ebook img

Hodge Theory PDF

597 Pages·2014·2.566 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hodge Theory

hodge˙book˙20oct October20,2013 6x9 Hodge Theory Edited by: Eduardo Cattani Fouad El Zein Phillip A. Griffiths Leˆ Du˜ng Tra´ng PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD hodge˙book˙20oct October20,2013 6x9 hodge˙book˙20oct October20,2013 6x9 iii Contributors PatrickBrosnan PhillipA.Griffiths DepartmentofMathematics InstituteforAdvancedStudy UniversityofMaryland EinsteinDrive CollegePark,MD20742-4015,USA Princeton,NJ08540-4907,USA [email protected] [email protected] JamesCarlson MattKerr 25MurrayStreet,Apartment7G DepartmentofMathematics,Box1146 NewYorkCity,NY10007-2361,USA WashingtonUniversityinSt. Louis [email protected] St. Louis,MO63130-4899,USA [email protected] EduardoCattani Leˆ Du˜ngTra´ng DepartmentofMathematicsandStatistics Universite´ deAixMarseille UniversityofMassachusettsAmherst CentredeMathe´matiquesetInformatique Amherst,MA01003-9305,USA 39,rueJoliotCurie [email protected] 13453MarseilleCedex13,France [email protected] Franc¸oisCharles LucaMigliorini Universite´ Paris-Sud DipartimentodiMatematica De´partementdeMathe´matiques Universita` diBologna Baˆtiment425 PiazzadiPortaS.Donato,5 91405OrsayCedex,France Bologna,Italy [email protected] [email protected] MarkAndreadeCataldo JacobP.Murre DepartmentofMathematics DepartmentofMathematics StonyBrookUniversity UniversityofLeiden StonyBrook,NY11794-3651,USA P.O.Box9512 2300RALeiden,TheNetherlands [email protected] FouadElzein ChristianSchnell InstitutdeMathe´matiquesdeJussieu DepartmentofMathematics Paris,France StonyBrookUniversity [email protected] StonyBrook,NY11794-3651,USA [email protected] MarkL.Green LoringW.Tu DepartmentofMathematics DepartmentofMathematics UCLA TuftsUniversity LosAngeles,CA90095-1555,USA Medford,MA02155,USA [email protected] [email protected] hodge˙book˙20oct October20,2013 6x9 hodge˙book˙20oct October20,2013 6x9 Contents Preface xiii 1 Ka¨hlerManifoldsbyE.Cattani 1 1.1 ComplexManifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 DefinitionandExamples . . . . . . . . . . . . . . . . . . . . 2 1.1.2 HolomorphicVectorBundles. . . . . . . . . . . . . . . . . . 11 1.2 DifferentialFormsonComplexManifolds . . . . . . . . . . . . . . . 15 1.2.1 AlmostComplexManifolds . . . . . . . . . . . . . . . . . . 15 1.2.2 TangentandCotangentSpace . . . . . . . . . . . . . . . . . 16 1.2.3 DeRhamandDolbeaultCohomologies . . . . . . . . . . . . 20 1.3 Symplectic,Hermitian,andKa¨hlerStructures . . . . . . . . . . . . . 23 1.3.1 Ka¨hlerManifolds . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3.2 TheChernClassofaHolomorphicLineBundle. . . . . . . . 28 1.4 HarmonicForms-HodgeTheorem. . . . . . . . . . . . . . . . . . . 30 1.4.1 CompactRealManifolds . . . . . . . . . . . . . . . . . . . . 30 1.4.2 The∂¯-Laplacian . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5 CohomologyofCompactKa¨hlerManifolds . . . . . . . . . . . . . . 35 1.5.1 TheKa¨hlerIdentities . . . . . . . . . . . . . . . . . . . . . . 35 1.5.2 TheHodgeDecompositonTheorem . . . . . . . . . . . . . . 36 1.5.3 LefschetzTheoremsandHodge-RiemannBilinearRelations . 38 A LinearAlgebra 44 A.1 RealandComplexVectorSpaces . . . . . . . . . . . . . . . . . . . . 44 A.2 TheWeightfiltrationofanilpotenttransformation. . . . . . . . . . . 49 A.3 Representationsofsl(2,C)andLefschetzTheorems . . . . . . . . . 50 A.4 Hodgestructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 B TheKa¨hlerIdentitiesbyP.A.Griffiths 57 B.1 SymplecticLinearAlgebra . . . . . . . . . . . . . . . . . . . . . . . 57 B.2 CompatibleInnerProducts . . . . . . . . . . . . . . . . . . . . . . . 60 B.3 SymplecticManifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 62 B.4 TheKa¨hlerIdentities . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Bibliography 66 hodge˙book˙20oct October20,2013 6x9 vi CONTENTS 2 TheAlgebraicdeRhamTheorembyF.ElZeinandL.Tu 69 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 PartI.SheafCohomology,Hypercohomology,andtheProjectiveCase . 71 2.1 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2.1.1 TheE´tale´ SpaceofaPresheaf . . . . . . . . . . . . . . . . . 71 2.1.2 ExactSequencesofSheaves . . . . . . . . . . . . . . . . . . 72 2.1.3 Resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.2 SheafCohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.2.1 Godement’sCanonicalResolution . . . . . . . . . . . . . . . 75 2.2.2 CohomologywithCoefficientsinaSheaf . . . . . . . . . . . 77 2.2.3 FlasqueSheaves . . . . . . . . . . . . . . . . . . . . . . . . 79 2.2.4 CohomologySheavesandExactFunctors . . . . . . . . . . . 82 2.2.5 FineSheaves . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2.2.6 CohomologywithCoefficientsinaFineSheaf . . . . . . . . 86 2.3 CoherentSheavesandSerre’sGAGAPrinciple . . . . . . . . . . . . 88 2.4 TheHypercohomologyofaComplexofSheaves . . . . . . . . . . . 91 2.4.1 TheSpectralSequencesofHypercohomology . . . . . . . . . 93 2.4.2 AcyclicResolutions . . . . . . . . . . . . . . . . . . . . . . 95 2.5 TheAnalyticdeRhamTheorem . . . . . . . . . . . . . . . . . . . . 97 2.5.1 TheHolomorphicPoincare´ Lemma . . . . . . . . . . . . . . 97 2.5.2 TheAnalyticdeRhamTheorem . . . . . . . . . . . . . . . . 98 2.6 TheAlgebraicdeRhamTheoremforaProjectiveVariety . . . . . . . 99 PartII.CˇechCohomologyandtheAlgebraicdeRhamTheoreminGen- eral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 2.7 CˇechCohomologyofaSheaf . . . . . . . . . . . . . . . . . . . . . . 100 2.7.1 CˇechCohomologyofanOpenCover . . . . . . . . . . . . . 101 2.7.2 RelationBetweenCˇechCohomologyandSheafCohomology 102 2.8 CˇechCohomologyofaComplexofSheaves . . . . . . . . . . . . . . 104 2.8.1 TheRelationBetweenCˇechCohomologyandHypercohomol- ogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 2.9 ReductiontotheAffineCase . . . . . . . . . . . . . . . . . . . . . . 107 2.9.1 ProofthattheGeneralCaseImpliestheAffineCase. . . . . . 108 2.9.2 ProofthattheAffineCaseImpliestheGeneralCase. . . . . . 108 2.10 TheAlgebraicdeRhamTheoremforanAffineVariety . . . . . . . . 110 2.10.1 TheHypercohomologyoftheDirectImageofaSheafofSmooth Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 2.10.2 TheHypercohomologyofRationalandMeromorphicForms . 111 2.10.3 ComparisonofMeromorphicandSmoothForms . . . . . . . 115 Bibliography 120 3 MixedHodgeStructuresbyF.ElZeinandLeˆ D.T. 122 3.1 HodgeStructureonasmoothcompactcomplexvariety . . . . . . . . 127 3.1.1 Hodgestructure(HS) . . . . . . . . . . . . . . . . . . . . . . 127 3.1.2 Spectralsequenceofafilteredcomplex . . . . . . . . . . . . 131 hodge˙book˙20oct October20,2013 6x9 CONTENTS vii 3.1.3 Hodge structure on the cohomology of non-singular compact complexalgebraicvarieties. . . . . . . . . . . . . . . . . . . 135 3.1.4 LefschetzdecompositionandPolarizedHodgestructure . . . 140 3.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 3.1.6 CohomologyclassofasubvarietyandHodgeconjecture . . . 145 3.2 MixedHodgeStructures(MHS) . . . . . . . . . . . . . . . . . . . . 148 3.2.1 Filtrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 3.2.2 MixedHodgeStructure(MHS) . . . . . . . . . . . . . . . . 155 3.2.3 Inducedfiltrationsonspectralsequences. . . . . . . . . . . . 162 3.2.4 MHSofanormalcrossingdivisor(NCD) . . . . . . . . . . . 165 3.3 MixedHodgeComplex . . . . . . . . . . . . . . . . . . . . . . . . . 168 3.3.1 Derivedcategory . . . . . . . . . . . . . . . . . . . . . . . . 169 3.3.2 Derivedfunctoronafilteredcomplex . . . . . . . . . . . . . 176 3.3.3 MixedHodgecomplex(MHC) . . . . . . . . . . . . . . . . . 181 3.3.4 Relativecohomologyandthemixedcone . . . . . . . . . . . 185 3.4 MHSonthecohomologyofacomplexalgebraicvariety . . . . . . . 188 3.4.1 MHSonthecohomologyofsmoothalgebraicvarieties . . . . 189 3.4.2 MHSoncohomologyofsimplicialvarieties . . . . . . . . . . 197 3.4.3 MHS on the cohomology of a complete embedded algebraic variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 Bibliography 210 4 PerioddomainsbyJ.Carlson 213 4.1 Perioddomainsandmonodromy . . . . . . . . . . . . . . . . . . . . 217 4.2 Ellipticcurves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 4.3 Periodmappings: anexample. . . . . . . . . . . . . . . . . . . . . . 226 4.4 Hodgestructuresofweightone . . . . . . . . . . . . . . . . . . . . . 230 4.5 Hodgestructuresofweighttwo . . . . . . . . . . . . . . . . . . . . . 233 4.6 Poincare´ residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 4.7 Propertiesoftheperiodmapping . . . . . . . . . . . . . . . . . . . . 238 4.8 TheJacobianidealandthelocalTorellitheorem . . . . . . . . . . . . 240 4.9 TheHorizontalDistribution-DistanceDecreasingProperties . . . . . 242 4.10 TheHorizontalDistribution-IntegralManifolds. . . . . . . . . . . . 245 Bibliography 251 5 Hodgetheoryofmaps,PartIbyL.Migliorini 252 5.1 Lecture1: Thesmoothcase: E -degeneration . . . . . . . . . . . . . 253 2 5.2 Lecture2: MixedHodgestructures . . . . . . . . . . . . . . . . . . 257 5.2.1 MixedHodgestructuresonthecohomologyofalgebraicvari- eties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 5.2.2 Theglobalinvariantcycletheorem . . . . . . . . . . . . . . . 259 5.2.3 Semisimplicityofmonodromy . . . . . . . . . . . . . . . . . 260 hodge˙book˙20oct October20,2013 6x9 viii CONTENTS 5.3 Lecture 3: Two classical theorems on surfaces and the local invariant cycletheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 5.3.1 HomologicalinterpretationofthecontractioncriterionandZariski’s lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 5.3.2 Thelocalinvariantcycletheorem,thelimitmixedHodgestruc- tureandtheClemens-Schmidexactsequence.([3,6]) . . . . . 265 Bibliography 268 6 Hodgetheoryofmaps,PartIIbyM.A.deCataldo 269 6.1 Lecture4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 6.1.1 Sheafcohomologyandallthat(aminimalistapproach) . . . . 269 6.1.2 Theintersectioncohomologycomplex . . . . . . . . . . . . . 281 6.1.3 Verdierduality . . . . . . . . . . . . . . . . . . . . . . . . . 283 6.2 Lecture5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 6.2.1 Thedecompositiontheorem(DT) . . . . . . . . . . . . . . . 286 6.2.2 TherelativehardLefschetzandthehardLefschetzforintersec- tioncohomologygroups . . . . . . . . . . . . . . . . . . . . 289 Bibliography 292 7 VariationsofHodgeStructurebyE.Cattani 294 7.1 LocalSystemsandFlatConnections . . . . . . . . . . . . . . . . . . 295 7.1.1 LocalSystems . . . . . . . . . . . . . . . . . . . . . . . . . 295 7.1.2 FlatBundles . . . . . . . . . . . . . . . . . . . . . . . . . . 297 7.2 Analyticfamilies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 7.2.1 TheKodaira-SpencerMap . . . . . . . . . . . . . . . . . . . 300 7.3 VariationsofHodgeStructure . . . . . . . . . . . . . . . . . . . . . 303 7.3.1 GeometricVariationsofHodgeStructure . . . . . . . . . . . 303 7.3.2 AbstractVariationsofHodgeStructure . . . . . . . . . . . . 307 7.4 ClassifyingSpaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 7.5 MixedHodgeStructuresandtheOrbitTheorems . . . . . . . . . . . 312 7.5.1 NilpotentOrbits . . . . . . . . . . . . . . . . . . . . . . . . 313 7.5.2 MixedHodgeStructures . . . . . . . . . . . . . . . . . . . . 315 7.5.3 SL -orbits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 2 7.6 AsymptoticBehaviorofaPeriodMapping . . . . . . . . . . . . . . . 320 Bibliography 327 8 VariationsofMixedHodgeStructurebyP.BrosnanandF.ElZein 331 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 8.1 VariationofmixedHodgestructures . . . . . . . . . . . . . . . . . . 333 8.1.1 Localsystemsandrepresentationsofthefundamentalgroup . 333 8.1.2 ConnectionsandLocalSystems . . . . . . . . . . . . . . . . 334 8.1.3 VariationofmixedHodgestructureofgeometricorigin . . . . 338 hodge˙book˙20oct October20,2013 6x9 CONTENTS ix 8.1.4 Singularitiesoflocalsystems . . . . . . . . . . . . . . . . . 343 8.2 DegenerationofvariationsofmixedHodgestructures . . . . . . . . . 348 8.2.1 DiagonaldegenerationofgeometricVMHS . . . . . . . . . 349 8.2.2 FilteredmixedHodgecomplex(FMHC) . . . . . . . . . . . . 351 8.2.3 DiagonaldirectimageofasimplicialcohomologicalFMHC . 353 8.2.4 ConstructionofalimitMHSontheunipotentnearbycycles . 355 8.2.5 Caseofasmoothmorphism . . . . . . . . . . . . . . . . . . 356 8.2.6 PolarizedHodge-Lefschetzstructure . . . . . . . . . . . . . 360 8.2.7 Quasi-projectivecase . . . . . . . . . . . . . . . . . . . . . 362 8.2.8 Alternativeconstruction,existenceanduniqueness . . . . . . 363 8.3 AdmissiblevariationofmixedHodgestructure . . . . . . . . . . . . 365 8.3.1 Definitionandresults . . . . . . . . . . . . . . . . . . . . . . 366 8.3.2 LocalstudyofInfinitesimalMixedHodgestructuresafterKashi- wara . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 8.3.3 Deligne-Hodgetheoryonthecohomologyofasmoothvariety 371 8.4 Admissiblenormalfunctions . . . . . . . . . . . . . . . . . . . . . . 385 8.4.1 ReducingTheorem8.4.6toaspecialcase . . . . . . . . . . . 388 8.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 8.4.3 Classifyingspaces . . . . . . . . . . . . . . . . . . . . . . . 391 8.4.4 Pureclassifyingspaces . . . . . . . . . . . . . . . . . . . . . 391 8.4.5 Mixedclassifyingspaces . . . . . . . . . . . . . . . . . . . . 391 8.4.6 Localnormalform . . . . . . . . . . . . . . . . . . . . . . . 393 8.4.7 Splittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 8.4.8 Aformulaforthezerolocusofanormalfunction . . . . . . . 394 8.4.9 ProofofTheorem8.4.6forcurves . . . . . . . . . . . . . . . 395 8.4.10 AnExample . . . . . . . . . . . . . . . . . . . . . . . . . . 397 Bibliography 401 9 AlgebraicCyclesandChowgroupsbyJ.Murre 404 9.1 LectureI:AlgebraicCycles. Chowgroups . . . . . . . . . . . . . . . 404 9.1.1 Assumptionsandconventions . . . . . . . . . . . . . . . . . 404 9.1.2 Algebraiccycles . . . . . . . . . . . . . . . . . . . . . . . . 405 9.1.3 Adequateequivalencerelations . . . . . . . . . . . . . . . . 407 9.1.4 Rationalequivalence. Chowgroups . . . . . . . . . . . . . . 408 9.2 LectureII:Equivalencerelations. Shortsurveyontheresultsfordivisors 412 9.2.1 Algebraicequivalence(Weil,1952) . . . . . . . . . . . . . . 413 9.2.2 Smash-nilpotentequivalence . . . . . . . . . . . . . . . . . . 413 9.2.3 Homologicalequivalence. . . . . . . . . . . . . . . . . . . . 414 9.2.4 Numericalequivalence . . . . . . . . . . . . . . . . . . . . . 415 9.2.5 Finalremarksandresume´ ofrelationsandnotations. . . . . . 416 9.2.6 CartierdivisorsandthePicardgroup. . . . . . . . . . . . . . 416 9.2.7 Resume´ ofthemainfactsfordivisors . . . . . . . . . . . . . 417 9.2.8 ReferencesforlecturesIandII . . . . . . . . . . . . . . . . . 419 9.3 LectureIII.Cyclemap. IntermediateJacobian. Delignecohomology . 419 hodge˙book˙20oct October20,2013 6x9 x CONTENTS 9.3.1 Thecyclemap . . . . . . . . . . . . . . . . . . . . . . . . . 419 9.3.2 Hodgeclasses. Hodgeconjecture . . . . . . . . . . . . . . . 421 9.3.3 IntermediateJacobianandAbel-Jacobimap . . . . . . . . . . 423 9.3.4 Delignecohomology. Delignecyclemap . . . . . . . . . . . 426 9.3.5 ReferencesforlectureIII . . . . . . . . . . . . . . . . . . . . 428 9.4 LectureIV:Algebraicversushomologicalequivalence. Griffithsgroup 428 9.4.1 Lefschetztheory . . . . . . . . . . . . . . . . . . . . . . . . 429 9.4.2 ReturntoGriffithstheorem. . . . . . . . . . . . . . . . . . . 432 9.4.3 ReferencesforlectureIV . . . . . . . . . . . . . . . . . . . . 435 9.5 LectureV:TheAlbanesekernel.ResultsofMumford,BlochandBloch- Srinivas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435 9.5.1 TheresultofMumford. . . . . . . . . . . . . . . . . . . . . . 435 9.5.2 ReformulationandgeneralizationbyBloch . . . . . . . . . . 437 9.5.3 Aresultonthediagonal . . . . . . . . . . . . . . . . . . . . 438 9.5.4 ReferencesforlectureV . . . . . . . . . . . . . . . . . . . . 440 Bibliography 441 10 SpreadsandAlgebraicCyclesbyM.L.Green 443 10.1 IntroductiontoSpreads . . . . . . . . . . . . . . . . . . . . . . . . . 443 10.2 CycleClassandSpreads . . . . . . . . . . . . . . . . . . . . . . . . 446 10.3 TheConjecturalFiltrationonChowGroupsfromaSpreadPerspective 450 10.4 TheCaseofX definedoverQ . . . . . . . . . . . . . . . . . . . . . 454 10.5 TheTangentSpacetoAlgebraicCycles . . . . . . . . . . . . . . . . 457 Bibliography 461 11 AbsoluteHodgeClassesbyF.CharlesandC.Schnell 463 11.1 AlgebraicdeRhamcohomology . . . . . . . . . . . . . . . . . . . . 464 11.1.1 AlgebraicdeRhamcohomology . . . . . . . . . . . . . . . . 465 11.1.2 Cycleclasses . . . . . . . . . . . . . . . . . . . . . . . . . . 467 11.2 AbsoluteHodgeclasses . . . . . . . . . . . . . . . . . . . . . . . . . 470 11.2.1 AlgebraiccyclesandtheHodgeconjecture . . . . . . . . . . 471 11.2.2 Galois action, algebraic de Rham cohomology and absolute Hodgeclasses . . . . . . . . . . . . . . . . . . . . . . . . . . 472 11.2.3 Variationsonthedefinitionandsomefunctorialityproperties . 475 11.2.4 Classescomingfromthestandardconjecturesandpolarizations 478 11.2.5 AbsoluteHodgeclassesandtheHodgeconjecture . . . . . . 482 11.3 AbsoluteHodgeclassesinfamilies . . . . . . . . . . . . . . . . . . . 485 11.3.1 ThevariationalHodgeconjectureandtheglobalinvariantcycle theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485 11.3.2 Deligne’sPrincipleB . . . . . . . . . . . . . . . . . . . . . . 488 11.3.3 ThelocusofHodgeclasses . . . . . . . . . . . . . . . . . . . 490 11.3.4 GaloisactiononrelativedeRhamcohomology . . . . . . . . 492 11.3.5 ThefieldofdefinitionofthelocusofHodgeclasses . . . . . . 494

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.