ebook img

History of Banach spaces and linear operators PDF

877 Pages·2007·4.209 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview History of Banach spaces and linear operators

Albrecht Pietsch History of Banach Spaces and Linear Operators Birkha¨user Boston • Basel • Berlin AlbrechtPietsch MathematischesInstitut Friedrich-Schiller-Universita¨t D-07740Jena Germany MathematicsSubjectClassification:Primary:01A05,01A60,46Bxx,46Exx,46Gxx,46Lxx,46Mxx, 47Axx,47Bxx,47Dxx;Secondary:04A25,06E15,15A60,28B05,28C20,30D15,34L10,35P10, 40A05,41A15,41A65,42A20,42A55,58Bxx,60B11,60B12,60J65 LibraryofCongressControlNumber:2007922147 ISBN-10:0-8176-4367-2 e-ISBN-10:0-8176-4596-9 ISBN-13:978-0-8176-4367-6 e-ISBN-13:978-0-8176-4596-0 Printedonacid-freepaper. (cid:2)c2007Birkha¨userBoston Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewrit- tenpermissionofthepublisher(Birkha¨userBoston,c/oSpringerScience+BusinessMediaLLC,233 SpringStreet,NewYork,NY,10013,USA),exceptforbriefexcerptsinconnectionwithreviewsor scholarlyanalysis.Useinconnectionwithanyformofinformationstorageandretrieval,electronic adaptation,computersoftware,orbysimilarordissimilarmethodologynowknownorhereafterde- velopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarksandsimilarterms,evenifthey arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare subjecttoproprietaryrights. 9 8 7 6 5 4 3 2 1 www.birkhauser.com (MP) Dedicatedtomywife and toallwholoveBanachspaces Contents PREFACE ...................................................... xiv NOTATION AND TERMINOLOGY ............................... xviii INTRODUCTION ............................................... xix 1 THE BIRTH OF BANACH SPACES ............................ 1 1.1 Completenormedlinearspaces ............................... 1 1.2 Linearspaces .............................................. 4 1.3 Metricspaces ............................................. 6 1.4 Minkowskispaces .......................................... 8 1.5 Hilbertspaces ............................................. 9 1.6 AlbertA.BennettandKennethW.Lamson ...................... 14 1.7 NorbertWiener ............................................ 18 1.8 EduardHellyandHansHahn ................................. 21 1.9 Summary ................................................. 22 2 HISTORICAL ROOTS AND BASIC RESULTS .................. 25 2.1 Operators ................................................. 25 2.2 Functionalsanddualoperators ................................ 30 2.3 ThemomentproblemandtheHahn–Banachtheorem .............. 36 2.4 Theuniformboundednessprinciple ............................ 40 2.5 Theclosedgraphtheoremandtheopenmappingtheorem .......... 43 2.6 Riesz–Schaudertheory ...................................... 45 2.6.1 Completelycontinuousoperators .......................... 45 2.6.2 Finiterankoperators ................................... 46 2.6.3 Approximableoperators ................................ 47 2.6.4 Compactoperators .................................... 49 2.6.5 Resolvents,spectra,andeigenvalues ........................ 52 2.6.6 Classicaloperatorideals ................................ 53 2.7 Banach’smonograph ........................................ 54 vii viii Contents 3 TOPOLOGICAL CONCEPTS – WEAK TOPOLOGIES ........... 56 3.1 Weaklyconvergentsequences ................................. 56 3.2 Topologicalspacesandtopologicallinearspaces .................. 58 3.2.1 Topologicalspaces .................................... 58 3.2.2 Netsandfilters ....................................... 60 3.2.3 Compactness ........................................ 63 3.2.4 Topologicallinearspaces ................................ 65 3.2.5 Locallyboundedlinearspaces ............................ 66 3.3 Locallyconvexlinearspacesandduality ........................ 68 3.3.1 Locallyconvexlinearspaces ............................. 68 3.3.2 Weaktopologiesanddualsystems ......................... 69 3.3.3 Separationofconvexsets ................................ 71 3.3.4 TopologiesonL(X,Y) .................................. 73 3.4 Weak∗andweakcompactness ................................ 75 3.4.1 Tychonoff’stheorem ................................... 75 3.4.2 Weak∗compactnesstheorem ............................. 76 3.4.3 Weakcompactnessandreflexivity ......................... 78 3.5 WeaksequentialcompletenessandtheSchurproperty ............. 81 3.6 Transfinitelyclosedsets ..................................... 82 4 CLASSICAL BANACH SPACES ............................... 86 4.1 Banachlattices ............................................ 86 4.2 Measuresandintegralsonabstractsets ......................... 92 4.2.1 Set-theoreticoperations ................................. 92 4.2.2 Measures ........................................... 95 4.2.3 Frommeasurestointegrals .............................. 98 4.2.4 IntegralsandtheBanachspacesL ......................... 99 1 4.2.5 Banachspacesofadditivesetfunctions ...................... 101 4.3 ThedualitybetweenL1andL∞ ................................ 103 4.4 TheBanachspacesLp ....................................... 106 4.5 Banachspacesofcontinuousfunctions ......................... 109 4.6 Measuresandintegralsontopologicalspaces .................... 111 4.7 Measuresversusintegrals .................................... 117 4.8 AbstractLp-andM-spaces ................................... 118 4.8.1 Booleanalgebras ...................................... 118 4.8.2 Measurealgebras ..................................... 120 4.8.3 AbstractLp-spaces .................................... 124 4.8.4 AbstractM-spaces ..................................... 127 4.8.5 TheDunford–Pettisproperty ............................. 128 Contents ix 4.9 Structuretheory ............................................ 129 4.9.1 Isomorphisms,injections,surjections,andprojections ........... 129 4.9.2 Extensionsandliftings ................................. 133 4.9.3 Isometricandisomorphicclassification ...................... 134 4.10 Operatoridealsandoperatoralgebras ......................... 137 4.10.1 Schatten–vonNeumannideals ............................ 137 4.10.2 Banachalgebras ...................................... 139 4.10.3 B(cid:2)-algebras=C(cid:2)-algebras ............................... 142 4.10.4 W(cid:2)-algebras ......................................... 144 4.11 Complexification .......................................... 155 5 BASIC RESULTS FROM THE POST-BANACH PERIOD ......... 158 5.1 AnalysisinBanachspaces ................................... 158 5.1.1 Convergenceofseries .................................. 158 5.1.2 Integrationofvector-valuedfunctions ....................... 160 5.1.3 RepresentationofoperatorsfromL intoX ................... 165 1 5.1.4 TheRadon–Nikodymproperty:analyticaspects ............... 171 5.1.5 RepresentationofoperatorsfromLpintoX ................... 174 5.1.6 RepresentationofoperatorsfromC(K)intoX ................. 175 5.1.7 Vector-valuedanalyticfunctionsonthecomplexplane ........... 176 5.1.8 GaˆteauxandFre´chetderivatives ........................... 177 5.1.9 Polynomialsandderivativesofhigherorder .................. 180 5.1.10 AnalyticfunctionsonBanachspaces ....................... 185 5.2 Spectraltheory ............................................ 189 5.2.1 Operationalcalculus ................................... 189 5.2.2 Fredholmoperators .................................... 192 5.2.3 Rieszoperators ....................................... 198 5.2.4 Invariantsubspaces .................................... 202 5.2.5 Spectraloperators ..................................... 206 5.3 Semi-groupsofoperators .................................... 209 5.3.1 Deterministicandstochasticprocesses ...................... 209 5.3.2 TheHille–Yosidatheorem ............................... 211 5.3.3 Analyticsemi-groups .................................. 214 5.3.4 TheabstractCauchyproblem ............................. 215 5.3.5 Ergodictheory ....................................... 216 5.4 Convexity,extremepoints,andrelatedtopics .................... 219 5.4.1 TheKre˘ın–Milmantheorem .............................. 219 5.4.2 Integralrepresentations ................................. 222 5.4.3 Gelfand–Na˘ımark–Segalrepresentations ..................... 226 5.4.4 TheRadon–Nikodymproperty:geometricaspects .............. 227 5.4.5 Convexandconcavefunctions ............................ 231 5.4.6 Lyapunov’stheoremandthebang-bangprinciple ............... 232 5.5 Geometryoftheunitball .................................... 233 5.5.1 Strictconvexityandsmoothness ........................... 233 5.5.2 Uniformconvexityanduniformsmoothness .................. 236 5.5.3 Furtherconceptsrelatedtoconvexityandsmoothness ........... 239 5.5.4 Applicationsofconvexityandsmoothness ................... 242 5.5.5 Complexconvexity .................................... 245 x Contents 5.6 Bases .................................................... 245 5.6.1 Schauderbasesandbasicsequences ........................ 245 5.6.2 Biorthogonalsystems .................................. 248 5.6.3 Basesandstructuretheory ............................... 249 5.6.4 BasesinconcreteBanachspaces .......................... 256 5.6.5 UnconditionalbasicsequencesinHilbertspaces ............... 261 5.6.6 Wavelets ........................................... 263 5.6.7 Schauderdecompositions ................................ 268 5.7 Tensorproductsandapproximationproperties .................... 269 5.7.1 Bilinearmappings ..................................... 269 5.7.2 Tensorproducts ...................................... 271 5.7.3 Nuclearandintegraloperators ............................ 275 5.7.4 Approximationproperties ............................... 280 6 MODERN BANACH SPACE THEORY – SELECTED TOPICS .... 288 6.1 GeometryofBanachspaces .................................. 288 6.1.1 Banach–Mazurdistance,projection,andbasisconstants .......... 289 6.1.2 Dvoretzky’stheorem ................................... 293 6.1.3 Finiterepresentability,ultraproducts,andspreadingmodels ....... 296 6.1.4 Lp-spaces .......................................... 302 6.1.5 Localunconditionalstructure ............................. 304 6.1.6 Banachspacescontainingln’suniformly ..................... 305 p 6.1.7 Rademachertypeandcotype,Gausstypeandcotype ............ 307 6.1.8 Fouriertypeandcotype,Walshtypeandcotype ................ 315 6.1.9 Superreflexivity,Haartypeandcotype ...................... 318 6.1.10 UMDspaces=HT spaces ............................... 321 6.1.11 VolumeratiosandGrothendiecknumbers .................... 323 6.2 s-Numbers ................................................ 326 6.2.1 s-NumbersofoperatorsonHilbertspace ..................... 326 6.2.2 Axiomaticsofs-numbers ................................ 327 6.2.3 Examplesofs-numbers ................................. 327 6.2.4 Entropynumbers ...................................... 331 6.2.5 s-Numbersofdiagonaloperators .......................... 333 6.2.6 s-Numbersversuswidths ................................ 336 6.3 Operatorideals ............................................ 336 6.3.1 IdealsonHilbertspace ................................. 336 6.3.2 BasicconceptsofidealtheoryonBanachspaces ............... 341 6.3.3 Idealsassociatedwiths-numbers .......................... 345 6.3.4 Localtheoryofquasi-Banachidealsandtraceduality ........... 348 6.3.5 p-Factorableoperators .................................. 353 6.3.6 p-Summingoperators .................................. 355 6.3.7 p-Nuclearandp-integraloperators ......................... 361 6.3.8 Specificcomponentsofoperatorideals ...................... 363 6.3.9 Grothendieck’stheorem ................................. 365 6.3.10 Limitorderofoperatorideals ............................. 368 6.3.11 Banachidealsandtensorproducts ......................... 370 6.3.12 Idealnormscomputedwithnvectors ....................... 374 6.3.13 OperatoridealsandclassesofBanachspaces ................. 375 Contents xi 6.3.14 Rademachertypeandcotype,Gausstypeandcotype ............ 379 6.3.15 Fouriertypeandcotype,Walshtypeandcotype ................ 382 6.3.16 Superweaklycompactoperators,Haartypeandcotype .......... 383 6.3.17 UMDoperatorsandHT operators .......................... 386 6.3.18 Radon–Nikodymproperty:operator-theoreticaspects ........... 387 6.3.19 IdealnormsandparametersofMinkowskispaces .............. 387 6.3.20 Idealnormsoffiniterankoperators ......................... 389 6.3.21 Operatoridealsandclassesoflocallyconvexlinearspaces ........ 391 6.4 Eigenvaluedistributions ..................................... 393 6.4.1 Eigenvaluesequencesandclassicalresults ................... 393 6.4.2 Inequalitiesbetweens-numbersandeigenvalues ............... 394 6.4.3 Eigenvaluesofp-summingoperators ....................... 396 6.4.4 Eigenvaluesofnuclearoperators .......................... 398 6.4.5 Operatorsofeigenvaluetypelp,q .......................... 399 6.5 Tracesanddeterminants ..................................... 402 6.5.1 Traces ............................................. 402 6.5.2 Fredholmdenominatorsanddeterminants .................... 405 6.5.3 RegularizedFredholmdenominators ........................ 412 6.5.4 TheGohberg–Goldberg–Krupnikapproach ................... 414 6.5.5 Eigenvaluesandzerosofentirefunctions .................... 415 6.5.6 Completenessofrootvectors ............................. 418 6.5.7 Determinants:prosandcons ............................. 424 6.6 Interpolationtheory ......................................... 425 6.6.1 Classicalconvexitytheorems ............................. 425 6.6.2 Interpolationmethods .................................. 426 6.6.3 Complexandrealinterpolationmethods ..................... 427 6.6.4 Lorentzspaces ....................................... 431 6.6.5 Applicationsofinterpolationtheory ........................ 433 6.6.6 Interpolationofoperatorideals ............................ 435 6.6.7 Newtrendsininterpolationtheory ......................... 436 6.7 Functionspaces ............................................ 440 6.7.1 Ho¨lder–Lipschitzspaces ................................ 440 6.7.2 Sobolevspaces ....................................... 442 6.7.3 Besovspaces ........................................ 445 6.7.4 Lizorkin–Triebelspaces ................................. 450 6.7.5 Interpolationoffunctionspaces ........................... 453 6.7.6 Spacesofsmoothfunctions:supplements .................... 454 6.7.7 BasesofBesovspaces .................................. 458 6.7.8 Embeddingoperators ................................... 459 6.7.9 Spacesofvector-valuedfunctions .......................... 464 6.7.10 Integraloperators ..................................... 466 6.7.11 Differentialoperators .................................. 469 6.7.12 Hardyspaces ........................................ 473 6.7.13 Bergmanspaces ...................................... 481 6.7.14 Orliczspaces ........................................ 485

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.