ebook img

Holon Pairing Instability based on the Bethe-Salpeter Equation obtained from the t-J Hamiltonians of both U(1) and SU(2) Slave-boson Symmetries PDF

4 Pages·0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Holon Pairing Instability based on the Bethe-Salpeter Equation obtained from the t-J Hamiltonians of both U(1) and SU(2) Slave-boson Symmetries

Holon Pairing Instability based on the Bethe-Salpeter Equation obtained from the t-J Hamiltonians of both U(1) and SU(2) Slave-boson Symmetries Sung-Sik Lee and Sung-Ho Suck Salka Department of Physics, Pohang University of Science and Technology, 0 Pohang, Kyoungbuk, Korea 790-784 0 a Korea Institute of Advanced Studies, Seoul 130-012, Korea 0 (February1, 2008) 2 We investigate a possibility of holon pairing for bose condensation based on the Bethe-Salpeter n equation obtained from the use of the t-J Hamiltonians of both the U(1) and SU(2) slave-boson a symmetries. It is shown that the vertex function contributed from ladder diagram series involving J holon-holon scattering channel in the Bethe-Salpeter equation leads to a singular behavior at a 6 critical temperature at each hole doping concentration, showing the instability of the normal state 1 against holon pairing. We find that the holon pairing instability occurs only in a limited range of holedoping,byshowingan”arch”shapedbosecondensationlineinagreementwithobservationfor ] n high Tc cuprates. It is revealed that thisis in agreement with a functional integral approach of the o slave-boson theories. c - 1 pr theSinUc(e1)thaendadSvUen(2t)osflahvige-hboTsconsuappeprcrooancdhuecstitvoityt,hebott-hJ H =−t (c†iσcjσ +c.c.)+J (Si·Sj − 4ninj), (1) u <Xi,j> <Xi,j> Hamiltonian have been proposed to study superconduc- s at. t[1iv]-it[y3]f.orUtnhleiketwtoh-ediUm(e1n)sisolnavael-sbyosstoenmsmoeafncofipepldertohxeiodreys, wHhereereSSi·iSsj−th41eneinlejct=ro−n21s(pci†in↓c†jo↑p−erca†i↑tco†jr↓)a(tcj↑sictie↓−i,cjS↓ci↑=). i i m the recently proposed SU(2) theory of Wen and Lee has 12c†iασαβciβ withσαβ,thePaulispinmatrixelementand - a merit of treating the low energy phase fluctuations of d ni, the electron number operator at site i, ni = c†iσciσ. order parameters [3]. Recently we proposed a theory of n In the slave-bosonrepresentation[1]- [3] cσ, the electron o bosecondensationby payingattentionto theholonpair- annihilation operator of spin σ can be written as a com- c ing channel in the U(1) slave-boson theory [4], in con- posite of spinon and holon operators. That is, c =b f 1 [ throalsotntcoonodthenersaetaiornli.erInsttuhdisiepsacpoenrctehrneepdhawsiethflutchteuastiniognles winitthheαU=(11),t2h,eworhyeraenfdc(αb)=is√t1h2eh†sψpαinionnt(hheolSoUn)(2aσ)ntnhihe†oilraσy- σ v of the spinon pairing and hopping order parameters are f 8 taken care of by the SU(2) theory. In addition, follow- tion operator in the U(1) theory, and ψ = 1 and 1 ing our earlier study [5] the spinon and holon degrees 1 (cid:18)f2† (cid:19) 2 f b 01 othfefrbeaedsiosmofaorne-isnitterocdhuacregde iflnutcotuthateioHnesiswenhbicehrgartiesremasona ψ2 =(cid:18)−f21† (cid:19) and h=(cid:18)b12 (cid:19) are respectively the dou- blets of spinon and holon annihilation operators in the 0 result of site-to-site electron(and thus holon) hopping in 0 two-dimensionalquantumsystems ofhole-dopedhighT SU(2) theory. c / AfterHubbardStratonovichtransformationsinassoci- t cuprates. Most of the slave-boson theories have been a ationwiththedirect,exchangeandpairingchannelsand concerned with single holon bose condensation. These m the saddle point approximation, the effective Hamilto- theories predicted a linear increase of bose condensation - nian is decomposed into the spinon sector and the holon temperature with doping concentration, contrary to the d sector separately. Here to explore the instability of the n observedbosecondensationline ofan’arch’shapewhich normal state against holon pairing, we pay attention to o manifests the presence of optimal doping rate. Most re- c cently Wen and Lee [3] questioned whether the single the holon sector of the Hamiltonian. The holon Hamil- : tonian is derived to be, for the U(1) slave-boson theory v holonortheholonpairbosecondensationisfavoredwith i theSU(2)slave-bosontheory. Inthisworkwepayatten- [5], X tion to holon pair bose condensation by demonstrating ar a possibility of holon pairing instability from the study Htb J,U(1) =−t χijb†ibj +c.c. − of the Bethe-Salpeter equation obtained from the use of <Xi,j> J tbhoesotn-JsHymammielttorineisa.nsTohfeboptrhesethnet Uap(p1)roaancdh SisU(s2h)owslnavteo- − 2 |∆fij|2b†ib†jbjbi−µ0 b†ibi, (2) <i,j> i X X predict the observed characteristics of the bose conden- sationlineofanarchshapeinexcellentagreementwitha where χij =< fj†σfiσ + J(14tδ)2b†jbi > is the hopping or- functional integral approach to the slave-bosontheories. der parameter and ∆f =<−f f −f f >, the spinon ij j i j i ↑ ↓ ↓ ↑ pairing order parameter, and for the SU(2) slave-boson We write the t-J Hamiltonian, theory, 1 Htb−J,SU(2) =−2t h†iUijhj +c.c. hwohleorne Mgαaβt(sku)ba=ra G0βrdeτeeni’ks0τfu<nctTioτn[bαink(τth)be†βkS(U0()2])>s,latvhee- <Xi,j> R boson representation. Here k ≡ (k ,k) is the three J 0 −2 |∆fij|2b†iαb†jβbjβbiα−µ0 h†ihi, (3) component vector of the energy-momentum of holon. <i,j>,α,β i q = (q ,q) is the three component vector of the total X X 0 energy-momentum of holon pair. χ −∆f where Ui,j = −∆ijfij∗ −χ∗iijj ! is the order parameter EqAs.f(t6e)rasnudm(m7)i,nwgeoovbetrainthteheMfoaltlsouwbinargamfarterqiuxeenqcuieastioinn matrix [3] of hopping order, χ and spinon pairing or- ij for the t-matrix, in the U(1) slave-bosonrepresentation, der, ∆fij with χij =<fj†σfiσ+ J(12tδ)2(b†j1bi1−b†i2bj2)> and ∆f =<f f −f f >. − ′ Introijducingja1 ui2niformj2hio1ppingorderparameter,χ = δk′,k′′ −mk′,k′′(q0,q) tk′′,k(q0,q)=v(k −k), (8) χ, and a d-wave spinon pairing order parameters, ∆fji = Xk′′ (cid:16) (cid:17) ji ±∆ (thesign+(−)isfortheijlinkparalleltoxˆ(yˆ)),we f ′ ′ obtain from Eq.(2) the momentum space representation where tk′,k(q0,q)≡<k ,−k +q|t|k,−k+q >U(1), of the Hamiltonian, for the U(1) theory, 1 ′ ′′ ′′ ′′ Htb J,U(1) = ǫ(k)b†kbk mk′,k′′(q0,q)≡−Nβ v(k −k )g(k )g(−k +q) − ′′ Xk Xk0 +21N kX,k′,qv(k−k′)b†−k′+qb†k′bkb−k+q, (4) =−v(k′N−βk′′) ′′ ik0′′ −1ǫ(k′′)i(−k0′′ +q0)−1 ǫ(−k′′ +q) whereǫ(k)=−2tχγ −µ ,theenergydispersionofholon Xk0 with γk =(coskx+kcosk0y) and v(k′ −k)=−J|∆f|2γk, = 1 v(k′ −k′′)n(ǫ(k′′))+eβǫ(−k′′+q)n(ǫ(−k′′ +q)), (9) the momentum space representation of holon-holon in- N iq −(ǫ(−k′′ +q)+ǫ(k′′)) 0 teraction. Likewise we obtain from Eq.(3), −tχγ −µ t∆ ϕ andn(ǫ)= 1 , the bosondistribution function. Simi- Htb J,SU(2) = h†k t∆kϕ 0 tχγ f−kµ hk larly,weobteaβiǫn−,1intheSU(2)slave-bosonrepresentation, − f k k 0 k (cid:18) (cid:19) X 1 ′ +2N k,kX′,q,α,βv(k−k )b†−k′+q,βb†k′,αbk,αb−k+q,β, (5) k′′,Xα′′,β′′(cid:18)δk′,k′′δα′α′′δβ′β′′ −mαk′′,βk′′α′′′β′′(q0,q)(cid:19)tkα′′′′,βk′′αβ(q0,q) where α, β (= 1,2) represent two isospin components of ′ SU(2) holon and ϕ = (cosk −cosk ). N is the total =v(k −k)δα′αδβ′β, (10) k x y numberofsitesforthetwodimensionallatticeofinterest. Considering the t-matrix of involving the particle- where tα′β′αβ(q ,q) ≡ < k′,α′;−k′ +q,β′|t|k,α;−k + particle(holon-holon) scattering channels, we obtain the k′,k 0 ′ ′ ′′ ′′ Bseentthaet-iSoanl,peter equations in the U(1) slave-boson repre- q,β >SU(2) and mαk′,β′k′′α′ β (q0,q) ≡ N1 α′1β1′ v(k′ − <−Nk1′β,−k′ +v(kq|′t|−k,k−′′k)g+(kq′′)>gU(−(1k)=′′ +v(qk)′×−k) kq′)′U)nα†(′Eαα′′′1((kikq′′0′′)−))U(+Eβ†eα′ββ′1E′(β′k1(′′−(′−)+kkE′′+β+1q′)(n−q(kE)′.′β+1′(qH−))ekr′′e+qE))1×(kPU)α=′α′1E(kk′′−)Uµβ0′β1′(−k′′+ Xk′′ and 1E2(k) = 1−Ek − µ0 are the energy dispersions ′′ ′′ <k ,−k +q|t|k,−k+q > , (6) of the upper and lower bands of holons with E = U(1) k u −v where g(k) = 0βdτeik0τ < Tτ[bk(τ)b†k(0)] >, the holon t (χγk)2+(∆fϕk)2. Uαβ(k) = vkk ukk is the MatsubaraGreen’sfunction inthe U(1)slave-bosonrep- upnitary transformation matrix used(cid:18)for the dia(cid:19)gonaliza- R resentation,andintheSU(2)slave-bosonrepresentation, tion of the one-body holon Hamiltonian in Eq.(5) with <k′,α′;−k′ +q,β′|t|k,α;−k+q,β >SU(2) uk = √12 1− tχEγkk and vk = √12 1+ tχEγkk. It is noted =v(k′ −k)δα′,αδβ′,β thatthe tq-matrices,tk′,k(q0,q)anqdtαk′′,βk′αβ(q0,q)forthe 1 ′ ′′ ′′ ′′ U(1) and SU(2) theories respectively are independent −Nβ k′′,Xα′′,β′′v(k −k )gα′α′′(k )gβ′β′′(−k +q) ocofntshideeMraatitosnuboafrainfsrteaqnuteannceioeusskh0′oalonnd-hko0l,onowinintegratcotitohne, ′′ ′′ ′′ ′′ ′ ×<k ,α ;−k +q,β |t|k,α;−k+q,β > , (7) v(k −k). SU(2) 2 As mentioned earlier, the t-matrix elements are ob- tor concerned with the SU(2) isospin channels α and tained from Eqs.(6) and (7), both of which involve sum- β(α=1,2andβ =1,2)andλ,thecorrespondingeigen- mation over the Matsubara frequencies. Using the ma- value. For the case of U(1) there are N eigenvectors trixequations(8)and(10),thepolesofthet-matricesare corresponding to N discrete values of momenta for an searchedforasafunctionofenergyq withq=0,i.e.,the N × N reciprocal lattice. For SU(2), 4N eigenvectors 0 zero total momentum of the holon pair. The t-matrices are available in accordance with the isospin channels of are numerically evaluated from the use of Eqs.(8) and holon(b )-holon(b ) scattering. We search for the eigen- α β (10)foreachdopingrate andtemperature. The hopping vectors whose eigenvalues diverge in the limit of q = 0 0 and spinon pairing order parameters in Eqs.(2) and (3) and q = 0 at an onset(critical) temperature T , that is, c arethesaddlepointvaluesevaluatedfromtheusualpar- theeigenvectorscorrespondingtothepoleofthet-matrix titionfunctionsinvolvingthefunctionalintegralsofslave- whose sign changes at T . We choose N = 10×10 for c boson representation [5]. For both the U(1) and SU(2) a reciprocal lattice to determine the symmetry of holon t-matrix calculations we chooseJ/t=0.3 in Eqs.(2)and pairing at an underdoping rate, δ =0.05. (3). The computed eigenvectors for both the U(1) and Athightemperatures,computedpolesarefoundtobe SU(2) slave-boson approaches yielded good fits to the s- positive and real, indicating that there exist no bound wavesymmetryofthe formcosk +cosk inmomentum x y states. As temperature is lowered to a critical(onset) space ; for the U(1) theory we have value T , we find that with the U(1) theory one pole c changesitssignfrompositivetonegative,indicatingthat W(k)=A(cosk +cosk ), (13) x y their exists an instability of the normal state against holonpairingattheonset(critical)temperatureT . Simi- where A is the normalization constant to satisfy c larly,withtheSU(2)slave-bosontheorytwopoleschange |W(k)|2 =1, and for the SU(2) theory, k theirsignsfrompositivetonegativeatT ;thesetwopoles c correspond to the particle-particle(holon-holon) scatter- PWαeβ(k)=Ae(coskx+cosky)(δα,1δβ,1+δα,2δβ,2), (14) ingchannelsofb -b andb -b respectively. InFig.1. the 1 1 2 2 onset temperature T (denoted by solid square in Fig.1) and c for the appearance of such negative pole(s) is predicted Wo (k)=Ao(cosk +cosk )(δ δ −δ δ ), (15) tooccuronlyinalimitedrangeofholedopingconcentra- αβ x y α,1 β,1 α,2 β,2 tion, by revealing an ”arch” shaped feature of bose con- densationlineinagreementwithobservationinthephase forb1 holonandb2 holonpairing,whereAe(o) is the nor- diagram of high T cuprates. The onset temperature malization constant to satisfy |We(o)(k)|2 = 1. c k,α,β αβ of negative pole(s) coincide(s) surprisingly well with the Oneofthetwocomputedeigenvectorsshowsaphasedif- P criticaltemperature of holonpair condensationobtained ferenceofevenmultiplesofπbetweentheb andb holon 1 2 from the functional integral approach(denoted by open pairingorderparametersandiswellfittedbyEq.(14);the square in Fig.1) of the slave-boson theories [5]. Holon- other computed eigenvector is well fitted by Eq.(15), by holon scattering occurs above the lowest possible single showing a phase difference of odd multiples of π. The particle energy ǫ(k=0). The negative pole corresponds divergenceof eigenvalueswasseento occurnearly atthe tothebindingenergyoftheholonpair. Thisisanalogous sametemperature(withinanumericalaccuracyof10 4t). − tothebindingenergyofelectronpairswhichresultsfrom Fig.2 displays the U(1) result of the s-wavesymmetry of the Cooper’s two particle problem of electron-electron the holon pairing order. In Figs.2(a) and (b), we show scattering only above the Fermi energy ǫ(k ), i.e., the the SU(2) results of the s-wave symmetry of opposite f Fermi-surface. phase between the b and b holon pairing order param- 1 2 In order to find the symmetry of the holon pairing or- eters. Both results demonstrated excellent fits to the derparameterwenowcomputetheeigenvectorsofthet- s-wave symmetry form of Eqs.(13) and (15). Since the matrixwhosepoleschangetheirsignsatacritical(onset) computedresultswhichfitsEq.(14)areindistinguishable temperature T ; the eigenvalue equations are withtheonesshowninbothFig.2andFigs.3(a)andthus c are not displayed. In short, both the U(1) and SU(2) ′ tk,k′(q0 =0,q=0)W(k )=λW(k), (11) theories predicted the s-wave symmetry of holon pair- Xk′ ing order. This is equivalent to the d-wave symmetry of hole pairing order, by noting that the hole is a com- for the U(1) theory, where W(k) is the eigenvector and posite of a holon(boson) of spin 0 with charge +e and a λ, the eigenvalue and spinon(fermion) of spin 1/2 with charge 0 and realizing tkα,βkα′′β′(q0 =0,q=0)Wα′β′(k′)=λW(k)αβ, (12) tshpeinos-nwpavaeirihnoglo[1n]-p[a3i]ri[n5g]. in the presence of the d-wave k′X,α′,β′ In the present study, we found that the bose conden- for the SU(2) theory, where W (k) is the eigenvec- sation of an arch shape occurs only in a limited range αβ 3 of hole doping concentration, by searching for the onset temperature of the holon pairing instability. It is found 0.08 taahtpuaprtreotaihsceihnpersperodeficcibtseoedtahhgrtoehloeemnUep(na1ti)srwabnoitdshettchhoeenfSduUenn(cs2ta)itoisnolanalvtieen-mbteopgseroarn-l unit of t) 0.06 shpoinloonn ppaaoiinrriisnneggt TTT theories. Most importantly, both of these approaches e ( 0.04 (b) r u were found to satisfactorily predict the experimentally at r observed bose condensation (superconducting) tempera- pe 0.02 m tureasafunctionoftheholedopingrate,byrevealingthe e presence of the optimal doping rate in high T cuprates. T 0 c 0.1 0.2 0.3 0.4 doping rate, δ FIG. 1. Onset temperature(denoted by (cid:4)) of the negative energypolesrepresentingholonpairbosecondensationtemper- atureTc asafunctionofholedopingrateforboth(a)U(1)and (b)SU(2)slave-bosontheories.Thesymbols,(cid:13)and(cid:3)represent respectively the spinon pairing and holon pairing temperatures obtained from thefunctional integral approach. W(k) One(SHSS) of us acknowledges the generous supports 0.2 0 ofKoreaMinistryofEducation(BSRI-98and99)andthe -0.2 Center for Molecular Science at Korea Advanced Insti- -1 tute of Science and Technology. We thank Tae-Hyoung -0.5 Gimm, Jae-Hyun Uhm and Ki-Suk Kim for helpful dis- k / π0 1 cussions. x 0.5 0 0.5 1 -0.5 k / π y FIG. 2. The computed eigenvector of the U(1) t-matrix which fitsthes-wave symmetry of holon pairing in Eq.(13). [1] G. Kotliar and J. Liu, Phys. Rev.B 38, 5142 (1988); ref- Wo (k) (a) erences there-in. 11 [2] a) M. U. Ubbens and P. A. Lee, Phys. Rev. B 46, 8434 0.2 (1992); b)M.U.UbbensandP.A.Lee,Phys.Rev.B49, 0 -0.2 6853 (1994); references there-in. [3] a) X. G. Wen and P. A. Lee, Phys. Rev. Lett. 76, 503 -1 (1996); b)X.G.Wenand P.A.Lee, Phys.Rev.Lett.80, -0.5 k / π0 1 2193 (1998); references there-in. x 0.5 0 0.5 [4] T.-H. Gimm, S.-S. Lee, S.-P. Hong and Sung-Ho Suck 1 -0.5 k / π y Salk, Phys. Rev.B 60, 6324 (1999). [5] S.-S. Lee and Sung-Ho Suck Salk, Int. J. Mod. Phys. in press(cond-mat/9905268); Sung-Ho Suck Salk and S.-S. Lee, Physica B, in press(cond-mat/9907226). Wo (k) (b) 22 0.2 0.08 0 of t) shpoinloonn ppaaiirriinngg TT -0.2 nit 0.06 onset T -1-0.5 u ure ( 0.04 (a) kx/ π00.5 0 0.5 1 at 1 -0.5 k / π er 0.02 y p m Te 0 FIG. 3. The computed eigenvector of the SU(2) t-matrix 0.1 0.2 0.3 which fitsthe s-wavesymmetry of holon pairing in Eq.(15). (a) doping rate, δ and (b) display thephase difference of π between theb1 and b2 holon pair order parameters. 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.