ebook img

Hodge cycles on abelian varieties PDF

89 Pages·2003·0.62 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hodge cycles on abelian varieties

Hodge cycles on abelian varieties P. Deligne (notes by J.S. Milne) July 4, 2003 Abstract ThisisaTeXedcopyof – Hodge cycles on abelian varieties (the notes of most of the seminar “Pe´riodesdesInte´gralesAbe´liennes”givenbyP.DeligneatI.H.E.S., 1978–79;pp9–100ofDeligneetal. 1982),and – Motives for absolute Hodge cycles (§6 of “Tannakian categories”, ibid. pp196–220) somewhatrevisedandupdated. Seetheendnotes1 formoredetails. Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 Reviewofcohomology 6 Topologicalmanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Differentiablemanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Complexmanifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Completesmoothvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Applicationstoperiods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 AbsoluteHodgecycles;principleB 16 Definitions(k algebraicallyclosedoffinitetranscendencedegree) . . . . . . . . 16 BasicpropertiesofabsoluteHodgecycles . . . . . . . . . . . . . . . . . . . . . 18 Definitions(arbitrary k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Statementofthemaintheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 PrincipleB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1 CONTENTS 2 3 Mumford-Tategroups;principleA 24 Characterizingsubgroupsbytheirfixedtensors . . . . . . . . . . . . . . . . . . 24 Hodgestructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Mumford-Tategroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PrincipleA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 ConstructionofsomeabsoluteHodgecycles 31 Hermitianforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (cid:86) Conditionsfor dH1(A,Q)toconsistofabsoluteHodgecycles . . . . . . . . . 32 E 5 CompletionoftheproofforabelianvarietiesofCM-type 39 AbelianvarietiesofCM-type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ProofofthemaintheoremforabelianvarietiesofCM-type . . . . . . . . . . . . 40 6 Completionoftheproof;consequences 45 CompletionoftheproofofTheorem2.11 . . . . . . . . . . . . . . . . . . . . . 45 ConsequencesofTheorem2.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7 Algebraicityofvaluesofthe Γ-function 48 TheFermathypersurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Calculationofthecohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Theactionof Gal(Q/k)onthe e´talecohomology . . . . . . . . . . . . . . . . . 53 Calculationoftheperiods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Thetheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Restatementofthetheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 8 MotivesforabsoluteHodgecycles 63 ComplementsonabsoluteHodgecycles . . . . . . . . . . . . . . . . . . . . . . 63 Constructionofthecategoryofmotives . . . . . . . . . . . . . . . . . . . . . . 65 Somecalculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 ArtinMotives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Effectivemotivesofdegree1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 ThemotivicGaloisgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Motivesofabelianvarieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 MotivesofabelianvarietiesofpotentialCM-type . . . . . . . . . . . . . . . . . 76 Introduction Let X be a smooth projective variety over C. Hodge conjectured that certain cohomology classesonX arealgebraic. Themainresultprovedinthesenotesshowsthat,whenX isan abelian variety, the classes considered by Hodge have many of the properties of algebraic classes. CONTENTS 3 In more detail, let Xan be the complex analytic manifold associated with X, and con- sider the singular cohomology groups Hn(Xan,Q). The variety Xan being of Ka¨hler type (anyprojectiveembeddingdefinesaKa¨hlerstructure),itscohomologygroupsHn(Xan,C) ∼= Hn(Xan,Q)⊗Chavecanonicaldecompositions (cid:76) Hn(Xan,C) = Hp,q, Hp,q = Hq(Xan,Ωp ). Xan p+q=n The cohomology class cl(Z) ∈ H2p(Xan,C) of an algebraic subvariety Z of codimension pinX isrational(i.e.,itliesinH2p(Xan,Q))andisofbidegree(p,p)(i.e.,itliesinHp,p). TheHodgeconjecturestatesthat,conversely,everyelementof H2p(Xan,Q)∩Hp,p is a Q-linear combination of the classes of algebraic subvarieties. Since the conjecture is unproven,itisconvenienttocalltheserational (p,p)-classesHodgecycles onX. NowconsiderasmoothprojectivevarietyX overafieldk thatisofcharacteristiczero, algebraically closed, and small enough to be embeddable in C. The algebraic de Rham cohomologygroupsHn (X/k)havethepropertythat,foranyembeddingσ: k (cid:44)→ C,there dR arecanonicalisomorphisms Hn (X/k)⊗ C →∼= Hn (Xan,C) ∼= Hn(Xan,C). dR k,σ dR It is natural to say that t ∈ H2p(X/k) is a Hodge cycle on X relative to σ if its image in dR H2p(Xan,C) is (2πi)p times a Hodge cycle on X ⊗ C. The arguments in these notes k,σ show that, if X is an abelian variety, then an element of H2p(X/k) that is a Hodge cycle dR on X relative to one embedding of k into C is a Hodge cycle relative to all embeddings; further, for any embedding, (2πi)p times a Hodge cycle in H2p(Xan,C) always lies in the image of H2p(X/k).2 Thus the notion of a Hodge cycle on an abelian variety is intrinsic dR to the variety: it is a purely algebraic notion. In the case that k = C the theorem shows that the image of a Hodge cycle under an automorphism of C is again a Hodge cycle; equivalently, the notion of a Hodge cycle on an abelian variety over C does not depend on the map X → SpecC. Of course, all this would be obvious if only one knew the Hodge conjecture. Infact,astrongerresultisprovedinwhichaHodgecycleisdefinedtobeanelementof (cid:81) Hn (X)× Hn(X ,Q ). Asthetitleoftheoriginalseminarsuggests,thestrongerresult dR l et l has consequences for the algebraicity of the periods of abelian integrals: briefly, it allows one to prove all arithmetic properties of abelian periods that would follow from knowing theHodgeconjectureforabelianvarieties.3 —————————————————- In more detail, the main theorem proved in these notes is that any Hodge cycle on an abelian variety (in characteristic zero) is an absolute Hodge cycle — see §2 for the definitionsandTheorem2.11foraprecisestatementoftheresult. Theproofisbasedonthefollowingtwoprinciples. CONTENTS 4 A. Let t ,...,t be absolute Hodge cycles on a smooth projective variety X and let G 1 N be the largest algebraic subgroup of GL(H∗(X,Q))×GL(Q(1)) fixing the t ; then i everycohomologyclass tonX fixedby GisanabsoluteHodgecycle(see3.8). B. If (X ) is an algebraic family of smooth projective varieties with S connected and s s∈S smooth and (t ) is a family of rational cycles (i.e., a global section of ...) such s s∈S thatt isanabsoluteHodgecycleforones,thent isanabsoluteHodgecycleforall s s s(see2.12,2.15). EveryabelianvarietyAwithaHodgecycletiscontainedinasmoothalgebraicfamily in which t remains Hodge and which contains an abelian variety of CM-type. Therefore, Principle B shows that it suffices to prove the main theorem for A an abelian variety of CM-type (see §6). Fix a CM-field E, which we can assume to be Galois over Q, and let Σ be a set of representatives for the E-isogeny classes over C of abelian varieties with complexmultiplicationbyE. PrincipleBisusedtoconstructsomeabsoluteHodgeclasses on ⊕ A — the principle allows us to replace ⊕A by an abelian variety of the form A∈Σ A ⊗ O (see§4). LetG ⊂ GL(⊕ H (A,Q))×GL(Q(1))bethesubgroupfixingthe 0 Z E A∈Σ 1 absolute Hodge cycles just constructed plus some other (obvious) absolute Hodge cycles. It is shown that G fixes every Hodge cycle on A, and Principle A therefore completes the proof(see §5). On analyzing which properties of absolute Hodge cycles are used in the above proof, one arrives at a slightly stronger result. Call a rational cohomology class c on a smooth projective complex variety X accessible if it belongs to the smallest family of rational cohomologyclassessuchthat: (a) thecohomologyclassofeveryalgebraiccycleisaccessible; (b) thepull-backbyamapofvarietiesofanaccessibleclassisaccessible; (c) if t ,...,t ∈ H∗(X,Q) are accessible, and if a rational class t in some H2p(X,Q) 1 N isfixedbyanalgebraicsubgroupGofAut(H∗(X,Q))(automorphismsofH∗(X,Q) asagradedalgebra)fixingthe t ,thentisaccessible; i (d) PrincipleB holdswith“absoluteHodge”replacedby“accessible”. Sections 4,5,6 of these notes can be interpreted as proving that, when X is an abelian variety, every Hodge cycle is accessible.4 Sections 2,3 define the notion of an absolute Hodge cycle and show that the family of absolute Hodge cycles satisfies (a), (b), (c), and (d);5 therefore,anaccessibleclassisabsolutelyHodge. Wehavetheimplications: abelianvarieties trivial Hodge========⇒accessible==⇒absolutelyHodge ==⇒Hodge. Onlythefirstimplicationisrestrictedtoabelianvarieties. The remaining three sections, §1, §7, and §8, serve respectively to review the different cohomology theories, to give some applications of the main results to the algebraicity of products of special values of the Γ-function, and to explain the theory of motives that can bebuiltonabsoluteHodgecycles. CONTENTS 5 Notations: We define C to be the algebraic closure of R and i ∈ C to be a square root of −1; thus i is only defined up to sign. A choice of i determines an orientation of C as a real manifold — we take that for which 1∧i > 0 — and hence an orientation of every complex manifold. Complexconjugationon Cisdenotedby ιorby z (cid:55)→ z. Recallthatthecategoryofabelianvarietiesuptoisogenyisobtainedfromthecategory of abelian varieties by taking the same class of objects but replacing Hom(A,B) with Hom(A,B)⊗Q. Weshallalwaysregardanabelianvarietyasan objectinthecategoryof abelianvarietiesuptoisogeny: thus Hom(A,B)isavectorspaceover Q. If(V )isafamilyofrationalrepresentationsofanalgebraicgroupGoverk andt ∈ α α,β V , then the subgroup of G fixing the t is the algebraic subgroup H of G such that, for α α,β allk-algebrasR, H(R) = {g ∈ G(R) | g(t ⊗1) = t ⊗1,allα,β}. α,β α,β Linear duals are denoted by ∨. If X is a variety over a field k and σ is a homomorphism σ: k (cid:44)→ k(cid:48),thenσX denotesthevarietyX ⊗ k(cid:48) (= X × Spec(k(cid:48))). k,σ Spec(k) 1 REVIEWOFCOHOMOLOGY 6 1 Review of cohomology Topological manifolds LetX beatopologicalmanifoldand F asheafofabeliangroupson X. Weset Hn(X,F) = Hn(Γ(X,F•)) where F → F• is any acyclic resolution of F. This defines Hn(X,F) uniquely up to a uniqueisomorphism. When F is the constant sheaf defined by a field K, these groups can be identified with singularcohomologygroupsasfollows. LetS (X,K)bethecomplexinwhichS (X,K) • n istheK-vectorspacewithbasisthesingularn-simplicesinX andtheboundarymapsends asimplextothe(usual)alternatingsumofitsfaces. Set S•(X,K) = Hom(S (X,K),K) • withtheboundarymapforwhich (α,σ) (cid:55)→ α(σ): S•(X,K)⊗S (X,K) → K • isamorphismofcomplexes,namely,thatdefinedby (dα)(σ) = (−1)deg(α)+1α(dσ). PROPOSITION 1.1. Thereisacanonicalisomorphism Hn(S•(X,K)) → Hn(X,K). PROOF. If U is the unit ball, then H0(S•(U,K)) = K and Hn(S•(U,K)) = 0 for n > 0. Thus, K → S•(U,K) is a resolution of the group K. Let Sn be the sheaf of X associated with the presheaf V (cid:55)→ Sn(V,K). The last remark shows that K → S• is a resolution of the sheaf K. As each Sn is fine (Warner 1971, 5.32), Hn(X,K) ∼= Hn(Γ(X,S•)). But theobviousmapS•(X,K) → Γ(X,S•)issurjectivewithanexactcomplexaskernel(loc. cit.),andso Hn(S•(X,K)) →∼= Hn(Γ(X,S•)) ∼= Hn(X,K). Differentiable manifolds Now assume X is a differentiable manifold. On replacing “singular n-simplex” by “dif- ferentiablesingularn-simplex”intheabovedefinitions,oneobtainscomplexesS∞(X,K) • andS• (X,K). Thesameargumentshowsthatthereisacanonicalisomorphism ∞ Hn(X,K) =df Hn(S∞(X,K)) →∼= Hn(X,K) ∞ • (loc. cit.). 1 REVIEWOFCOHOMOLOGY 7 LetO bethesheafofC∞ real-valuedfunctionsonX,letΩn betheO -module X∞ X∞ X∞ ofC∞ differentialn-formson X,andletΩ• bethecomplex X∞ O →d Ω1 →d Ω2 →d ··· . X∞ X∞ X∞ ThedeRhamcohomologygroupsof X aredefinedtobe {closedn-forms} Hn (X) = Hn(Γ(X,Ω• )) = . dR X∞ {exactn-forms} IfU istheunitball,Poincare´’slemmashowsthatH0 (U) = RandHn (U) = 0forn > 0. dR dR Thus, R → Ω• is a resolution of the constant sheaf R, and as the sheaves Ωn are fine X∞ X∞ (Warner1971,5.28),wehaveHn(X,R) ∼= Hn (X). dR Forω ∈ Γ(X,Ωn )andσ ∈ S∞(X,R),define X∞ n (cid:90) n(n+1) (cid:104)ω,σ(cid:105) = (−1) 2 ω ∈ R. (cid:82) (cid:82) σ Stokes’stheoremstatesthat dω = ω,andso σ dσ (cid:104)dω,σ(cid:105)+(−1)n(cid:104)ω,dσ(cid:105) = 0. Thepairing (cid:104),(cid:105)thereforedefinesamapofcomplexes f: Γ(X,Ω• ) → S• (X,R). X∞ ∞ THEOREM 1.2 (DE RHAM). The map Hn (X) → Hn(X,R) defined by f is an isomor- dR ∞ phismforall n. PROOF. Themapisinversetothemap Hn(X,R) →∼= Hn(X,R) ∼= Hn (X) ∞ dR defined in the previous two paragraphs (Warner 1971, 5.36). (Our signs differ from the usualsignsbecausethestandardsignconventions (cid:90) (cid:90) (cid:90) (cid:90) (cid:90) dω = ω, pr∗ω ∧pr∗η = ω · η, etc. 1 2 σ dσ X×Y X Y violatethesignconventionsforcomplexes.) (cid:82) A number ω, σ ∈ H (X,Q), is called a period of ω. The map in (1.2) identifies σ n Hn(X,Q)withthespaceofclassesofclosedformswhoseperiodsareallrational. Theorem 1.2 can be restated as follows: a closed differential form is exact if all its periods are zero; thereexistsacloseddifferentialformhavingarbitrarilyassignedperiodsonanindependent setofcycles. REMARK 1.3 (SINGER AND THORPE 1967, 6.2). If X is compact, then it has a smooth triangulation T. Define S (X,T,K) and S•(X,T,K) as before, but using only simplices • inT. Thenthemap Γ(X,Ω• ) → S•(X,T,K) X∞ definedbythesameformulasas f aboveinducesisomorphisms Hn (X) → Hn(S•(X,T,K)). dR 1 REVIEWOFCOHOMOLOGY 8 Complex manifolds Nowlet X beacomplexmanifold,andwrite Ω• forthecomplex Xan O →d Ω1 →d Ω2 →d ··· Xan Xan Xan in which Ωn is the sheaf of holomorphic differential n-forms. Thus, locally a section of Xan Ωn isoftheform Xan (cid:88) ω = α dz ∧...∧dz i1...in i1 in with α a holomorphic function and the z complex local coordinates. The complex i1...in i form of Poincare´’s lemma shows that C → Ω• is a resolution of the constant sheaf C, Xan andsothereisacanonicalisomorphism Hn(X,C) → Hn(X,Ω• ) (hypercohomology). Xan IfX isacompactKa¨hlermanifold,thenthespectralsequence Ep,q = Hq(X,Ωp ) =⇒ Hp+q(X,Ω• ) 1 Xan Xan degenerates,andsoprovidesacanonicalsplitting6 (cid:76) Hn(X,C) = Hq(X,Ωp ) (theHodgedecomposition) Xan p+q=n as Hp,q = Hq(X,Ωp ) is the complex conjugate of Hq,p relative to the real struc- df Xan ture Hn(X,R) ⊗ C ∼= Hn(X,C) (Weil 1958). The decomposition has the following explicit description: the complex Ω• ⊗ C of sheaves of complex-valued differential X∞ forms on the underlying differentiable manifold is an acyclic resolution of C, and so Hn(X,C) = Hn(Γ(X,Ω• ⊗C)); Hodge theory shows that each element of the second X∞ group is represented by a unique harmonic n-form, and the decomposition corresponds to thedecompositionofharmonic n-formsintosumsofharmonic (p,q)-forms,p+q = n.7 Complete smooth varieties Finally, let X be a complete smooth variety over a field k of characteristic zero. If k = C, thenX definesacompactcomplexmanifoldXan,andtherearethereforegroupsHn(Xan,Q), depending on the map X → Spec(C), that we shall write Hn(X) (here B abbreviates B Betti). If X is projective, then the choice of a projective embedding determines a Ka¨hler structure on Xan, and hence a Hodge decomposition (which is independent of the choice oftheembeddingbecauseitisdeterminedbytheHodgefiltration,andtheHodgefiltration dependsonlyonX;seeTheorem1.4below). Inthegeneralcase,werefertoDeligne1968, 5.3,5.5,fortheexistenceofthedecomposition. For an arbitrary field k and an embedding σ: k (cid:44)→ C, we write Hn(X) for Hn(σX) σ B and Hp,q(X) for Hp,q(σX). As ι defines a homeomorphism σXan → ισXan, it induces an σ 1 REVIEWOFCOHOMOLOGY 9 isomorphismHn(X) → Hn(X). Sometimes,whenk isgivenasasubfieldofC,wewrite ισ σ Hn(X)forHn(X ). B B C Let Ω• denote the complex in which Ωn is the sheaf of algebraic differential n- X/k X/k forms,anddefinethe(algebraic)deRhamcohomologygroupHn (X/k)tobeHn(X ,Ω• ) dR Zar X/k (hypercohomology with respect to the Zariski cohomology). For any homomorphism σ: k (cid:44)→ k(cid:48),thereisacanonicalisomorphism Hn (X/k)⊗ k(cid:48) → Hn (X ⊗ k(cid:48)/k(cid:48)). dR k,σ dR k Thespectralsequence Ep,q = Hq(X ,Ωp ) =⇒ Hp+q(X ,Ω• ) 1 Zar X/k Zar X/k definesafiltration(theHodgefiltration)FpHn (X)onHn (X)whichisstableunderbase dR dR change. THEOREM 1.4. Ifk = C,theobviousmaps Xan → X , Ω• ← Ω• , Zar Xan X induceisomorphisms Hn (X) → Hn (Xan) ∼= Hn(Xan,C) dR dR (cid:76) underwhichFpHn (X)correspondsto FpHn(Xan,C) = Hp(cid:48),q(cid:48). dR df p(cid:48)≥p,p(cid:48)+q(cid:48)=n PROOF. Theinitialtermsofthespectralsequences Ep,q = Hq(X ,Ωp ) =⇒ Hp+q(X ,Ω• ) 1 Zar X/k Zar X/k Ep,q = Hq(X,Ωp ) =⇒ Hp+q(X,Ω• ) 1 Xan Xan are isomorphic — see Serre 1956 for the projective case and Grothendieck 1966 for the general case. The theorem follows from this because, by definition of the Hodge decom- position, the filtration of Hn (Xan) defined by the above spectral sequence is equal to the dR filtrationof Hn(Xan,C)definedinthestatementofthetheorem. It follows from the theorem and the discussion preceding it that every embedding σ: k (cid:44)→ Cdefinesanisomorphism Hn (X)⊗ C −→∼= Hn(X)⊗ C dR k,σ σ Q and, in particular, a k-structure on Hn(X) ⊗ C. When k = Q, this structure should be σ Q distinguishedfromthe Q-structuredefinedby Hn(X): thetwoarerelatedbytheperiods. σ When k is algebraically closed, we write Hn(X,A ), or Hn(X), for Hn(X ,Zˆ) ⊗ f et et Z Q, where Hn(X ,Zˆ) = lim Hn(X ,Z/mZ) (e´tale cohomology). If X is connected, et ←−m et 1 REVIEWOFCOHOMOLOGY 10 H0(X,A ) = A , the ring of finite ade`les for Q, which justifies the first notation. By defi- f f nition, Hn(X) depends only on X (and not on its structure morphism X → Speck). The et mapHn(X) → Hn(X⊗ k(cid:48))definedbyaninclusionk (cid:44)→ k(cid:48) ofalgebraicallyclosedfields et et k is an isomorphism (special case of the proper base change theorem Artin, Grothendieck, andVerdier1973,XII).Thecomparisontheorem(ibid. XI)showsthat,when k = C,there is a canonical isomorphism Hn(X) ⊗ A → Hn(X). It follows that Hn(X) ⊗ A is in- B f et B f dependent of the morphism X → SpecC, and that, over any algebraically closed field of characteristiczero, Hn(X)isafree A -module. et f TheA -moduleHn(X,A )canalsobedescribedastherestrictedproductofthespaces f f Hn(X,Q ),l aprimenumber,withrespecttothesubspaces Hn(X,Z )/{torsion}. l l Nextwedefinethenotionofthe“Tatetwist”ineachofthethreecohomologytheories. For this we shall define objects Q(1) and set Hn(X)(m) = Hn(X)⊗Q(1)⊗m. We want Q(1) to be H2(P1) (realization of the Tate motive in the cohomology theory), but to avoid thepossibilityofintroducingsignambiguitiesweshalldefineitdirectly, Q (1) = 2πiQ B (cid:161) (cid:162) Q (1) = A (1) =df lim µ ⊗ Q, µ = {ζ ∈ k | ζr = 1} et f ←−r r Z r Q (1) = k, dR andso Hn(X)(m) = Hn(X)⊗ (2πi)mQ = Hn(Xan,(2πi)mQ) (k = C) B B Q (cid:161) (cid:162) Hn(X)(m) = Hn(X)⊗ (A (1))⊗m = lim Hn(X ,µ⊗m) ⊗ Q (k algebraicallyclosed) et et Af f ←−r et r Z Hn (X)(m) = Hn (X). dR dR Thesedefinitionsextendinanobviouswaytonegativem. Forexample,wesetQ (−1) = et Hom (A (1),A )anddefine Af f f Hn(X)(−m) = Hn(X)⊗Q (−1)⊗m. et et et Therearecanonicalisomorphisms Q (1)⊗ A → Q (1) (k ⊂ C,k algebraicallyclosed) B Q f et Q (1)⊗C → Q (1)⊗ C (k ⊂ C) B dR k andhencecanonicalisomorphisms(thecomparisonisomorphisms) Hn(X)(m)⊗ A → Hn(X)(m) (k ⊂ C,k algebraicallyclosed) B Q f et Hn(X)(m)⊗ C → Hn (X)(m)⊗ C (k ⊂ C). B Q dR k Todefinethefirst,notethat expdefinesanisomorphism z (cid:55)→ ez: 2πiZ/r2πiZ → µ . r

Description:
Betti). If X is projective, then the choice of a projective embedding determines a Kähler structure on Xan, and hence a Hodge decomposition (which is independent of the choice note 4), and then André's improvement of §5 (see endnote 18) proves the theorem for all abelian varieties of CM-type.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.