ebook img

Homeomorphisms of Knaster continua PDF

57 Pages·2001·2.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Homeomorphisms of Knaster continua

HOMEOMORPHISMSOFKNASTERCONTINUA By VINCENTASSEMBATYA ADISSERTATION PRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 2001 Copyright2001 by VincentASsembatya IdedicatethistomyfamilyandtoJosephine. ACKNOWLEDGEMENTS ThisthesisistheoutcomeofmystudiesattheDepartmentofMathematics attheUniversityofFlorida. EveryoneintheDepartmenthasbeenverysupportive. IwouldliketoexpressmygratitudetomyadvisorProfessorJamesE. Keeslingfor thequalitytimehehas generouslygiventomeduringmyworkon thisthesis. I appreciatetheadvice,support andthegreatinspirationgivenduringthelastfew years. Iwouldliketothankthe DepartmentofMathematicsattheUniversityof FloridaandMakerereUniversityinUgandaforthefincancialsupportthathasseen methroughmystudies. Iamgratefultomygraduatecommitteemembers,ProfessorsBlock,Brechner, KingandKhuriwhomEvepersistentlydistractedfromtheirotherschedules. Their support is invaluable. I wish to thank myparents and familyin Uganda; allof myfriendsinGainesville;andProfessors AndrewVinceandPeterKizzaandtheir familiesforkeepingmesociallyadriftandfordistractingmefrommywoes. IV TABLEOFCONTENTS ACKNOWLEDGEMENTS iv ABSTRACT vii CHAPTERS 1 INTRODUCTION 1 1.1 Continua 1 1.2 Composants 1 1.3 Homogeneity 2 1.4 ExamplesofIndecomposableContinua 2 1.5 InverseLimitSpacesofContinua 2 1.6 ArclikeContinua 3 1.7 InducedMapsbetweenInverseLimits 4 1.8 LiftingMapstoCovers 5 1.9 HomotopyLifting 5 1.10 CoveringProjection 5 1.11 TopologicalEntropy 6 1.12 TopologicalGroups 7 1.13 GroupAction 7 2 MAPSBETWEENTOPOLOGICALGROUPS 9 2.1 DualityforLocallyCompactGroups 9 2.2 MapsbetweenTopologicalGroupsthatareHomotopictoHomo- morphisms 9 2.3 TheCechCohomologyofContinua 10 2.4 DirectLimitsofGroups 10 2.5 TheCechcohomologyasadirectlimitgroup 11 3 FIXEDPOINTSOFKNASTERCONTINUA 12 3.1 GeneralizedSolenoids 12 3.2 ComposantsoftheSolenoid 14 3.3 KnasterContinua 16 3.4 Chebychevpolynomials 16 3.5 EndPointsinKnasterContinua 16 3.6 FixedPointsofHomeomorphismsofKnasterContinua 19 3.7 StandardHomeomorphismsoftheSolenoid 24 3.8 LiftingMapsfromKnasterContinuatotheSolenoids 24 3.9 LiftingIsotopies 24 v 3.10 StandardHomeomorphismsofKnasterContinua 27 3.11 NumberofFixedPointsofHomeomorphisms 28 4 HOMEOMORPHISMSOFKNASTERCONTINUA 31 4.1 EntropyofQuotients 31 4.2 EntropyofaHomeomorphismoftheKnasterContinuum .... 35 4.3 GeneralizingKnasterContinua 35 4.4 WeakSolenoids 36 4.5 KnasterContinuafromWeakSolenoids 38 4.6 DistinguishablePointsinKnasterContinua 38 4.7 LiftingHomeomorphismsfromKnasterContinuatoSolenoids . . 40 5 CONCLUSION 44 5.1 Summary 44 5.2 Questions 45 REFERENCES 46 BIOGRAPHICALSKETCH 48 vi AbstractofDissertation PresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy HOMEOMORPHISMSOFKNASTERCONTINUA By VincentASsembatya December 2001 Chairman: Dr. JamesE.Keesling MajorDepartment: Mathematics InthisthesisweinvestigatehomeomorphismsofKnastercontinua. Wedeter- minetheminimumnumberoffixed-pointshomeomorphismsofthesecontinuamust have. ThisanalysisisrelatedtoaquestionraisedbyWilliamS.Mahavieronwhether ahomeomorphismontheKnasterbuckethandlemusthaveatleasttwofixedpoints. ItisprovedthatanisotopybetweenhomeomorphismsoftheKnastercontinuumcan beliftedtoanisotopybetweenhomeomorphismsofthesolenoid. Wegivenecessary andsufficientconditionsforahomeomorphismoftheKnastercontinuumtohaveat leasttwofixedpoints. WeconstructaKnastercontinuumonwhicheveryhomeo- morphismhaseitheruncountablymanyfixedpointsoruncountablymanypointsof period2. Wedeterminetheminimumnumberoffixedpointsahomeomorphismon theKnastercontinuumcanhave. Weconstructanexampletoshowthat Bowen’s theoremonentropyofquotientson compactspacesdoesnot readilygeneralizeto non-compactspaces. Vll WegeneralizethedefinitionsofKnastercontinuatoconstructionsviatoral homomorphisms. Weshowthathomeomorphismonthesecontinua(intheodddi- mensioncase)lifttohomeomorphismstothesolenoidandendwithsomequestions forfurtherresearch. vm CHAPTER INTRODUCTI1ON Inthischapterweestablishnotation,definitionsandsomebasicresultsfrom continuumtheory, topologicalgroup theoryand cohomology theoryto beusedin subsequentchapters. Weassumethereaderisfamiliarwiththestandardresultsand terminologyofgeneraltopology,suchasiscoveredinMunkres[22]. Specificallysuch results as the Baire Category Theoremareassumed. For less wellknown results suchasthosefromalgebraictopologyandtopologicalgrouptheorytheappropriate referenceswillbecited. Basicdefinitionsinalgebraictopologysuchasofhomotopy groups,homologygroupsandcohomologygroupsmaybefoundinSpanier[27]. For basicdefinitionsfromtopologicalgrouptheory,thereaderisreferredtothetextby HewittandRoss[13]. Byamapwemeanacontinuousfunction. 1.1 Continua Acontinuumisacompactconnectedmetricspace. AsubcontinuumYofthe continuumXisaclosed,connectedsubsetofAh AcontinuumXis decomposable ifthereexisttwononemptysubcontinua Hand I\ ofthecontinuumX suchthat H^XandI\ ^X,butHUK=X. Anycontinuumthatisnotdecomposableis saidtobeindecomposable. 1.2 Composants AcomposantCom(x)ofagivenpointxEXistheunionofallpropersub- continuainXthatcontainthepointx. ApointybelongstoCom(i)ifthereisa propersubcontinuumAthatcontainsbothxandy. Itisknown[16]thatcontinuum 1 2 Xisindecomposableifandonlyif{Com(a:)|x£A}formsapartitionofXintoan uncountablecollectionoffirstcategory,connectedsetseachofwhichisdenseinA'. AsetisfirstcategoryinXifitcanbewrittenastheunionofacountablenumber ofnowheredensesubsetsofX. Itisknown[16]thatacontinuumisindecomposable andnondegenerateifandonlyifi1t.3possessestwodisjointcomposants. Acontinuum XishereditarilyindecomposableifeverysubcontinuumofXisindecomposable. Homogeneity 1.4 AcontinuumXissaidtobehomogeneousifforanygivenpointsx,y6X — thereisahomeomorphismh:X >ATofA"ontoXsuchthath(x)=y. ExamplesofIndecomposableContinua ThesolenoidsandKnastercontinua(Chapter3)areexamplesofindecompos- 1.5 ablecontinua. Thepseudoarc[16,figure4]isanexampleofaheriditarilyindecom- posablecontinuum. Infacteverysubcontinuumofthepseudoarcishomeomorphic tothepseudoarc. Suchacontinuumissaidtobehereditarilyequivalent. Theunit intervalisanotherexampleofahereditarilyequivalentcontinuum. InverseLimitSpacesofContinua. Aninversesequenceisadoublesequence{A oftopologicalspacesA, andmapsfisuchthateachA,isatopologicalspaceforeachiandeachmap/,•takes A,+itoA;. Thecollectionofmapsfiarereferredtoasbondingmaps. Wewrite Ax A2 A3.... Theinverselimitoftheinversesequenceistheset OO (xi,x2,...)£J^A,: foralli>1, ft{xl+1)=x, { »=i topologized withtherelativizedproduct topology. Let denotethe naturalpro- jectionfrombothJ^iA,-anditssubsetA,*,ontoAkdefinedby7r^((x„))=x*.A

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.