyresearchersingeometricfunctionalanalysisareunawareofalgebraicaspectsof the subject and the advances they have permitted in the last half century. This book, writtenbytwoworldexperts onhomological methods inBanach spacetheory, gives functionalanalystsanewperspectiveontheirfieldandnewtoolstotackleitsproblems. All techniques and constructions from homological algebra and category theory are introduced from scratch and illustrated with concrete examples at varying levels of sophistication.Thesetechniquesarethenusedtopresentbothimportantclassicalresults andpowerfuladvancesfromrecentyears.Finally,theauthorsapplythemtosolvemany oldandnewproblemsinthetheoryof(quasi-)Banachspacesandoutlinenewlinesof research.Containingalotofmaterialunavailableelsewhereintheliterature,thisbook isthedefinitiveresourceforfunctionalanalystswhowanttoknowwhathomological algebracandoforthem. Fe´lixCabelloSa´nchezisProfessorofMathematicsattheUniversidaddeExtremadura. Heisco-authorofthemonographSeparablyInjectiveBanachSpaces(2016). Jesu´sM.F.CastilloisProfessorofMathematicsattheUniversidaddeExtremadura. He is co-author of the monographs Three-Space Problems in Banach Space Theory (1997)andSeparablyInjectiveBanachSpaces(2016). Published online by Cambridge University Press CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard J.Bertoin,B.Bolloba´s,W.Fulton,B.Kra,I.Moerdijk,C.Praeger,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress.Fora completeserieslisting,visitwww.cambridge.org/mathematics. AlreadyPublished 165P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology(2ndEdition) 166D.Li&H.QueffelecIntroductiontoBanachSpaces,I 167D.Li&H.QueffelecIntroductiontoBanachSpaces,II 168J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodMappingsandPeriodDomains(2ndEdition) 169J.M.LandsbergGeometryandComplexityTheory 170J.S.MilneAlgebraicGroups 171J.Gough&J.KupschQuantumFieldsandProcesses 172T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteHarmonicAnalysis 173P.GarrettModernAnalysisofAutomorphicFormsbyExample,I 174P.GarrettModernAnalysisofAutomorphicFormsbyExample,II 175G.NavarroCharacterTheoryandtheMcKayConjecture 176P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinSeriesandAutomorphic Representations 177E.PetersonFormalGeometryandBordismOperators 178A.OgusLecturesonLogarithmicAlgebraicGeometry 179N.NikolskiHardySpaces 180D.-C.CisinskiHigherCategoriesandHomotopicalAlgebra 181A.Agrachev,D.Barilari&U.BoscainAComprehensiveIntroductiontoSub-RiemannianGeometry 182N.NikolskiToeplitzMatricesandOperators 183A.YekutieliDerivedCategories 184C.DemeterFourierRestriction,DecouplingandApplications 185D.Barnes&C.RoitzheimFoundationsofStableHomotopyTheory 186V.Vasyunin&A.VolbergTheBellmanFunctionTechniqueinHarmonicAnalysis 187M.Geck&G.MalleTheCharacterTheoryofFiniteGroupsofLieType 188B.RichterCategoryTheoryforHomotopyTheory 189R.Willett&G.YuHigherIndexTheory 190A.BobrowskiGeneratorsofMarkovChains 191D.Cao,S.Peng&S.YanSingularlyPerturbedMethodsforNonlinearEllipticProblems 192E.KowalskiAnIntroductiontoProbabilisticNumberTheory 193V.GorinLecturesonRandomLozengeTilings 194E.Riehl&D.VerityElementsof∞-CategoryTheory 195H.KrauseHomologicalTheoryofRepresentations 196F.Durand&D.PerrinDimensionGroupsandDynamicalSystems 197A.ShefferPolynomialMethodsandIncidenceTheory 198T.Dobson,A.Malnicˇ&D.MarusˇicˇSymmetryinGraphs 199K.S.Kedlayap-adicDifferentialEquations 200R.L.Frank,A.Laptev&T.WeidlSchro¨dingerOperators:EigenvaluesandLieb–ThirringInequalities 201J.vanNeervenFunctionalAnalysis 202A.SchmedingAnIntroductiontoInfinite-DimensionalDifferentialGeometry 203F.CabelloSa´nchez&J.M.F.CastilloHomologicalMethodsinBanachSpaceTheory 204G.P.Paternain,M.Salo&G.UhlmannGeometricInverseProblems Published online by Cambridge University Press Homological Methods in Banach Space Theory FE´LIX CABELLO SA´ NCHEZ UniversidaddeExtremadura JESU´ S M. F. CASTILLO UniversidaddeExtremadura Published online by Cambridge University Press ShaftesburyRoad,CambridgeCB28EA,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartofCambridgeUniversityPress&Assessment, adepartmentoftheUniversityofCambridge. WesharetheUniversity’smissiontocontributetosocietythroughthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108478588 DOI:10.1017/9781108778312 ©CambridgeUniversityPress&Assessment2023 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress&Assessment. Firstpublished2023 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-108-47858-8Hardback CambridgeUniversityPress&Assessmenthasnoresponsibilityforthepersistence oraccuracyofURLsforexternalorthird-partyinternetwebsitesreferredtointhis publicationanddoesnotguaranteethatanycontentonsuchwebsitesis,orwill remain,accurateorappropriate. Published online by Cambridge University Press Contents Preface pageix Preliminaries 1 1 ComplementedSubspacesofBanachSpaces 9 1.1 BanachandQuasi-BanachSpaces 9 1.2 ComplementedSubspaces 13 1.3 UncomplementedSubspaces 16 1.4 LocalPropertiesandTechniques 19 1.5 The Dunford–Pettis, Grothendieck, Pełczyn´ski andRosenthalProperties 25 1.6 C(K)-SpacesandTheirComplementedSubspaces 26 1.7 Sobczyk’sTheoremandItsDerivatives 29 1.8 NotesandRemarks 36 1.8.1 TopologicalStuff 36 1.8.2 Orlicz,Young,FenchelandL Too 38 0 1.8.3 UltrapowersofL When0< p<1 39 p 1.8.4 Sobczyk’sTheoremStrikesBack 42 2 TheLanguageofHomology 46 2.1 ExactSequencesofQuasi-BanachSpaces 48 2.2 BasicExamplesofExactSequences 54 2.3 TopologicallyExactSequences 67 2.4 CategoricalConstructionsforAbsoluteBeginners 70 2.5 PullbackandPushout 72 2.6 PushoutandExactSequences 75 2.7 ProjectivePresentations:theUniversalPropertyof(cid:96) 78 p 2.8 PullbacksandExactSequences 81 2.9 InjectivePresentations:theUniversalPropertyof(cid:96) 82 ∞ 2.10 AllaboutThatPullback/PushoutDiagram 84 v Published online by Cambridge University Press vi Contents 2.11 DiagonalandParallelPrinciples 94 2.12 HomologicalConstructionsAppearinginNature 98 2.13 TheDevice 105 2.14 ExtensionandLiftingofOperators 111 2.15 NotesandRemarks 119 2.15.1 CategoricalLimits 119 2.15.2 HowtoDrawMoreDiagrams 120 2.15.3 AmalgamationofSequences 124 2.15.4 CategoriesofShortExactSequences 125 3 QuasilinearMaps 128 3.1 AnIntroductiontoQuasilinearMaps 129 3.2 QuasilinearMapsinAction 131 3.3 QuasilinearMapsversusExactSequences 138 3.4 LocalConvexityofTwistedSumsandK-Spaces 149 3.5 ThePullbackandPushoutinQuasilinearTerms 154 3.6 SpacesofQuasilinearMaps 155 3.7 HomologicalPropertiesof(cid:96) andL When0< p≤1 161 p p 3.8 ExactSequencesofBanachSpacesandDuality 167 3.9 DifferentVersionsofaQuasilinearMap 176 3.10 LinearisationofQuasilinearMaps 179 3.11 TheTypeofTwistedSums 181 3.12 AGlimpseofCentralizers 185 3.13 NotesandRemarks 190 3.13.1 Doman´ski’sWorkonQuasilinearMaps 190 3.13.2 ACohomologicalApproachtoQuasilinearity 193 3.13.3 TableofCorrespondencesbetweenDiagrams andQuasilinearMaps 194 4 TheFunctorExtandtheHomologySequences 197 4.1 TheFunctorExt 198 4.2 TheHomologySequences 204 4.3 HomologyinQuasilinearTerms 212 4.4 AlternativeConstructionsofExt 216 4.5 TopologicalAspectsofExt 224 4.6 NotesandRemarks 234 4.6.1 AdjointFunctors 234 4.6.2 DerivedFunctors 237 4.6.3 UnknownKnownsaboutExt2 240 4.6.4 OpenProblemsabouttheTopologyofExt 241 Published online by Cambridge University Press Contents vii 5 LocalMethodsintheTheoryofTwistedSums 243 5.1 LocalSplitting 244 5.2 UniformBoundednessPrinciplesforExactSequences 258 5.3 TheMysteriousRoleoftheBAP 270 5.4 NotesandRemarks 283 5.4.1 WhichBanachSpacesAreK-Spaces? 283 5.4.2 TwistingaFewExoticBanachSpaces 284 6 Fra¨ısse´ LimitsbythePound 287 6.1 Fra¨ısse´ ClassesandFra¨ısse´ Sequences 288 6.2 AlmostUniversalDisposition 290 6.3 AlmostUniversalComplementedDisposition 299 6.4 AUniversalOperatoronG 316 p 6.5 NotesandRemarks 324 6.5.1 WhatIfε=0? 324 6.5.2 BeforeG SpacesFadeOut 325 p 6.5.3 Fra¨ısse´ ClassesofBanachSpaces 326 7 ExtensionofOperators,IsomorphismsandIsometries 329 7.1 Operators:ExtensibleandUFOSpaces 331 7.2 Isomorphisms:theAutomorphicSpaceProblem 336 7.3 Isometries:UniversalDisposition 348 7.4 PositionsinBanachSpaces 354 7.5 NotesandRemarks 365 7.5.1 IsomorphicbutDifferentTwistedSums 365 7.5.2 HowManyTwistedSumsofTwoSpacesExist? 366 7.5.3 MovingtowardstheAutomorphicSpaceProblem 368 7.5.4 TheProductofSpacesof(Almost)Universal Disposition 369 8 ExtensionofC(K)-ValuedOperators 372 8.1 ZippinSelectors 374 8.2 TheLindenstrauss–Pełczyn´skiTheorem 378 8.3 Kalton’sApproachtotheC-ExtensionProperty 383 8.4 SequenceSpaceswiththeC-ExtensionProperty 394 8.5 C-ExtensibleSpaces 400 8.6 TheDarkSideoftheJohnson–ZippinTheorem 411 8.7 TheAstoundingStorybehindtheCCKYProblem 424 8.8 NotesandRemarks 434 8.8.1 HomogeneousZippinSelectors 434 8.8.2 Lindenstrauss-ValuedExtensionResults 436 Published online by Cambridge University Press viii Contents 8.8.3 TheLastStrokeontheExtensionofC-Valued LipschitzMaps 437 8.8.4 Property(M)andM-Ideals 440 8.8.5 SetTheoreticAxiomsandTwistedSumAffairs 440 9 SingularExactSequences 444 9.1 BasicPropertiesandTechniques 445 9.2 SingularQuasilinearMaps 451 9.3 AmalgamationTechniques 452 9.4 NotesandRemarks 462 9.4.1 SuperSingularity 462 9.4.2 DisjointSingularity 463 9.4.3 Cosingularity 465 9.4.4 TheBasicSequenceProblem 465 10 BacktoBanachSpaceTheory 468 10.1 Vector-ValuedVersionsofSobczyk’sTheorem 468 10.2 PolyhedralL -Spaces 471 ∞ 10.3 LipschitzandUniformlyHomeomorphicL -Spaces 473 ∞ 10.4 PropertiesofKernelsofQuotientMapsonL Spaces 476 1 10.5 3-SpaceProblems 484 10.6 ExtensionofL -ValuedOperators 495 ∞ 10.7 KadecSpaces 502 10.8 TheKalton–PeckSpaces 505 10.9 ThePropertiesofZ ExplainedbyItself 516 2 Bibliography 521 Index 543 Published online by Cambridge University Press Preface This is a book about homological techniques applied to Banach and quasi- Banach space theory. It has been our aim to show how much this modern branch of functional analysis has to offer analysts. To do so, we will present the basic elements and techniques of homological algebra in the concrete categories of (quasi-) Banach spaces and will show how to use them and how they work to approach and solve classical problems in analysis. Years ofworkingcollaborationwithmanymathematiciansconvincedusofasimple truth:peopledonotunderstanddiagrams.Thisisthecauseoftheseasickness so customary when sailing the homological sea. There are good reasons for that;mainly,thatthefoundationalideas,basicprinciplesandvisualtechniques thatmakethetheorypowerfularecouchedincategoricaljargonandnotinthe languageoffunctionalanalysis.Thusconsiderableeffortisrequiredsimplyto decodetheinformation. Accordingly,ithasbeenoneofourmainconcernstopresentallhomological tools without losing contact with classical (quasi-) Banach space theory: all categorical constructions are introduced to explain some concrete (quasi-) Banach space constructions appearing in nature. Our guide in this line was settledbyOlekPełczyn´ski:examplesalwaysgofirst.Infact,probablythefirst paper in Banach space theory with clear homological content is Pełczyn´ski’s monograph [377]. Semadeni’s book [430], which followed, was already writteninanentirelycategoricalmood.Todiscoverwhathappenedafterthat, just turn back the page. The role of 3-space problems for Hilbert spaces and local convexity cannot go unmentioned. From these came the seminal works of Enflo, Lindenstrauss and Pisier [167], Ribe [401] and Kalton and Peck[280],whereexactsequencesandquasilinearmapscametolight.After that,categoricalmethodsin(quasi-)Banachspacetheoryemergedatasteady pace: pullback/pushout constructions, splitting, extension/lifting of operator connectionsand,finally,homologysequences. ix https://doi.org/10.1017/9781108778312.001 Published online by Cambridge University Press

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.