ebook img

Homo MoralisPreference Evolution Under Incomplete Information and Assortative Matching PDF

34 Pages·2013·0.4 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Homo MoralisPreference Evolution Under Incomplete Information and Assortative Matching

Econometrica,Vol.81,No.6(November,2013),2269–2302 HOMOMORALIS—PREFERENCEEVOLUTIONUNDER INCOMPLETEINFORMATIONANDASSORTATIVEMATCHING BYINGELAALGERANDJÖRGENW.WEIBULL1 Whatpreferences willprevail inasocietyofrational individualswhenpreference evolutionisdrivenbytheresultingpayoffs?Weshowthatwhenindividuals’preferences aretheirprivateinformation,aconvexcombinationofselfishnessandmoralitystands outasevolutionarilystable.Wecallindividualswithsuchpreferenceshomomoralis.At oneendofthespectrumishomooeconomicus,whoactssoastomaximizehisorher ownpayoff.Attheoppositeendishomokantiensis,whodoeswhatwouldbe“theright thingtodo,”intermsofpayoffs,ifallotherswoulddolikewise.Weshowthatthestable degreeofmorality—theweightplacedonthemoralgoal—isdeterminedbythedegree ofassortativityintheprocesswherebyindividualsarematchedtointeract. KEYWORDS:Evolutionarystability,preferenceevolution,moralvalues,incomplete information,assortativematching. 1. INTRODUCTION MOST OF CONTEMPORARY ECONOMICS IS PREMISED on the assumption that human behavior is driven by self-interest. However, in the early history of the profession, it was common to include moral values as part of human motivation; see, for example, Smith (1759) and Edgeworth (1881), and, for morerecentexamples,Arrow(1973),Laffont(1975),Sen(1977),andTabellini (2008).2 Furthermore, in recent years, many economists have begun to ques- tion the predictive power of pure selfishness in certain interactions, and turned to alternative preferences such as altruism (Becker (1976)), warm glow (Andreoni (1990)), inequity aversion (Fehr and Schmidt (1999)), recip- rocalaltruism(Levine(1998)),senseofidentity(AkerlofandKranton(2000), Bénabou and Tirole (2011)), preference for efficiency (Charness and Rabin 1Wethanktheeditorandthreeanonymousrefereesforhelpfulcomments.Earlierversions of this manuscript have been presented at an NBER workshop on culture and institutions, at TelAvivUniversity,StockholmSchoolofEconomics,IMEBE2012,UniversityofSouthernCali- fornia,UCSantaBarbara,UCRiverside,UCSanDiego,theBecker-FriedmanInstituteconfer- ence“BiologicalBasisofPreferencesandBehavior,”UniversityofWarwick,EcolePolytechnique (Paris),LancasterUniversity(UK),UniversityofOxford,InstituteforInternationalEconomic Studies(Stockholm),ToulouseSchoolofEconomics,GAMES2012,ITAM,FrankfurtUniversity, UniversityofYork,andUniversityofZürich.WethankRajivSethi,ImmanuelBomze,Avinash Dixit,ToreEllingsen,JensJosephson,WolfgangLeininger,KlausRitzberger,FrançoisSalanié, andGiancarloSpagnoloforcomments.ThisresearchreceivedfinancialsupportfromtheKnut andAliceWallenbergResearchFoundation.IngelaAlgerisgratefultoANR,CarletonUniver- sity,andSSHRCforfinancialsupportandtotheStockholmSchoolofEconomicsforitshospi- tality. 2SeeBinmore(1994)foragame-theoreticdiscussionofethics,andBolleandOckenfels(1990), Sugden(1995,2011),Bacharach(1999),Brekke,Kverndokk,andNyborg(2003),AlgerandMa (2003),AlgerandRenault(2006,2007),BénabouandTirole(2011),Huck,Kübler,andWeibull (2012),andRoemer(2010)foralternativemodelsofmoralmotivation. ©2013TheEconometricSociety DOI:10.3982/ECTA10637 2270 I.ALGERANDJ.W.WEIBULL (2002)), and desire for social esteem (Bénabou and Tirole (2006), Ellingsen andJohannesson(2008)).Ourgoalhereistoclarifytheevolutionaryfounda- tionofhumanmotivation,byaskingfromfirstprincipleswhatpreferencesand moralvalueshumansshouldbeexpectedtohave. It is well known from theoretical biology that evolution favors altruistic behaviors—behaviors that benefit others at a cost to oneself—between rela- tives.ThisinsightwasformallydevelopedbyHamilton(1964a,1964b);seealso Grafen(1979,2006),HinesandMaynardSmith(1979),Bergstrom(1995),and DayandTaylor(1998).Whilethegeneticsisoftencomplex,theintuitionissim- ple;ageneinanindividualhasahighprobability,dependingonthedegreeof kinship,tobepresentinhisorherrelatives.Inparticular,ifthisgeneexpresses itselfinbehaviorshelpfultorelatives,thereproductivesuccessofsaidgeneis enhanced, as long as the behavior is not too costly for the actor. While kin- shipaltruismevidentlycannotexplainaltruisticbehaviorsamongnonkin,ithas beenrecognizedintheliteraturethatanymechanismthatbringsaboutassor- tativityinthematchingprocesscanfavoraltruisticbehaviorsamongunrelated individuals;3 a prime example of such a mechanism is geographic dispersion. In this literature, the unit of selection is behaviors (strategies) rather than, as here, preferences or moral values. Nevertheless, if one were to interpret the evolved behaviors as resulting from utility maximization, then this literature would point to two distinct classes of preferences: (a) altruistic preferences, whereby individuals attach positive weight to the well-being or fitness of oth- ers,and(b)moralpreferences,wherebyindividualsinsteadareconcernedwith whatis“therightthingtodo.”4 Clearly,thesetwomotivationsmaygiveriseto differentbehaviors.However,thisliteratureissilentastowhethereitheraltru- isticormoralpreferenceswould,infact,ariseifevolutionweretooperateon preferences—asawayfornaturetodelegatethechoicesofconcreteactionsto theindividualinanygivensituation.Itisourgoaltofillthisgap. Thereareseveralchallengesassociatedwithraisingthedomainoftheanal- ysisfrombehaviorstopreferences.Weshowthatthesedifficultiescanbedealt withinageneralmodelwithminimalassumptionsontheclassofinteractions and potential preferences. More exactly, we analyze the evolution of pref- erences in a large population where individuals are randomly and pairwise matchedtointeract.Wefollowtheindirectevolutionaryapproach,pioneered by Güth and Yaari (1992), by assuming that individual behavior is driven by (subjective)utilitymaximization,whileevolutionarysuccessisdrivenbysome 3See, for example, Hamilton (1971, 1975), Boorman and Levitt (1980), Eshel and Cavalli- Sforza(1982),ToroandSilio(1986),Frank(1987,1988),WilsonandDugatkin(1997),Soberand Wilson(1998),Rousset(2004),Nowak(2006),andBergstrom(2003,2009). 4Theideathatmoralvaluesmayhavebeenformedbyevolutionaryforcescanbetracedback to at least Darwin (1871). More recent, but informal, treatments include, to mention a few, Alexander(1987),Nichols(2004),anddeWaal(2006).Thelatterclaimedthatmoralcodesalso existinotherprimates. PREFERENCEEVOLUTION 2271 (objective) payoff. A large body of research has shown that natural selection leadstopreferencesthatdeviatefromobjective-payoff-maximizationwhenin- dividuals who interact know each other’s preferences.5 We focus here instead on the case when each individual’s type (preferences or moral values) is her privateinformation.Moreover,werelaxthecommonlymadeassumptionthat allmatchesareequallylikely(uniformrandommatching)andaskwhetheras- sortativity in the process whereby people are matched to interact affects the preferencesthatnaturalselectionfavors.Indeed,asweargueinSection5,as- sortativityarisesinmanyhumaninteractionsforavarietyofreasons. We impose few assumptions on the set of admissible preferences that are subjecttoevolutionaryselection.Inparticular,thesemaybealtruistic,moral, selfish,drivenbyinequityaversionorcommitmenttoparticularbehaviors,etc. Ouranalysisappliestosymmetricinteractionsandtoasymmetricinteractions with ex ante symmetry, that is, when each individual is just as likely to be in one player role as in the other. For asymmetric interactions, then, evolution selects preferences behind a veil of ignorance regarding which role the indi- vidual will eventually play. The matching process is exogenous, and, building onBergstrom(2003),weidentifyasingleparameter,theindexofassortativity, as a key parameter for the population-statistical analysis. We generalize the standard definition of evolutionary stability, due to Maynard Smith and Price (1973), to allow for arbitrary degrees of assortativity and apply this to prefer- ence evolution when each matched pair plays a (Bayesian) Nash equilibrium oftheassociatedgameunderincompleteinformation.6 Ourmainresultisthatnaturalselectionleadstoacertainone-dimensional family of moral preferences, a family that springs out from the mathematics. This family consists of all convex combinations of selfishness (“maximization of own payoff”) and morality (“to do the right thing”). We call individuals withsuchpreferenceshomomoralisandcalltheweightattachedtothemoral 5See Robson (1990), Güth and Yaari (1992), Ockenfels (1993), Ellingsen (1997), Bester andGüth(1998),FershtmanandWeiss(1998),Koçkesen,Ok,andSethi(2000),Bolle(2000), Possajennikov (2000), Ok and Vega-Redondo (2001), Sethi and Somanathan (2001), Heifetz, ShannonandSpiegel(2007a,2007b),Dekel,Ely,andYilankaya(2007),Alger(2010),andAlger andWeibull(2010,2012a).AsobservedalreadybySchelling(1960),itmaybeadvantageous,in strategicinteractions,tobecommittedtocertainbehaviors,eveniftheseappeartobeatodds withone’sobjectiveself-interest.Indeed,certainother-regardingpreferencessuchasaltruism, spite,reciprocalaltruism,orinequityaversion,ifknownorbelievedbyothers,maybestrategically advantageous(ordisadvantageous).Forexample,amanagerofafirminCournotcompetition, withcompleteinformationaboutmanagers’contracts,willdobetter,intermsofequilibriumprof- its,ifthecontractrewardsbothprofitsandsales,ratherthanonlyprofits(aliteraturepioneered byFershtmanandJudd(1987)). 6Sincethematchingprocessisexogenousandanindividual’spreferencesareherprivatein- formation,thereisnopossibilityforpartnerchoiceormimicry.Alternativeapproacheswould letindividualschoosepartners(see,e.g.,Frank(1987,1988))orallowindividualstoquitapart- nerandrematch(see,e.g.,JacksonandWatts(2010)).However,theseapproacheswouldadd informational,strategic,andmatching-technologicalelementsbeyondthescopeofthisstudy. 2272 I.ALGERANDJ.W.WEIBULL goal the degree of morality. A special case is the familiar homo oeconomicus, who attaches zero weight to morality. At the other extreme, one finds homo kantiensis,whoattachesunitweighttomorality.Weshowthatevolutionselects thatdegreeofmoralitywhichequalstheindexofassortativityofthematching process. Such preferences in a resident population provide the most effective protection against mutants, since the residents’ behavior is the behavior that wouldmaximizetheexpectedpayoffstomutants(whenrare).Itisasifhomo moralis with degree of morality equal to the index of assortativity preempts mutants;anyraremutantcanatbestmatchthepayoffoftheresidents.7 Wealsoestablishevolutionaryinstabilityofallpreferencesthatinduceother behaviorsthanthoseofhomomoraliswithdegreeofmoralityequaltothein- dex of assortativity. A population consisting of individuals that behave differ- entlywouldbevulnerabletoinvasionofmutantswithotherpreferences.This instabilityresulthasdireconsequencesforhomooeconomicus,whoisselected against in a large class of interactions that are strategic in the sense that a player’spayoffdependsontheotherplayer’sstrategy,wheneverthereisapos- itive index of assortativity in the matching process. A sufficient condition for thisisthatthebehaviorofhomooeconomicus(whenresident)beuniquelyde- termined and different from that of individuals with degree of morality equal tothe(positive)indexofassortativity. Our work establishes a link between two strands of literature, one (mostly biological)dealingwithstrategyevolutionunderassortativematchingandan- other (in economics) dealing with preference evolution under uniform ran- dom matching. In the first strand, the most closely related work is that of Bergstrom (1995), who analyzed evolutionarily stable strategies in symmetric interactions between siblings. Bergstrom provided a moral interpretation of the resulting behaviors, which he called “semi-Kantian” (here corresponding tothebehaviorofhomomoraliswithdegreeofmoralityonehalf).Inasimilar spirit,Bergstrom(2009)providedgame-theoreticinterpretationsofseveralex- istingmoralmaximsandrelatedthesetoevolutionarilystablestrategiesunder assortativematching.Inthesecondstrand,themostcloselyrelatedworkisthat ofOkandVega-Redondo(2001)andDekel,Ely,andYilankaya(2007).Their mainresultforinteractionsunderincompleteinformationwasthathomooeco- nomicuswillprevail,aresultthatiscorroboratedinouranalysisinthespecial casewhentheindexofassortativityiszero. In classic evolutionary game theory, evolutionary stability is a property of (pure or mixed) strategies and is usually applied to interactions in which in- dividuals are “programmed” to strategies (Maynard Smith and Price (1973)). As a side result in this study, we obtain a new perspective on evolutionarily 7Inarelatedliterature,onculturalevolution,parentsareassumedtobealtruistic(orinterested intheirfuturetreatmentbytheirchildren)and,atsomecost,theycaninfluencetheirchildren’s preferencesandvalues;see,forexample,BisinandVerdier(2001),HaukandSáez-Martí(2002), Bisin,Topa,andVerdier(2004),andLindbeckandNyberg(2006). PREFERENCEEVOLUTION 2273 stablestrategies,namely,thatthesebehaviorsarepreciselythoseusedinNash equilibriumplaywhenevolutionoperatesatthelevelofpreferencesunderin- complete information. Hence, evolutionary stability of strategies need not be interpretedinthenarrowsensethatindividualsare“programmed”toagiven strategy;thesamebehavioremergesiftheyarerationalandplayoptimallyun- der correct population-statistical beliefs about each other. This sharpens and generalizestheresultinDekel,Ely,andYilankaya(2007)thatpreferenceevo- lution under incomplete information and uniform random matching in finite games implies Nash equilibrium play, as defined in terms of the underlying payoffs,andisimpliedbystrictNashequilibrium(againintermsofpayoffs).8 The rest of the paper is organized as follows. The model is set up in the next section. In Section 3, we establish our main result and show some of its implications.Section4isdevotedtofinitegames.InSection5,westudyavari- etyofmatchingprocesses.ThreetopicsarediscussedinSection6:asymmetric interactions, the difference between morality and altruism, and ways to test empiricallytheexistenceofhomomoralis.Section7concludes. 2. MODEL Consider a population where individuals are randomly matched into pairs to engage in a symmetric interaction with the common strategy set X. While behavior is driven by (subjective) utility maximization, evolutionary success is determined by the resulting payoffs. An individual playing strategy x against anindividualplayingstrategyy getspayoff,orfitnessincrement,π(x(cid:3)y),where π:X2 →R. We will refer to the pair (cid:3)X(cid:3)π(cid:4) as the fitness game. We assume that X is a nonempty, compact, and convex set in a topological vector space and that π is continuous.9 Each individual is characterized by his or her type θ∈Θ,whichdefinesacontinuous(utility)function,u :X2→R.Weimposeno θ relationbetweenautilityfunctionu andthepayofffunctionπ.Aspecialtype θ is homo oeconomicus, by which we mean individuals with the utility function u=π.Anindividual’stypeisherprivateinformation. Forthesubsequentanalysis,itwillbesufficienttoconsiderpopulationswith twotypespresent.Thetwotypesandtherespectivepopulationsharestogether define a population state s =(θ(cid:3)τ(cid:3)ε), where θ(cid:3)τ ∈Θ are the two types and ε∈(0(cid:3)1)isthepopulationshareoftypeτ.Thesetofpopulationstatesisthus S=Θ2×(0(cid:3)1). If ε is small, we will refer to θ as the resident type and call τ the mutant type. The matching process is random and exogenous, and it may beassortative.Moreexactly,inagivenstates=(θ(cid:3)τ(cid:3)ε),letPr[τ|θ(cid:3)ε]denote 8StrategiesusedinsymmetricstrictNashequilibriaareevolutionarilystable,andanyevolu- tionarilystablestrategyplayingagainstitselfmakesasymmetricNashequilibrium. 9Tobemoreprecise,weassumeXtobealocallyconvexHausdorffspace;seeAliprantisand Border(2006).Forexample,thegame(cid:3)X(cid:3)π(cid:4)maybeafinitetwo-playerextensive-formgame, whereXisthesetofmixedorbehaviorstrategies;seeSection6.1. 2274 I.ALGERANDJ.W.WEIBULL the probability that a given individual of type θ is matched with an individual of type τ, and let Pr[θ|τ(cid:3)ε] denote the probability that a given individual of type τ is matched with an individual of type θ. In the special case of uniform randommatching,Pr[τ|θ(cid:3)ε]=Pr[τ|τ(cid:3)ε]=εforallε∈(0(cid:3)1). For each state s=(θ(cid:3)τ(cid:3)ε)∈S and any strategy x∈X used by type θ and any strategy y ∈X used by type τ, the resulting average payoff, or fitness, to eachtypeis (1) Π (x(cid:3)y(cid:3)ε)=Pr[θ|θ(cid:3)ε]·π(x(cid:3)x)+Pr[τ|θ(cid:3)ε]·π(x(cid:3)y)(cid:3) θ (2) Π (x(cid:3)y(cid:3)ε)=Pr[θ|τ(cid:3)ε]·π(y(cid:3)x)+Pr[τ|τ(cid:3)ε]·π(y(cid:3)y)(cid:9) τ As for the choices made by individuals, a (Bayesian) Nash equilibrium is a pairofstrategies,oneforeachtype,whereeachstrategyisabestreplytothe otherinthegivenpopulationstate: DEFINITION 1: In any state s=(θ(cid:3)τ(cid:3)ε)∈S, a strategy pair (x∗(cid:3)y∗)∈X2 is a(Bayesian)NashEquilibrium(BNE)if ⎧ (cid:5) (cid:6) (cid:5) (cid:6) ⎨x∗∈argmaxPr[θ|θ(cid:3)ε]·u x(cid:3)x∗ +Pr[τ|θ(cid:3)ε]·u x(cid:3)y∗ (cid:3) θ θ (3) x∈X (cid:5) (cid:6) (cid:5) (cid:6) ⎩y∗∈argmaxPr[θ|τ(cid:3)ε]·u y(cid:3)x∗ +Pr[τ|τ(cid:3)ε]·u y(cid:3)y∗ (cid:9) τ τ y∈X Wedefineevolutionarystabilityundertheassumptionthattheresultingpay- offs are determined by this equilibrium set.10 With potential multiplicity of equilibria, one may require the resident type to withstand invasion in some orallequilibria.Wehavechosenthemoststringentcriterion. DEFINITION 2: A type θ∈Θ is evolutionarily stable against a type τ ∈Θ if there exists an ε¯ >0 such that Π (x∗(cid:3)y∗(cid:3)ε)>Π (x∗(cid:3)y∗(cid:3)ε) in all Nash equi- θ τ libria(x∗(cid:3)y∗)inallstatess=(θ(cid:3)τ(cid:3)ε)withε∈(0(cid:3)ε¯).Atypeθisevolutionarily stableifitisevolutionarilystableagainstalltypesτ(cid:7)=θinΘ. This definition formalizes the notion that a resident population with indi- vidualsofagiventypewouldwithstandasmall-scale“invasion”ofindividuals of another type. It generalizes the Maynard Smith and Price (1973) concept of evolutionary stability, a property they defined for mixed strategies in finite and symmetric two-player games under uniform random matching. However, in a rich enough type set Θ, no type is evolutionarily stable against all other types, since, for each resident type, there then exist mutant types who behave 10Thisisinlinewiththeliteratureon“indirectevolution”—see,forexample,GüthandYaari (1992),HuckandOechssler(1999),andDekel,Ely,andYilankaya(2007)—and canbeinter- pretedasanadiabaticprocessinwhichpreferenceschangeonaslowertimescalethanactions; seeSandholm(2001). PREFERENCEEVOLUTION 2275 liketheresidentsandthusearnthesameaveragepayoff.Adefinitionofsuch “behavioralclones”isgiveninSection3. Weintroduceastringentnotionofinstabilitybyrequiringthatthereshould exist some mutant type against which the resident type achieves strictly less payoff in every equilibrium in all population states where the mutant is arbi- trarilyrare: DEFINITION 3: A type θ∈Θ is evolutionarily unstable if there exists a type τ∈Θandanε¯ >0suchthatΠ (x∗(cid:3)y∗(cid:3)ε)<Π (x∗(cid:3)y∗(cid:3)ε)inallNashequilibria θ τ (x∗(cid:3)y∗)inallstatess=(θ(cid:3)τ(cid:3)ε)withε∈(0(cid:3)ε¯). The next subsection describes the algebra of assortative encounters intro- ducedbyBergstrom(2003).Thisfacilitatestheanalysisandclarifiesthepopu- lationstatistics. 2.1. AlgebraofAssortativeEncounters Forgiventypesθ(cid:3)τ∈Θ,andapopulationstates=(θ(cid:3)τ(cid:3)ε)withε∈(0(cid:3)1), letφ(ε)bethedifferencebetweentheconditionalprobabilitiesforanindivid- ualtobematchedwithanindividualwithtypeθ,giventhattheindividualhim- orherselfeitherhastypeθaswellor,alternatively,typeτ: (4) φ(ε)=Pr[θ|θ(cid:3)ε]−Pr[θ|τ(cid:3)ε](cid:9) This defines the assortment function φ:(0(cid:3)1)→[−1(cid:3)1]. Using the following necessary balancing condition for the number of pairwise matches between individualswithtypesθandτ, (5) (1−ε)·Pr[τ|θ(cid:3)ε]=ε·Pr[θ|τ(cid:3)ε](cid:3) onecanwriteallconditionalprobabilitiesasfunctionsofεandφ(ε): (cid:7) (cid:8) (cid:9) Pr[θ|θ(cid:3)ε]=φ(ε)+(1−ε) 1−φ(ε) =1−Pr[τ|θ(cid:3)ε](cid:3) (cid:8) (cid:9) (6) Pr[θ|τ(cid:3)ε]=(1−ε) 1−φ(ε) =1−Pr[τ|τ(cid:3)ε](cid:9) We assume that φ is continuous and that φ(ε) converges as ε tends to zero. Formally,let limφ(ε)=σ ε→0 for some σ ∈R, the index of assortativityof the matching process. By defining φ(0)asσ,wethusextendthedomainofφfrom(0(cid:3)1)to[0(cid:3)1),anditfollows from (6) that σ ∈[0(cid:3)1].11 Under uniform random matching, φ(ε)=0 for all 11Thiscontrastswiththecaseofafinitepopulation,wherenegativeassortativitycanarisefor populationstateswithfewmutants(seeSchaffer(1988)). 2276 I.ALGERANDJ.W.WEIBULL ε∈(0(cid:3)1) and hence σ =0. In pairwise interactions between siblings, φ(ε)= 1/2forallε∈(0(cid:3)1)andhenceσ =1/2;seeSection5. 2.2. HomoMoralis DEFINITION 4: An individual is a homo moralis (or HM) if her utility func- tionisoftheform (7) u (x(cid:3)y)=(1−κ)·π(x(cid:3)y)+κ·π(x(cid:3)x)(cid:3) κ forsomeκ∈[0(cid:3)1],herdegreeofmorality.12 Itisasifhomomoralisistornbetweenselfishnessandmorality.Ontheone hand,shewouldliketomaximizeherownpayoff.Ontheotherhand,shewould like to “do the right thing,” that is, choose a strategy that, if used by all indi- viduals, would lead to the highest possible payoff. This second goal can be viewed as an application of Kant’s (1785) categorical imperative, to “act only on the maxim that you would at the same time will to be a universal law.”13 Tornbetweenthesetwogoals,homomoralischoosesastrategythatmaximizes a convex combination of them. If κ=0, the definition of homo moralis coin- cideswiththatof“pureselfishness,”orhomooeconomicus;givenanystrategy y usedbytheotherparty,shewilluseastrategyin argmax π(x(cid:3)y).Atthe x∈X opposite extreme, κ=1, the definition of homo moralis coincides with that of“puremorality,”orhomokantiensis;irrespectiveofwhatstrategytheother partyuses(orisexpectedtouse),thisextremevarietyofhomomoraliswilluse astrategyinargmax π(x(cid:3)x).14 x∈X A special variety of homo moralis turns out to be important from an evolu- tionary point of view, namely, homo moralis with degree of morality equal to theindexofassortativity,κ=σ: (8) u (x(cid:3)y)=(1−σ)·π(x(cid:3)y)+σ·π(x(cid:3)x)(cid:9) σ We call this variety homo hamiltonensis. This terminology is a homage to the late biologist William Hamilton, who suggested that, in interactions between genetically related individuals, the concept of fitness should be augmented to whathecalledinclusivefitness,sincegenesthatdrivethebehaviorofoneindi- vidualarepresentalsointherelativewithsomegeneticallydeterminedprob- ability(Hamilton(1964a,1964b)).Ininteractionsbetweenindividualswithge- neticdegreeofrelatednessσ (Wright(1922)),u (x(cid:3)y)istheaverageinclusive σ 12Wethusadoptthenotationalconventionthattypesθthatarerealnumbersintheunitinter- valrefertohomomoraliswiththatdegreeofmorality. 13SeeBinmore(1994)foracriticaldiscussionofKant’scategoricalimperative. 14Inhisworkonstrategyevolutionamongsiblings,Bergstrom(1995)foundthattheselected strategymustbeaNashequilibriumstrategyofagameinwhichbothplayershavewhathecalls semi-Kantianpreferences.Suchpreferencescorrespondtohomomoraliswithdegreeofmorality κ=1/2. PREFERENCEEVOLUTION 2277 fitness of mutants in an infinitesimally small mutant subpopulation playing x in a resident population playing y. For recent analyses of various aspects of inclusivefitness,seeRousset(2004)andGrafen(2006). It is worth noting that the preferences of homo moralis differ sharply from any preferences in which the domain is the payoff distribution, such as altru- ism, inequity aversion, or a concern for efficiency. To see this, consider an in- dividualwhochoosesastrategyinargmax W[π(x(cid:3)y)(cid:3)π(y(cid:3)x)]forsomein- x∈X creasing (welfare) function W. This is a set that, in general, depends on the other party’s (expected) strategy y, while homo kantiensis chooses a strategy inargmax π(x(cid:3)x),asetthatdoesnotdependontheotherparty’sstrategy x∈X (seeSection6.2foramoredetailedcomparisonwithaltruism).Thetheoryde- velopedherealsodiffersfrommodelsintheliteratureonpsychologicalgames; see,forexample,Rabin(1993),DufwenbergandKirchsteiger(2004),andFalk andFischbacher(2006). 3. ANALYSIS Webeginwithsomegeneralobservationsandthenproceedtoourmainre- sult.First,letBNE(s)⊆X2denotethesetof(Bayesian)Nashequilibriainpop- ulation state s=(θ(cid:3)τ(cid:3)ε), that is, all solutions (x∗(cid:3)y∗) of (3). For given types θ and τ, this defines an equilibrium correspondence BNE(θ(cid:3)τ(cid:3)·):(0(cid:3)1)⇒X2 that maps mutant population shares ε to the associated set of equilibria. As noted above, all probabilities in (3) may be expressed in terms of the contin- uous assortment function φ, the domain of which we extended to [0(cid:3)1). This allowsustolikewiseextendthedomainofBNE(θ(cid:3)τ(cid:3)·).Onemayshowthefol- lowingbystandardarguments(seeAppendixforaproof): LEMMA 1: BNE(θ(cid:3)τ(cid:3)ε) is compact for each (θ(cid:3)τ(cid:3)ε) ∈ Θ2 × [0(cid:3)1). BNE(θ(cid:3)τ(cid:3)ε) (cid:7)= ∅ if u and u are concave in their first arguments. The corre- θ τ spondenceBNE(θ(cid:3)τ(cid:3)·):[0(cid:3)1)⇒X2 isupperhemi-continuous. Second,foreachtypeθ∈Θ,letβ :X⇒Xdenotethebest-replycorrespon- θ dence, β (y)=argmaxu (x(cid:3)y) ∀y∈X(cid:3) θ θ x∈X andX ⊆X thesetoffixedpointsunderβ , θ θ (cid:10) (cid:11) (9) X = x∈X:x∈β (x) (cid:9) θ θ Inparticular,X isthefixed-pointsetforhomohamiltonensis,theHamiltonian σ strategies. For any type θ ∈Θ, let Θ be the set of types τ that, as vanishingly rare θ mutantsamongresidentsoftypeθ,arebehaviorallyindistinguishablefromthe residents: (cid:10) (cid:11) (10) Θ = τ∈Θ:∃x∈X suchthat(x(cid:3)x)∈BNE(θ(cid:3)τ(cid:3)0) (cid:9) θ θ 2278 I.ALGERANDJ.W.WEIBULL Examplesofsuch“behavioralalikes”areindividualswithutilityfunctionsthat arepositiveaffinetransformationsoftheutilityfunctionoftheresidents,and alsoindividualsforwhomsomestrategyinX isdominant.15 θ Finally,thetypesetΘwillbesaidtoberichif,foreachstrategyx∈X,there exists some type θ∈Θ for which this strategy is strictly dominant: u (x(cid:3)y)> θ u (x(cid:12)(cid:3)y) ∀x(cid:12) (cid:7)=x, ∀y ∈X. Such a type θ will be said to be committed to its θ strategyx. Wearenowinapositiontostateourmainresult: THEOREM1: Ifβσ(x)isasingletonforallx∈Xσ,thenhomohamiltonensis isevolutionarilystableagainstalltypesτ∈/Θ .IfΘisrich,X ∩X =∅,andX σ θ σ θ isasingleton,thenθisevolutionarilyunstable. PROOF: Givenanypopulationstates=(θ(cid:3)τ(cid:3)ε),thedefinitions(1)and(2) oftheassociatedaveragepayofffunctionsΠ andΠ mayberewritteninterms θ τ oftheassortmentfunctionφas (cid:8) (cid:9) (cid:8) (cid:9) (11) Π (x(cid:3)y(cid:3)ε)= 1−ε+εφ(ε) ·π(x(cid:3)x)+ε 1−φ(ε) ·π(x(cid:3)y) θ and (cid:8) (cid:9) (cid:8) (cid:9) (12) Π (x(cid:3)y(cid:3)ε)=(1−ε) 1−φ(ε) ·π(y(cid:3)x)+ ε+(1−ε)φ(ε) ·π(y(cid:3)y)(cid:9) τ Sinceπ andφarecontinuousbyhypothesis,soareΠ (cid:3)Π :X2×[0(cid:3)1)→R. θ τ For the first claim, let θ=σ (homo moralis of degree of morality σ) and supposethat(x∗(cid:3)y∗)∈BNE(σ(cid:3)τ(cid:3)0).Then ⎧ (cid:5) (cid:6) ⎨x∗∈argmaxu x(cid:3)x∗ (cid:3) σ (13) x∈X (cid:5) (cid:6) (cid:5) (cid:6) ⎩y∗∈argmax(1−σ)·u y(cid:3)x∗ +σ·u y(cid:3)y∗ (cid:9) τ τ y∈X Thus x∗ ∈X and u (x∗(cid:3)x∗)≥u (y∗(cid:3)x∗). Moreover, if β (x) is a singleton σ σ σ σ for all x∈X , then the latter inequality holds strictly if τ∈/ Θ : u (x∗(cid:3)x∗)> σ σ σ u (y∗(cid:3)x∗), or, equivalently, π(x∗(cid:3)x∗)>(1−σ)·π(y∗(cid:3)x∗)+σ ·π(y∗(cid:3)y∗). By σ definitionofΠ andΠ ,wethushave σ τ (cid:5) (cid:6) (cid:5) (cid:6) (14) Π x∗(cid:3)y∗(cid:3)0 >Π x∗(cid:3)y∗(cid:3)0 σ τ for all (x∗(cid:3)y∗) ∈ BNE(σ(cid:3)τ(cid:3)0) and any τ ∈/ Θ . By continuity of Π and Π , σ σ τ this strict inequality holds for all (x(cid:3)y(cid:3)ε) in a neighborhood U ⊂X2×[0(cid:3)1) of (x∗(cid:3)y∗(cid:3)0). Now BNE(θ(cid:3)τ(cid:3)·):[0(cid:3)1)⇒X2 is closed-valued and upper hemi- continuous (Lemma 1). Hence, if (x(cid:3)y)∈BNE(θ(cid:3)τ(cid:3)ε) for all t ∈N, ε →0 t t t t and (cid:3)(x(cid:3)y)(cid:4) converges, then the limit point (x0(cid:3)y0) necessarily belongs to t t t∈N 15Forexample,u (x(cid:3)y)=−(x−x )2forallx(cid:3)y∈Xandsomex ∈X . τ θ θ θ

Description:
BY INGELA ALGER AND JÖRGEN W. WEIBULL1. What preferences will prevail in a society of rational individuals when preference evolution is driven
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.