ebook img

Hochschild homology and cohomology for involutive $A_\infty$-algebras PDF

0.12 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hochschild homology and cohomology for involutive $A_\infty$-algebras

Hochschild homology and cohomology for involutive A -algebras ∞ RamsèsFernàndez-València 6 1 Abstract 0 2 We present a study of the homological algebra of bimodules over A∞-algebras endowed n withaninvolution. FurthermoreweintroduceaderiveddescriptionofHochschildhomo- a J logyandcohomologyforinvolutive A∞-algebras. 3 ] Contents T A . h 1 Introduction 1 t a m 2 Basicconcepts 2 [ 2.1 Coalgebrasandbicomodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 2.2 A∞-algebrasand A∞-quasi-isomorphisms . . . . . . . . . . . . . . . . . . . . . . . 5 v 9 2.3 A∞-bimodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 2 3 Theinvolutivetensorproduct 9 0 0 . 4 InvolutiveHochschildhomologyandcohomology 11 1 0 4.1 Hochschildhomologyforinvolutive A∞-algebras . . . . . . . . . . . . . . . . . . 11 6 1 4.2 Hochschildcohomologyforinvolutive A∞-algebras . . . . . . . . . . . . . . . . . 12 : v i X 1 Introduction r a Hochschildhomologyandcohomologyarehomologyandcohomologytheoriesdevelopedfor associativealgebraswhichappearsnaturallywhenonestudiesitsdeformationtheory. Further- more,Hochschildhomologyplaysacentralroleintopologicalfieldtheoryinordertodescribe theclosedstatespartofatopologicalfieldtheory. An involutive version of Hochschild homology and cohomology was developed by Braun in [Bra14] by considering associative and A∞-algebras endowedwith an involution and morph- ismswhichcommutewiththeinvolution. 5thJanuary2016 Email:[email protected] 1 This paper pretendsto take a step further with regards to [FVG15]. Whilst in the latter paper we develop the homological algebra required to give a derived version of Braun’s involutive Hochschildhomologyandcohomologyforinvolutive associativealgebras,thisresearchisde- votedtodevelopthemachineryrequiredtogiveaderiveddescriptionofinvolutiveHochschild homologyandcohomologyfor A∞-algebrasendowedwithaninvolution. Asin[FVG15],thisresearchhasbeendrivenbytheauthor’sresearchonCostello’sclassification of topological conformal field theories [Cos07], where he proves that an open 2-dimensional theory is equivalent to a Calabi-Yau A∞-category. In [FV15], the author extends the picture to unoriented topological conformal field theories, where open theories now correspond to involutive Calabi-Yau A∞-categories, and the closed state space of the universal open-closed extensionturnsouttobetheinvolutiveHochschildchaincomplexoftheopenstatealgebra. 2 Basic concepts 2.1 Coalgebrasandbicomodules AninvolutivegradedcoalgebraoverafieldKisagradedK-moduleCendowedwithacoproduct ∆ : C → C⊗KCofdegreezerotogetherwithaninvolution⋆ : C → Csuchthat: 1. Themap∆makesthefollowingdiagramcommute C ∆ // C⊗K C ∆ (cid:15)(cid:15) (cid:15)(cid:15) ∆⊗IdC C⊗KC // C⊗KC⊗K C IdC⊗∆ 2. theinvolutionand∆arecompatible: ∆(c⋆) = (∆(c))⋆,forc ∈ C,wheretheinvolutionon ⋆ ⋆ ⋆ C⊗KC isdefinedas: (c1⊗c2) = c2 ⊗c1,forc1,c2 ∈ C. Aninvolutive coderivation on an involutive coalgebra C is amap L : C → C preservinginvolu- tionsandmakingthefollowingdiagramcommutative: C L // C ∆ ∆ (cid:15)(cid:15) (cid:15)(cid:15) C⊗KC // C⊗K C L⊗IdC+IdC⊗L Denote with iCoder(−) the spaces of coderivations of involutive coalgebras. Observe that iCoder(−)areLiesubalgebras. AninvolutivedifferentialgradedcoalgebraisaninvolutivecoalgebraCequippedwithaninvolut- ivecoderivationb : C → Cofdegree−1suchthatb2 = b◦b = 0. 2 f AmorphismbetweentwoinvolutivecoalgebrasCandDisagradedmapC −→ Dcompatible withtheinvolutionswhichmakesthefollowingdiagramcommutative: C f // D (1) ∆ ∆ C D (cid:15)(cid:15) (cid:15)(cid:15) C⊗K C // D⊗K D f⊗f Example 2.1. The cotensor coalgebra of an involutive graded K-bimodule A is defined as TA = A⊗Kn. Wedefineaninvolutionin A⊗Kn bystating: n≥0 b L ⋆ ⋆ ⋆ (a ⊗···⊗a ) := (a ⊗···⊗a ). 1 n n 1 ThecoproductonTAisgivenby: b n ∆(a ⊗···⊗a ) = ∑(a ⊗···⊗a )⊗(a ⊗···⊗a ). 1 n 1 i i+1 n i=0 Observethat∆commuteswiththeinvolution. Proposition2.2. Thereisacanonicalisomorphism ofcomplexes: ∼ iCoder(TSA) = Hom iBimod (Bar(A),A). A- Proof. TheprooffollowstheargumentsinProposition4.1.1[FVG15],whereweshowtheresult forthenon-involutivesettinginordertorestricttotheinvolutiveone. Since Bar(A) = A⊗K TSA⊗K A, the degree −n part of HomA-Bimod(Bar(A),A) is the space of degree −n linear maps TSA → A, which is isomorphic to the space of degree (−n−1) linear maps TSA → SA. By the universal property of the tensor coalgebra, there is a bijec- tion betweendegree (−n−1) linear maps TSA → SA and degree (−n−1) coderivations on TSA. HencethedegreenpartofHom Bimod(Bar(A),A)isisomorphictothedegreen partof A- Coder(TSA). Onechecksdirectlythatthisisomorphismrestrictstoanisomorphismofgraded vectorspaces ∼ Hom iBimod(Bar(A),A) = iCoder(TSA). A- Finally, onecan checkthatthedifferentials coincideundertheabove isomorphism,cf. Section 12.2.4[LV12]. Remark 2.3. Proposition 2.2 allows us to think of a coderivation as a map TA → A. Such a map f : TA → A can be described as a collection of maps {f : A⊗n → A} which will be called the n b componentsof f. b 3 Ifbisacoderivationofdegree−1onTAwithb : A⊗Kn → A,thenb2 becomesalinearmapof n degree−2with b n−1 b2 = ∑ ∑ b ◦ Id⊗k◦b ◦Id⊗(n−k−j) . n i j i+j=n+1k=0 (cid:16) (cid:17) ThecoderivationbwillbeadifferentialforTAif,andonlyif,allthecomponentsb2 vanish. n b Givena(involutive)gradedK-bimodule A,wedenotethesuspensionof AbySAanddefineit asthegraded(involutive)K-bimodulewith SA = A . Givensuchabimodule A,wedefine i i−1 thefollowingmorphismofdegree−1inducedbytheidentitys : A → SAbys(a) = a. Lemma2.4(cf. Lemma1.3[GJ90]). Ifb : (SA)⊗Kk → SAisaninvolutivelinearmapofdegree−1, k wedefinem : A⊗Kk → Aasm = s−1◦b ◦s⊗Kk. Undertheseconditions: k k k b (sa ⊗···⊗sa ) = σm (a ⊗···⊗a ), k 1 k k 1 k whereσ := (−1)(k−1)|a1|+(k−2)|a2|+···+2|ak−2|+|ak−1|+k(k2−1). Proof. TheprooffollowstheargumentsofLemma1.3[GJ90]. Weonlyneedtoobservethatthe involutions are preservedas all the maps involved in the proof are assumed to be involutive. Letm := σm ,thenwehaveb (sa ⊗···⊗sa ) = m (a ⊗···⊗a ). k k k 1 k k 1 k Proposition2.5. Given aninvolutive graded K-bimodule A,let ǫ = |a |+···+|a |−i for a ∈ A i 1 i i and1 ≤ i ≤ n. AboundarymapbonTSAisgivenintermsofthemapsm bythefollowingformula: k b b (sa ⊗···⊗sa ) n 1 n n n−k+1 = ∑ ∑ (−1)ǫi−1(sa1⊗···⊗sai−1⊗mk(ai⊗···⊗ai+k−1)⊗···⊗san). k=0 i=1 Proof. ThisprooffollowstheargumentsofProposition1.4[GJ90]. Theonlydetailthatmustbe checkedisthatb preservesinvolutions: n ⋆ b ((sa ⊗···⊗sa ) ) n 1 n = ∑±(sa⋆ ⊗···⊗sa⋆ ⊗m (a⋆ ⊗···⊗a⋆ )⊗···⊗sa⋆) n j k j−1 j−k+1 1 j,k = ∑±(sa ⊗···⊗m (a ⊗···⊗a )⊗sa ⊗···⊗sa )⋆ 1 k j−k+1 j−1 j n j,k ⋆ = (b (sa ⊗···⊗sa )) . n 1 n GivenaninvolutivecoalgebraCwithcoproductρandcounitε,foraninvolutivegradedvector space P,aleftcoactionisalinearmap∆L : P → C⊗K Psuchthat 1. (Id⊗ρ)◦∆L = (ρ⊗Id)◦∆L; 2. (Id⊗ε)◦ = Id. 4 Analagouslyweintroducetheconceptofrightcoaction. Given an involutive coalgebra (C,ρ,ε) with involution ⋆ we define an involutive C-bicomodule as an involutive graded vector space P with involution †, a left coaction ∆L : P → C⊗K P and a right coaction ∆R : P → P⊗K C which are compatible with the involutions, that is the diagramsbelowcommute: P (−)⋆ // P (2) P ∆L // C⊗P (3) ∆L (cid:15)(cid:15) (cid:15)(cid:15)∆R ∆R (cid:15)(cid:15) (cid:15)(cid:15) IdC⊗∆R C⊗K P // P⊗KC P⊗K C //C⊗K P⊗K C (−,−)⋆ ∆L⊗IdC Where ⋆ (−,−) : C⊗K P → P⊗KC c⊗p 7→ p†⊗c⋆ f FortwoinvolutiveC-bicomodules(P ,∆ )and(P ,∆ ),amorphismP −→ P isdefinedasan 1 1 2 2 1 2 involutivemorphismmakingdiagramsbelowcommute: P1 ∆1L // C⊗K P1 (4) P1 ∆1R // P1⊗KC (5) f IdC⊗f f IdC⊗f (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) P2 // C⊗K P2 P2 // P2⊗KC ∆L ∆R 2 2 2.2 A∞-algebrasand A∞-quasi-isomorphisms AninvolutiveK-algebra isanalgebra AoverafieldK endowedwithaK-linearmap(aninvol- ution)⋆ : A → Asatisfying: ⋆ ⋆ 1. 0 = 0and1 = 1; ⋆ ⋆ 2. (a ) = aforeach a ∈ A; ⋆ ⋆ ⋆ 3. (a a ) = a a foreverya ,a ∈ A. 1 2 2 1 1 2 Example2.6. 1. Any commutative algebra A becomes an involutive algebra if we endoew it with theidentityasinvolution. 2. Let V an involutive vector space. The tensor algebra V⊗n becomes an involutive algebra n if we endow it with the following involution: (v ,...,Lv )⋆ = (v⋆,...,v⋆). This example is 1 n n 1 particularly importantandwewillcomebacktoitlateron. 3. Foradiscrete group G,thegroupringK[G]isaninvolutive K-algebra withinvolutiongiven by inversion g⋆ = g−1. Givenaninvolutivealgebra A,aninvolutive A-bimodule Misan A-bimoduleendowedwithan ⋆ ⋆ ⋆ ⋆ involutionsatisfying(a ma ) = a m a . 1 2 2 1 5 Given twoinvolutive A-bimodules M and N, ainvolutive morphism betweenthemisamorph- ismof A-bimodules f : M → N compatiblewiththeinvolutions. Lemma2.7. Thecomposition ofinvolutivemorphismsisaninvolutivemorphism. Proof. Given f : M → N and g : N → Ptwoinvolutivemorphisms: ⋆ ⋆ ⋆ ⋆ (f ◦g)(m ) = f((g(m ))) = f((g(m)) ) = (f(g(m))) iBimod Involutive A-bimodulesandinvolutivemorphismsformthecategory A- . Given a (involutive) graded K-module A, we denote the suspension of A by SA and define itas thegraded(involutive) K-modulewith SAi = Ai−1. An involutive A∞-algebra is an invol- utivegradedvectorspace Aendowedwithinvolutivemorphisms b : (SA)⊗Kn → SA, n ≥ 1, (6) n ofdegreen−2suchthattheidentitybelowholds: ∑ (−1)i+jlb ◦(Id⊗i⊗b ⊗Id⊗l) = 0, ∀n ≥ 1. (7) i+1+l j i+j+l=n Remark2.8. Condition(7)says,inparticular, thatb2 = 0. 1 Example2.9. 1. Theconcept A∞-algebraisageneralizationforthatofadifferentialgradedalgebra. Indeed, ifthemaps b = 0for n ≥ 3then Aisadifferential Z-graded algebra andconversely an n A∞-algebra Ayieldsadifferential graded algebraifwerequirebn = 0forn ≥ 3. 2. The definition of A∞-algebra was introduced by Stasheff whose motivation was the study of the gradedabeliangroupofsingularchainsonthebasedloopspaceofatopological space. For an involutive A∞-algebra (A,bn), the involutive bar complex is the involutive differential graded coalgebra Bar(A) = TSA, where we endow Bar(A) with a coderivation defined by bi = s−1◦bi◦s⊗Ki (cf. Definitiobn1.2.2.3[LH03]). Given two involutive A∞-algebras C and D, a morphism of A∞-algebras f : C → D is an invol- utive morphism of degree 0 between the associated involutive differential graded coalgebras Bar(C) → Bar(D). It follows from Proposition 2.2 that the definition of an involutive A∞-algebra can be sum- marized by saying that it is an involutive graded K-module A equipped with an involutive coderivationonBar(A)ofdegree−1. Remark 2.10. From [Bra14], Definition 2.8, we have that a morphism of involutive A∞-algebras f : C → D can be given by an involutive morphism of differential graded coalgebras Bar(C) → Bar(D), thatis,aseriesofinvolutivehomogeneousmapsofdegree zero f : (SC)⊗Kn → SD, n ≥ 1, n 6 suchthat ∑ f ◦ Id⊗i ⊗b ⊗Id⊗l = ∑ b ◦(f ⊗···⊗ f ). (8) i+l+1 SC j SC s i1 is i+j+l=n (cid:16) (cid:17) i1+···+is=n Thecomposition f ◦goftwomorphismsofinvolutive A∞-algebras isgivenby (f ◦g) = ∑ f ◦(g ⊗···⊗g ); n s i1 is i1+···+is=n theidentityonSCisdefinedas f = Id and f = 0forn ≥ 2. 1 SC n For an involutive A∞-algebra A, we define its associated homology algebra H•(A) as the ho- mologyofthedifferentialb on A: H (A) = H (A,b ). 1 • • 1 Remark 2.11. Endowed with b2 as multiplication, the homology of an A∞-algebra A is an associative gradedalgebra,whereas Aisnotusuallyassociative. Let f : A1 → A2 a morphism of involutive A∞-algebras with components fn; for n = 1, f1 inducesa morphismofalgebras H•(A1) → H•(A2). We say that f : A1 → A2 is an A∞-quasi- isomorphism if f isaquasi-isomorphism. 1 2.3 A∞-bimodules Let(A,bA) beaninvolutive A∞-algebra. Aninvolutive A∞-bimoduleisapair (M,bM)where M isagradedinvolutiveK-moduleandbMisaninvolutivedifferentialontheBar(A)-bicomodule Bar(M) := Bar(A)⊗K SM⊗KBar(A). Let M,bM and N,bN be two involutive A∞-bimodules. We definea morphism of involutive A∞-(cid:0)bimodul(cid:1)es f : M(cid:0) → N(cid:1)asamorphismofBar(A)-bicomodules F : Bar(M) → Bar(N) suchthatbN ◦F = F◦bM. Proposition 2.12. If f : A1 → A2 is a morphism of involutive A∞-algebras, then A2 becomes an involutivebimoduleover A . 1 Proof. As we are assuming that both A1 and A2 are involutive A∞-algerbas and that f is in- volutive, wedo not needto care about involutions. When it comes to thebimodule structure, this result holds as Bar(A ) is made into a bicomodule of Bar(A ) by the homomorphism of 2 1 involutivecoalgebras f : Bar(A ) → Bar(A ),seeProposition3.4[GJ90]. 1 2 Remark2.13(Section5.1[KS09]). LetiVect bethecategoryofinvolutiveZ-gradedvectorspacesand involutive morphisms. For an involutive A∞-algebra A, involutive A-bimodules and their respective morphisms form a differential graded category. Indeed, following [KS09], Definition 5.1.5: let A be an 7 iBimod involutive A∞-algebra and let us define the category A- whose class of objects are involutive A-bimodulesandwhereHom (M,N)is: iBimod A- HominVect(Bar(A)⊗KSM⊗KBar(A),Bar(A)⊗KSN⊗KBar(A)). Letusrecallthat HominVect(Bar(A)⊗K SM⊗KBar(A),Bar(A)⊗K SN⊗KBar(A)) isbydefinition ∏HomiVect((Bar(A)⊗KSM⊗KBar(A))i,(Bar(A)⊗KSN⊗KBar(A))i+n). i∈Z Themorphism HominVect(Bar(A)⊗K SM⊗KBar(A),Bar(A)⊗K SN⊗KBar(A)) → HominV+ec1t(Bar(A)⊗K SM⊗KBar(A),Bar(A)⊗K SN⊗KBar(A)) sends a family {fi}i∈Z to a family {bN ◦ fi −(−1)nfi+1 ◦bM}i∈Z. Observe that the zero cycles in Homi•Vect(Bar(A)⊗K M⊗K Bar(A),Bar(A)⊗K N⊗K Bar(A)) are precisely the morphisms of in- volutive A-bimodules. Thismorphismdefinesadifferential, indeed: forfixedindicesi,n ∈ Z wehave d2(f ) = d bNf −(−1)nf bM i i i+1 (cid:16) (cid:17) = bN bNf −(−1)nf bM −(−1)n+1 bNf −(−1)nf bM bM i i+1 i i+1 (cid:16) (cid:17) (cid:16) (cid:17) (=!) −(−1)nbNf bM−(−1)n+1bNf bM = 0, i+1 i+1 where(!) pointsoutthefactthatbN ◦bN = 0 = bM◦bM. Foramorphismφ ∈ HominVect(Bar(A)⊗KM⊗KBar(A),Bar(A)⊗KN⊗KBar(A))andanelement x ∈ Bar(A)⊗K M⊗KBar(A),Hom iBimod(M,N)becomesaninvolutivecomplexifweendowedit A- ⋆ ⋆ withtheinvolutionφ (x) = φ(x ). ThefunctorHom (M,−)pairsaninvolutive A-bimoduleFwiththeinvolutiveK-vector iBimod A- spaceHom (M,F) ofinvolutive homomorphisms. Given ahomomorphism f : F → G, iBimod A- iBimod for F,G ∈ Obj A- ,Hom (M,−)pairs f withtheinvolutivemap: iBimod A- (cid:16) (cid:17) f⋆ : Hom iBimod(M,F) → Hom iBimod(M,G) A- A- . φ 7→ f ◦φ Weprovethat f⋆ preservesinvolutions: ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ (f⋆φ )(x) = (f ◦φ )(x) = f(φ(x )) = f((φ(x)) ) = (f(φ(x))) = (f⋆φ(x)) . WedefinethefunctorHom (−,M),whichsendsaninvolutivehomomorphism f : F → iBimod A- iBimod G,for F,G ∈ Obj A- ,to (cid:16) (cid:17) ϕ : Hom (G,M) → Hom (F,M) iBimod iBimod A- A- φ 7→ φ◦ f 8 Letuscheckthattheinvolutionispreserved: ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ϕ(φ )(x) = (φ ◦ f)(x) = φ(f(x) ) = φ(f(x )) = ϕ(φ)(x ) = (ϕ(φ)) (x) Let A be an involutive A∞-algebra and let M,bM and N,bN be involutive A-bimodules. For f,g : M → N morphismsof A-bimodule(cid:0)s,an A∞(cid:1)-homo(cid:0)topybe(cid:1)tween f andgisamorphism h : M → N of A-bimodulessatisfying f −g = bN ◦h+h◦bM. We say that two morphisms u : M → N and v : N → M of involutive A-bimodules are homotopyequivalentifu◦v ∼ Id andv◦u ∼ Id . N M 3 The involutive tensor product For an involutive A∞-algebra A and involutive A-bimodules M and N, the involutive tensor ⊠ iVect product M ∞N isthefollowingobjectin K: e M⊠∞N := (m⋆⊗a ⊗···M⊗a⊗K⊗Bna−r(Am)⊗⊗aK N⊗···⊗a ⊗n⋆). 1 k 1 k e Observethat, foran elementof M⊠∞N oftheform m⊗a1⊗···⊗ak ⊗n, wehave: (m⊗a1⊗ ⋆ ⋆ ⋆ ···⊗a ⊗n) = m ⊗a ⊗···⊗a ⊗n = m⊗a ⊗···⊗a ⊗n . k 1 ke 1 k Proposition 3.1. For an involutive A∞-algebra A and involutive A-bimodules M,N and L, the fol- lowingisomorphism holds: τ : HomiVect M⊠∞N,L −∼=→ HomiVect M⊗KBar(A),Hom iBimod(N,L) , (cid:18) ∼ A- (cid:19) (cid:16) (cid:17) e ⋆ ⋆ where in M⊗K Bar(A) : (m⊗a1 ⊗···⊗ak) = m ⊗a1 ⊗···⊗ak, ∼ denotes the relation m⊗ a ⊗···⊗a = m⋆⊗a ⊗···⊗a and M⊗KBar(A) hastheidentitymapasinvolution. 1 k 1 k ∼ Proof. Let f : M⊠∞N → Lbeaninvolutivemap. Wedefine: e M⊗KBar(A) τ(f) := τf ∈ HomiVect (cid:18) ∼ ,HomA-iBimod(N,L)(cid:19), where τ (m⊗a ⊗···⊗a ) := τ [m⊗a ⊗···⊗a ] ∈ Hom (N,L). Finally, for n ∈ N f 1 k f 1 k A-iBimod wedefine: τ [m⊗a ⊗···⊗a ](n) := f (m⊗a ⊗···⊗a ⊗n). f 1 k 1 k Weneedtocheckthatτ preservestheinvolutions,indeed: ⋆ τf⋆[m⊗a1⊗···⊗ak](n) = f (m⊗a1⊗···⊗ak ⊗n) = ⋆ ⋆ = (f (m⊗a ⊗···⊗a ⊗n)) = (τ ) [m⊗a ⊗···⊗a ](n). 1 k f 1 k In order to see that τ is an isomorphism, we build an inverse. Let us consider an involutive map g : M⊗KBar(A) → Hom (N,L) 1 ∼ A-iBimod m⊗a ⊗···⊗a 7→ g [m⊗a ⊗···⊗a ] 1 k 1 1 k 9 anddefineamap g2 : M⊠∞N → L m⊗a ⊗···⊗a ⊗n 7→ g [m⊗a ⊗···⊗a ](n) 1 e k 1 1 k Wecheckthat g isinvolutive: 2 ⋆ ⋆ g ((m⊗a ⊗···⊗a ⊗n) ) = g (m ⊗a ⊗···⊗a ⊗n) = 2 1 k 2 1 k ⋆ ⋆ = g [m ⊗a ⊗···⊗a ](n) = (g [m⊗a ⊗···⊗a ]) (n) 1 1 k 1 1 k ⋆ ⋆ = (g [m⊗a ⊗···⊗a ](n)) = (g (m⊗a ⊗···⊗a ⊗n)) . 1 1 k 2 1 k Therest of theproofis standard and follows the stepsof Theorem2.75 [Rot09] or Proposition 2.6.3[Wei94]. Foran A-bimodule M,letusdefine(−)⊠∞Masthecovariantfunctor A-iBimode −(−−−)⊠−∞−→M A-iBimod . e ⊠ B B ∞M Thisfunctorsendsamap B1 −→f B2 to B1⊠∞M −f−⊠−∞−Id−→M eB2⊠∞M. e e e The functor (−)⊠∞M is involutive: let us consider an involutive map f : B1 → B2 and its imageundertheetensorproductfunctor, g = f⊠∞IdM. Hence: ⋆ ⋆ ⋆e ⋆ ⋆ g((b,a) ) = g(b ,a) = (f(b ),a) = (f(b),a) = (g(b,a)) . Givenaninvolutive A∞-algebra A,wesaythataninvolutive A-bimodule F isflatifthetensor productfunctor(−)⊠∞F : A-iBimod → A-iBimod isexact,thatis: ittakesquasi-isomorphisms toquasi-isomorphisms. Fromnowon,wewillassumethatalltheinvolutive A-bimodulesare e flat. Lemma3.2. IfPandQarehomotopyequivalentasinvolutive A∞-bimodulesthen,foreveryinvolutive A∞-bimodule M,thefollowingquasi-isomorphism inthecategory ofinvolutive A∞-bimodulesholds: P⊠∞M ≃ Q⊠∞M. ⇆ e e Proof. Let f : P Q : gbeahomotopyequivalence. Itisclearthat h ∼ k ⇒ h⊠∞IdM ∼ k⊠∞IdM. e e Therefore,wehave: P⊠∞M → Q⊠∞M → P⊠∞M p⊠a 7→ f(p)⊠a 7→ g(f(p))⊠a e e e and e e e Q⊠∞M → P⊠∞M → Q⊠∞M q⊠a 7→ g(q)⊠a 7→ f(g(q))⊠a e e e e e e theresultfollowssince f ◦g ∼ Id and g◦ f ∼ Id . Q P 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.