ebook img

Hindawi - Fixed Point Theory and Applications PDF

17 Pages·2010·0.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Hindawi - Fixed Point Theory and Applications

HindawiPublishingCorporation FixedPointTheoryandApplications Volume2010,ArticleID621469,17pages doi:10.1155/2010/621469 Research Article Some Fixed Point Theorems on Ordered Metric Spaces and Application Ishak Altun and Hakan Simsek DepartmentofMathematics,FacultyofScienceandArts,KirikkaleUniversity,Yahsihan, Kirikkale71450,Turkey CorrespondenceshouldbeaddressedtoIshakAltun,[email protected] Received2July2009;Accepted13January2010 AcademicEditor:JuanJoseNieto Copyrightq2010I.AltunandH.Simsek. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproductioninanymedium,providedtheoriginalworkisproperlycited. We present some fixed point results for nondecreasing and weakly increasing operators in a partially ordered metric space using implicit relations. Also we give an existence theorem for commonsolutionoftwointegralequations. 1. Introduction Existence of fixed points in partially ordered sets has been considered recently in (cid:2)1(cid:3), and some generalizations of the result of (cid:2)1(cid:3) are given in (cid:2)2–6(cid:3). Also, in (cid:2)1(cid:3) some applications to matrix equations are presented, in (cid:2)3, 4(cid:3) some applications to periodic boundary value problemandtosomeparticularproblemsare,respectively,given.Later,in(cid:2)6(cid:3)O’Reganand Petrus¸el gave some existence results for Fredholm and Volterra type integral equations. In someoftheaboveworks,thefixedpointresultsaregivenfornondecreasingmappings. Wecanorderthepurposesofthepaperasfollows. First,wegiveaslightgeneralizationofsomeoftheresultsoftheabovepapersusing animplicitrelationinthefollowingway. In (cid:2)1, 3(cid:3), the authors used the following contractive condition in their result, there existsk ∈(cid:2)0,1(cid:4)suchthat (cid:2) (cid:3) (cid:2) (cid:3) d fx,fy ≤kd x,y for y (cid:4)x. (cid:5)1.1(cid:4) Afterwards,in(cid:2)2(cid:3),theauthorsusedthenonlinearcontractivecondition,thatis, (cid:2) (cid:3) (cid:2) (cid:2) (cid:3)(cid:3) d fx,fy ≤ψ d x,y for y (cid:4)x, (cid:5)1.2(cid:4) 2 FixedPointTheoryandApplications whereψ :(cid:2)0,∞(cid:4) → (cid:2)0,∞(cid:4)isanondecreasingfunctionwithlimn→∞ψn(cid:5)t(cid:4)(cid:6)0fort>0,instead of (cid:5)1.1(cid:4). Also in (cid:2)2(cid:3), the authors proved a fixed point theorem using generalized nonlinear contractivecondition,thatis, (cid:4) (cid:5) (cid:8)(cid:9) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:6) (cid:2) (cid:3) (cid:2) (cid:3)(cid:7) 1 d fx,fy ≤ψ max d x,y ,d x,fx ,d y,fy , d x,fy (cid:7)d y,fx (cid:5)1.3(cid:4) 2 for y (cid:4) x, where ψ is as above. In the Section3, we generalized the above contractive conditionsusingtheimplicitrelationtechniqueinsuchawaythat (cid:2) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3)(cid:3) T d Fx,Fy ,d x,y ,d(cid:5)x,Fx(cid:4),d y,Fy ,d x,Fy ,d y,Fx ≤0 (cid:5)1.4(cid:4) for y (cid:4) x, where T : R6(cid:7) → R is a function as given in Section2. We can obtain various contractiveconditionsfrom(cid:5)1.4(cid:4).Forexample,ifwechoose (cid:4) (cid:5) (cid:8)(cid:9) 1 T(cid:5)t ,...,t (cid:4)(cid:6)t −ψ max t ,t ,t , (cid:2)t (cid:7)t (cid:3) (cid:5)1.5(cid:4) 1 6 1 2 3 4 5 6 2 in(cid:5)1.4(cid:4),then,wehave(cid:5)1.3(cid:4).Similarlywecanhavethecontractiveconditionsin(cid:2)7–9(cid:3)from (cid:5)1.4(cid:4). In some of the above mentioned theorems, the fixed point results are given for nondecreasingmappings.Alsointhesetheoremsthefollowingconditionisused: there exists x ∈X such that x (cid:4)fx . (cid:5)1.6(cid:4) 0 0 0 InSection4,wegivesomeexamplessuchthattwoweaklyincreasingmappingsneednotbe nondecreasing.Therefore,wegiveacommonfixedpointtheoremfortwoweaklyincreasing operators in partially ordered metric spaces using implicit relation technique. Also we did notusethecondition(cid:5)1.6(cid:4)inthistheorem.Attheend,toseetheapplicabilityofourresult, we give an existence theorem for common solution of two integral equations using a result oftheSection4. 2. Implicit Relation Implicitrelationsonmetricspaceshavebeenusedinmanyarticles.Seeforexamples,(cid:2)10–15(cid:3). Let R(cid:7) denote the nonnegative real numbers, and let T be the set of all continuous functionsT :R6(cid:7) → Rsatisfyingthefollowingconditions: T :T(cid:5)t ,...,t (cid:4)isnonincreasinginvariablest ,...,t ; 1 1 6 2 6 T2 :there exists a right continuous function f : R(cid:7) → R(cid:7),f(cid:5)0(cid:4) (cid:6) 0, f(cid:5)t(cid:4) < t for t > 0, suchthatforu≥0, T(cid:5)u,v,u,v,0,u(cid:7)v(cid:4)≤0 (cid:5)2.1(cid:4) FixedPointTheoryandApplications 3 or T(cid:5)u,v,0,0,v,v(cid:4)≤0 (cid:5)2.2(cid:4) impliesu≤f(cid:5)v(cid:4); T :T(cid:5)u,0,u,0,0,u(cid:4)>0,forallu>0. 3 Example2.1. T(cid:5)t ,...,t (cid:4)(cid:6)t −αmax{t ,t ,t }−(cid:5)1−α(cid:4)(cid:2)at (cid:7)bt (cid:3),where0≤α<1,0≤a<1/2, 1 6 1 2 3 4 5 6 0≤b<1/2. Let u > 0 and T(cid:5)u,v,u,v,0,u(cid:7)v(cid:4) (cid:6) u−αmax{u,v}−(cid:5)1−α(cid:4)b(cid:5)u(cid:7)v(cid:4) ≤ 0. If u ≥ v, then (cid:5)1−b(cid:4)u ≤ bv which implies b ≥ 1/2, a contradiction. Thus u < v and u ≤ (cid:5)(cid:5)α(cid:7)(cid:5)1− α(cid:4)b(cid:4)/(cid:5)1−(cid:5)1−α(cid:4)b(cid:4)(cid:4)v(cid:6)βv.Similarly,letu>0andT(cid:5)u,v,0,0,v,v(cid:4)(cid:6)u−αv−(cid:5)1−α(cid:4)(cid:5)a(cid:7)b(cid:4)v (cid:6) u−(cid:5)α(cid:7)(cid:5)1−α(cid:4)(cid:5)a(cid:7)b(cid:4)(cid:4)v ≤0,thenu≤(cid:5)α(cid:7)(cid:5)1−α(cid:4)(cid:5)a(cid:7)b(cid:4)(cid:4)v (cid:6)γv.Ifu(cid:6)0,thenu≤γv.ThusT is 2 satisfiedwithf(cid:5)t(cid:4)(cid:6)max{β,γ}t.AlsoT(cid:5)u,0,u,0,0,u(cid:4)(cid:6)u−αu−(cid:5)1−α(cid:4)bu(cid:6)(cid:5)1−α(cid:4)(cid:5)1−b(cid:4)u>0, forallu>0.Therefore,T ∈T. Example2.2. T(cid:5)t ,...,t (cid:4)(cid:6)t −kmax{t ,t ,t ,(cid:5)1/2(cid:4)(cid:5)t (cid:7)t (cid:4)},wherek ∈(cid:5)0,1(cid:4). 1 6 1 2 3 4 5 6 Letu > 0andT(cid:5)u,v,u,v,0,u(cid:7)v(cid:4) (cid:6) u−kmax{u,v} ≤ 0.Ifu ≥ v,thenu ≤ ku,which isacontradiction.Thusu<vandu≤kv.Similarly,letu>0andT(cid:5)u,v,0,0,v,v(cid:4)(cid:6)u−kv ≤ 0, then we have u ≤ kv. If u (cid:6) 0, then u ≤ kv. Thus T is satisfied with f(cid:5)t(cid:4) (cid:6) kt. Also 2 T(cid:5)u,0,u,0,0,u(cid:4)(cid:6)u−ku>0,forallu>0.Therefore,T ∈T. Example 2.3. T(cid:5)t1,...,t6(cid:4) (cid:6) t1 −φ(cid:5)max{t2,t3,t4,(cid:5)1/2(cid:4)(cid:5)t5 (cid:7)t6(cid:4)}(cid:4), where φ : R(cid:7) → R(cid:7) is right continuousandφ(cid:5)0(cid:4)(cid:6)0,φ(cid:5)t(cid:4)<tfort>0. Letu > 0andT(cid:5)u,v,u,v,0,u(cid:7)v(cid:4) (cid:6) u−φ(cid:5)max{u,v}(cid:4) ≤ 0.Ifu ≥ v,thenu−φ(cid:5)u(cid:4) ≤ 0, whichisacontradiction.Thusu < vandu ≤ φ(cid:5)v(cid:4).Similarly,letu > 0andT(cid:5)u,v,0,0,v,v(cid:4) (cid:6) u−φ(cid:5)v(cid:4) ≤ 0,thenwehaveu ≤ φ(cid:5)v(cid:4).Ifu (cid:6) 0,thenu ≤ φ(cid:5)v(cid:4).ThusT issatisfiedwithf (cid:6) φ. 2 AlsoT(cid:5)u,0,u,0,0,u(cid:4)(cid:6)u−φ(cid:5)u(cid:4)>0,forallu>0.Therefore,T ∈T. Example2.4. T(cid:5)t ,...,t (cid:4) (cid:6) t2−t (cid:5)at (cid:7)bt (cid:7)ct (cid:4)−dt t ,wherea > 0,b,c,d ≥ 0,a(cid:7)b(cid:7)c < 1 1 6 1 1 2 3 4 5 6 anda(cid:7)d<1. Letu > 0andT(cid:5)u,v,u,v,0,u(cid:7)v(cid:4) (cid:6) u2−u(cid:5)av(cid:7)bu(cid:7)cv(cid:4) ≤ 0.Thenu ≤ (cid:5)(cid:5)a(cid:7)c(cid:4)/(cid:5)1− b(cid:4)(cid:4)v√(cid:6) h1v.Similarly,letu > 0andT(cid:5)u,v,0,0,v,v(cid:4) (cid:6) u2 −auv−dv2 ≤ 0,thenwehaveu ≤ (cid:5)(cid:5)a(cid:7) 4d(cid:7)a2(cid:4)/2(cid:4)v (cid:6)h v.Ifu(cid:6)0,thenu≤h v.ThusT issatisfiedwithf(cid:5)t(cid:4)(cid:6)max{h ,h }t. 2 2 2 1 2 AlsoT(cid:5)u,0,u,0,0,u(cid:4)(cid:6)(cid:5)1−b(cid:4)u2 >0,forallu>0.Therefore,T ∈T. 3. Fixed Point Theorem for Nondecreasing Mappings Weneedthefollowinglemmafortheproofofourtheorems. Lemma3.1(cid:5)see(cid:2)16(cid:3)(cid:4). Letf :R(cid:7) → R(cid:7)bearightcontinuousfunctionsuchthatf(cid:5)t(cid:4)<tforevery t>0,thenlimn→∞fn(cid:5)t(cid:4)(cid:6)0,wherefndenotesthen-timesrepeatedcompositionoff withitself. 4 FixedPointTheoryandApplications Theorem3.2. Let(cid:5)X,(cid:4)(cid:4)beapartiallyorderedsetandsupposethatthereisametricdonXsuchthat (cid:5)X,d(cid:4)isacompletemetricspace.SupposeF : X → X isanondecreasingmappingsuchthatforall x,y ∈Xwithy (cid:4)x, (cid:2) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3)(cid:3) T d Fx,Fy ,d x,y ,d(cid:5)x,Fx(cid:4),d y,Fy ,d x,Fy ,d y,Fx ≤0, (cid:5)3.1(cid:4) whereT ∈T.Also F is continuous, (cid:5)3.2(cid:4) or if {x }⊂X is a nondecreasing sequence with x −→x in X, n n (cid:5)3.3(cid:4) then x (cid:4)x ∀n n hold.Ifthereexistsanx ∈Xwithx (cid:4)F(cid:5)x (cid:4),thenF hasafixedpoint. 0 0 0 Proof. If Fx0 (cid:6) x0, then the proof is finished; so suppose x0/(cid:6)Fx0. Now let xn (cid:6) Fxn−1 for n∈{1,2,...}.Noticethat,sincex (cid:4)Fx andF isnondecreasing,wehave 0 0 x0 (cid:4)x1 (cid:4)x2 (cid:4)···(cid:4)xn (cid:4)xn(cid:7)1 (cid:4)··· . (cid:5)3.4(cid:4) Nowsincexn−1 (cid:4)xn,wecanusetheinequality(cid:5)3.1(cid:4)forthesepoints,thenwehave T(cid:5)d(cid:5)Fxn,Fxn−1(cid:4),d(cid:5)xn,xn−1(cid:4),d(cid:5)xn,Fxn(cid:4),d(cid:5)xn−1,Fxn−1(cid:4),d(cid:5)xn,Fxn−1(cid:4),d(cid:5)xn−1,Fxn(cid:4)(cid:4)≤0 (cid:5)3.5(cid:4) andso T(cid:5)d(cid:5)xn(cid:7)1,xn(cid:4),d(cid:5)xn,xn−1(cid:4),d(cid:5)xn,xn(cid:7)1(cid:4),d(cid:5)xn−1,xn(cid:4),0,d(cid:5)xn−1,xn(cid:7)1(cid:4)(cid:4)≤0. (cid:5)3.6(cid:4) NowusingT ,wehave 1 T(cid:5)d(cid:5)xn(cid:7)1,xn(cid:4),d(cid:5)xn,xn−1(cid:4),d(cid:5)xn,xn(cid:7)1(cid:4),d(cid:5)xn−1,xn(cid:4),0,d(cid:5)xn−1,xn(cid:4)(cid:7)d(cid:5)xn,xn(cid:7)1(cid:4)(cid:4)≤0, (cid:5)3.7(cid:4) and from T2 there exists a right continuous function f : R(cid:7) → R(cid:7), f(cid:5)0(cid:4) (cid:6) 0, f(cid:5)t(cid:4) < t, for t>0,suchthatforalln∈{1,2,...}, d(cid:5)xn(cid:7)1,xn(cid:4)≤f(cid:5)d(cid:5)xn,xn−1(cid:4)(cid:4). (cid:5)3.8(cid:4) Ifwecontinuethisprocedure,wecanhave d(cid:5)xn(cid:7)1,xn(cid:4)≤fn(cid:5)d(cid:5)x1,x0(cid:4)(cid:4), (cid:5)3.9(cid:4) FixedPointTheoryandApplications 5 andsofromLemma3.1, nl→im∞d(cid:5)xn(cid:7)1,xn(cid:4)(cid:6)0. (cid:5)3.10(cid:4) Nextweshowthat{x }isaCauchysequence.Supposeitisnottrue.Thenwecanfindaδ >0 n andtwosequenceofintegers{m(cid:5)k(cid:4)},{n(cid:5)k(cid:4)},m(cid:5)k(cid:4)>n(cid:5)k(cid:4)≥kwith (cid:2) (cid:3) rk (cid:6)d xn(cid:5)k(cid:4),xm(cid:5)k(cid:4) ≥δ for k ∈{1,2,...}. (cid:5)3.11(cid:4) Wemayalsoassume (cid:2) (cid:3) d xm(cid:5)k(cid:4)−1,xn(cid:5)k(cid:4) <δ (cid:5)3.12(cid:4) by choosing m(cid:5)k(cid:4) to be the smallest number exceeding n(cid:5)k(cid:4) for which (cid:5)3.11(cid:4) holds. Now (cid:5)3.9(cid:4),(cid:5)3.11(cid:4),and(cid:5)3.12(cid:4)imply (cid:2) (cid:3) (cid:2) (cid:3) δ ≤rk ≤d xm(cid:5)k(cid:4),xm(cid:5)k(cid:4)−1 (cid:7)d xm(cid:5)k(cid:4)−1,xn(cid:5)k(cid:4) ≤fm(cid:5)k(cid:4)−1(cid:5)d(cid:5)x0,x1(cid:4)(cid:4)(cid:7)δ (cid:5)3.13(cid:4) andso limr (cid:6)δ. (cid:5)3.14(cid:4) k k→∞ Alsosince (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) δ ≤rk ≤d xn(cid:5)k(cid:4),xn(cid:5)k(cid:4)(cid:7)1 (cid:7)d xm(cid:5)k(cid:4),xm(cid:5)k(cid:4)(cid:7)1 (cid:7)d xn(cid:5)k(cid:4)(cid:7)1,xm(cid:5)k(cid:4)(cid:7)1 , (cid:5)3.15(cid:4) wehavefrom(cid:5)3.9(cid:4)that (cid:2) (cid:3) δ ≤rk ≤fn(cid:5)k(cid:4)(cid:5)d(cid:5)x0,x1(cid:4)(cid:4)(cid:7)fm(cid:5)k(cid:4)(cid:5)d(cid:5)x0,x1(cid:4)(cid:4)(cid:7)d xm(cid:5)k(cid:4)(cid:7)1,xn(cid:5)k(cid:4)(cid:7)1 . (cid:5)3.16(cid:4) On the other hand, since xn(cid:5)k(cid:4) (cid:4) xm(cid:5)k(cid:4), we can use the condition (cid:5)3.1(cid:4) for these points. Therefore,wehave (cid:2) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) T d Fxm(cid:5)k(cid:4),Fxn(cid:5)k(cid:4) ,d xm(cid:5)k(cid:4),xn(cid:5)k(cid:4) ,d xm(cid:5)k(cid:4),Fxm(cid:5)k(cid:4) , (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3)(cid:3) (cid:5)3.17(cid:4) d xn(cid:5)k(cid:4),Fxn(cid:5)k(cid:4) ,d xm(cid:5)k(cid:4),Fxn(cid:5)k(cid:4) ,d xn(cid:5)k(cid:4),Fxm(cid:5)k(cid:4) ≤0 andso (cid:10) (cid:2) (cid:3) T d Fxm(cid:5)k(cid:4),Fxn(cid:5)k(cid:4) ,rk,fm(cid:5)k(cid:4)(cid:5)d(cid:5)x0,x1(cid:4)(cid:4),fn(cid:5)k(cid:4)(cid:5)d(cid:5)x0,x1(cid:4)(cid:4), (cid:11) (cid:5)3.18(cid:4) r (cid:7)fn(cid:5)k(cid:4)(cid:5)d(cid:5)x ,x (cid:4)(cid:4),r (cid:7)fm(cid:5)k(cid:4)(cid:5)d(cid:5)x ,x (cid:4)(cid:4) ≤0. k 0 1 k 0 1 6 FixedPointTheoryandApplications Nowlettingk → ∞andusing(cid:5)3.14(cid:4),wehave,bycontinuityofT,that (cid:4) (cid:9) (cid:2) (cid:3) T limd xm(cid:5)k(cid:4)(cid:7)1,xn(cid:5)k(cid:4)(cid:7)1 ,δ,0,0,δ,δ ≤0. (cid:5)3.19(cid:4) k→∞ From T2, we have limk→∞d(cid:5)xm(cid:5)k(cid:4)(cid:7)1,xn(cid:5)k(cid:4)(cid:7)1(cid:4) ≤ f(cid:5)δ(cid:4). Therefore, letting k → ∞ in (cid:5)3.16(cid:4), we haveδ ≤f(cid:5)δ(cid:4).Thisisacontradictionsincef(cid:5)t(cid:4)<tfort>0.Thus{x }isaCauchysequence n inX,sothereexistsanx∈Xwithlimn→∞xn (cid:6)x. If (cid:5)3.2(cid:4) holds, then clearly x (cid:6) Fx. Now suppose (cid:5)3.3(cid:4) holds. Suppose d(cid:5)x,Fx(cid:4) > 0. Now since limn→∞xn (cid:6) x, then from (cid:5)3.3(cid:4), xn (cid:4) x for all n. Using the inequality (cid:5)3.1(cid:4), we have T(cid:5)d(cid:5)Fx,Fx (cid:4),d(cid:5)x,x (cid:4),d(cid:5)x,Fx(cid:4),d(cid:5)x ,Fx (cid:4),d(cid:5)x,Fx (cid:4),d(cid:5)x ,Fx(cid:4)(cid:4)≤0, (cid:5)3.20(cid:4) n n n n n n solettingn → ∞fromthelastinequality,wehave T(cid:5)d(cid:5)Fx,x(cid:4),0,d(cid:5)x,Fx(cid:4),0,0,d(cid:5)x,Fx(cid:4)(cid:4)≤0, (cid:5)3.21(cid:4) whichisacontradictiontoT .Thusd(cid:5)x,Fx(cid:4)(cid:6)0andsox(cid:6)Fx. 3 Remark3.3. Notethatifwetakethat T4:thereexistsanondecreasingfunctionf : R(cid:7) → R(cid:7) withlimn→∞fn(cid:5)t(cid:4) (cid:6) 0foreach t>0,suchthatforu≥0, T(cid:5)u,v,u,v,0,u(cid:7)v(cid:4)≤0 (cid:5)3.22(cid:4) or T(cid:5)u,v,0,0,v,v(cid:4)≤0 (cid:5)3.23(cid:4) impliesu≤f(cid:5)v(cid:4), InsteadofT inTheorem3.2,againwecanhavethesameresult. 2 IfwecombineTheorem3.2withExample2.1,weobtainthefollowingresult. Corollary 3.4. Let (cid:5)X,(cid:4)(cid:4) be a partially ordered set and suppose that there is a metric d on X such that(cid:5)X,d(cid:4)isacompletemetricspace.SupposeF :X → Xisanondecreasingmappingsuchthatfor allx,y ∈Xwithy (cid:4)x, (cid:2) (cid:3) (cid:12) (cid:2) (cid:3) (cid:2) (cid:3)(cid:13) (cid:6) (cid:2) (cid:3) (cid:2) (cid:3)(cid:7) d Fx,Fy ≤αmax d x,y ,d(cid:5)x,Fx(cid:4),d y,Fy (cid:7)(cid:5)1−α(cid:4) ad x,Fy (cid:7)bd y,Fx , (cid:5)3.24(cid:4) where0≤α<1,0≤a<1/2,0≤b<1/2.Also F is continuous (cid:5)3.25(cid:4) FixedPointTheoryandApplications 7 or if {x }⊂X is a nondecreasing sequence with x −→x in X, n n (cid:5)3.26(cid:4) then x (cid:4)x ∀n n hold.Ifthereexistsanx ∈Xwithx (cid:4)F(cid:5)x (cid:4),thenF hasafixedpoint. 0 0 0 Remark3.5. Theorem2.2of(cid:2)2(cid:3)followsfromExample2.3,Remark3.3,andTheorem3.2. Remark3.6. WecanhavesomenewresultsfromotherexamplesandTheorem3.2. Remark3.7. InTheorem1(cid:2)1(cid:3),itisprovedthatif every pair of elements has a lower bound and an upper bound, (cid:5)3.27(cid:4) thenforeveryx∈X, limFn(cid:5)x(cid:4)(cid:6)y, (cid:5)3.28(cid:4) n→∞ whereyisthefixedpointofF suchthat y (cid:6) limFn(cid:5)x (cid:4) (cid:5)3.29(cid:4) n→∞ 0 andhenceF hasauniquefixedpoint.Ifcondition(cid:5)3.27(cid:4)fails,itispossibletofindexamples of functions F with more than one fixed point. There exist some examples to illustrate this factin(cid:2)3(cid:3). 4. Fixed Point Theorem for Weakly Increasing Mappings Now we give a fixed point theorem for two weakly increasing mappings in ordered metric spaces using an implicit relation. Before this, we will define an implicit relation for the contractiveconditionofthetheorem. LetT(cid:11)bethesetofallcontinuousfunctionsT :R6(cid:7) → RsatisfyingT1andthefollowing conditions: T(cid:11):there exists a right continuous function f : R(cid:7) → R(cid:7), f(cid:5)0(cid:4) (cid:6) 0,f(cid:5)t(cid:4) < t for t > 0, 2 suchthatforu≥0, T(cid:5)u,v,u,v,0,u(cid:7)v(cid:4)≤0 (cid:5)4.1(cid:4) or T(cid:5)u,v,v,u,u(cid:7)v,0(cid:4)≤0 (cid:5)4.2(cid:4) or T(cid:5)u,v,0,0,v,v(cid:4)≤0 (cid:5)4.3(cid:4) 8 FixedPointTheoryandApplications impliesu≤f(cid:5)v(cid:4); T(cid:11):T(cid:5)u,0,u,0,0,u(cid:4)>0andT(cid:5)u,0,0,u,u,0(cid:4)>0,forallu>0. 3 Wecaneasilyshowthat,allfunctionsintheExamplesinSection2areinT(cid:11). Definition4.1(cid:5)see(cid:2)17,18(cid:3)(cid:4). Let(cid:5)X,(cid:4)(cid:4)beapartiallyorderedset.TwomappingsF,G:X → X aresaidtobeweaklyincreasingifFx(cid:4)GFxandGx(cid:4)FGxforallx∈X. Notethat,twoweaklyincreasingmappingsneednotbenondecreasing. Example4.2. LetX (cid:6)R(cid:7)endowedwithusualordering.LetF,G:X → Xdefinedby ⎧ ⎧ √ ⎨x if 0≤x≤1 ⎨ x if 0≤x≤1 Fx(cid:6) Gx(cid:6) (cid:5)4.4(cid:4) ⎩ ⎩ 0 if 1<x<∞, 0 if 1<x<∞, then it is obvious that Fx ≤ GFx and Gx ≤ FGx for all x ∈ X. Thus F and G are weakly increasingmappings.NotethatbothF andGarenotnondecreasing. Example4.3. LetX (cid:6)(cid:2)1,∞(cid:4)×(cid:2)1,∞(cid:4)beendowedwiththecoordinateordering,thatis,(cid:5)x,y(cid:4)(cid:4) (cid:5)z,w(cid:4) ⇔ x ≤ zandy ≤ w.LetF,G : X → X bedefinedbyF(cid:5)x,y(cid:4) (cid:6) (cid:5)2x,3y(cid:4)andG(cid:5)x,y(cid:4) (cid:6) (cid:5)x2,y2(cid:4),thenF(cid:5)x,y(cid:4) (cid:6) (cid:5)2x,3y(cid:4) (cid:4) GF(cid:5)x,y(cid:4) (cid:6) G(cid:5)2x,3y(cid:4) (cid:6) (cid:5)4x2,9y2(cid:4)andG(cid:5)x,y(cid:4) (cid:6) (cid:5)x2,y2(cid:4) (cid:4) FG(cid:5)x,y(cid:4)(cid:6)F(cid:5)x2,y2(cid:4)(cid:6)(cid:5)2x2,3y2(cid:4).ThusF andGareweaklyincreasingmappings. Example 4.4. Let X (cid:6) R2 be endowed with the lexicographical ordering, that is, (cid:5)x,y(cid:4) (cid:4) (cid:5)z,w(cid:4)⇔(cid:5)x<z(cid:4)or(cid:5)ifx(cid:6)z,theny ≤w(cid:4).LetF,G:X → Xbedefinedby (cid:2) (cid:3) (cid:2) (cid:12) (cid:13) (cid:12) (cid:13)(cid:3) F x,y (cid:6) max x,y ,min x,y , (cid:2) (cid:3) (cid:4) (cid:12) (cid:13) x(cid:7)y(cid:9) (cid:5)4.5(cid:4) G x,y (cid:6) max x,y , , 2 then (cid:2) (cid:3) (cid:2) (cid:12) (cid:13) (cid:12) (cid:13)(cid:3) F x,y (cid:6) max x,y ,min x,y (cid:2) (cid:3) (cid:4)GF x,y (cid:2) (cid:12) (cid:13) (cid:12) (cid:13)(cid:3) (cid:6)G max x,y ,min x,y (cid:17) (cid:12) (cid:13) (cid:12) (cid:13)(cid:18) (cid:12) (cid:12) (cid:13) (cid:12) (cid:13)(cid:13) max x,y (cid:7)min x,y (cid:6) max max x,y ,min x,y , 2 (cid:4) (cid:9) (cid:12) (cid:13) x(cid:7)y (cid:6) max x,y , , 2 FixedPointTheoryandApplications 9 (cid:4) (cid:9) (cid:2) (cid:3) (cid:12) (cid:13) x(cid:7)y G x,y (cid:6) max x,y , 2 (cid:2) (cid:3) (cid:4)FG x,y (cid:4) (cid:9) (cid:12) (cid:13) x(cid:7)y (cid:6)F max x,y , 2 (cid:4) (cid:5) (cid:8) (cid:5) (cid:8)(cid:9) (cid:12) (cid:13) x(cid:7)y (cid:12) (cid:13) x(cid:7)y (cid:6) max max x,y , ,min max x,y , 2 2 (cid:4) (cid:9) (cid:12) (cid:13) x(cid:7)y (cid:6) max x,y , . 2 (cid:5)4.6(cid:4) Thus F and G are weakly increasing mappings. Note that (cid:5)1,4(cid:4) (cid:4) (cid:5)2,3(cid:4) but F(cid:5)1,4(cid:4) (cid:6) (cid:5)4,1(cid:4)(cid:5)3,2(cid:4)(cid:6)F(cid:5)2,3(cid:4),thenF isnotnondecreasing.Similarly,Gisnotnondecreasing. Theorem4.5. Let(cid:5)X,(cid:4)(cid:4)beapartiallyorderedsetandsupposethatthereisametricdonXsuchthat (cid:5)X,d(cid:4)isacompletemetricspace.SupposeF,G : X → X aretwoweaklyincreasingmappingssuch thatforallcomparablex,y ∈X, (cid:2) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3)(cid:3) T d Fx,Gy ,d x,y ,d(cid:5)x,Fx(cid:4),d y,Gy ,d x,Gy ,d y,Fx ≤0, (cid:5)4.7(cid:4) whereT ∈T(cid:11).Also F is continuous (cid:5)4.8(cid:4) or G is continuous (cid:5)4.9(cid:4) or if {x }⊂X is a nondecreasing sequence with x −→x in X, n n (cid:5)4.10(cid:4) then x (cid:4)x ∀n n hold,thenF andGhaveacommonfixedpoint. Remark4.6. Notethat,inthistheoremweremovethecondition“thereexistsanx ∈ X with 0 x (cid:4)F(cid:5)x (cid:4)”ofTheorem3.2.AgainwecanconsidertheresultofRemark3.7forthistheorem. 0 0 ProofofTheorem4.5. FirstofallweshowthatifF orGhasafixedpoint,thenitisacommon fixed point of F and G. Indeed, let z be a fixed point of F. Now assume d(cid:5)z,Gz(cid:4) > 0. If we usetheinequality(cid:5)4.7(cid:4),forx(cid:6)y (cid:6)z,wehave T(cid:5)d(cid:5)z,Gz(cid:4),0,0,d(cid:5)z,Gz(cid:4),d(cid:5)z,Gz(cid:4),0(cid:4)≤0, (cid:5)4.11(cid:4) 10 FixedPointTheoryandApplications whichisacontradictiontoT(cid:11).Thusd(cid:5)z,Gz(cid:4)(cid:6)0andsozisacommonfixedpointofFandG. 3 Similarly,ifzisafixedpointofG,thenitisalsoafixedpointofF.Nowletx beanarbitrary 0 point of X. If x0 (cid:6) Fx0, the proof is finished, so assume x0/(cid:6)Fx0. We can define a sequence {x }inXasfollows: n x2n(cid:7)1 (cid:6)Fx2n, x2n(cid:7)2 (cid:6)Gx2n(cid:7)1 for n∈{0,1,...}. (cid:5)4.12(cid:4) Without loss of generality, we can suppose that the successive terms of {x } are different. n Otherwise,weareagainfinished.NotethatsinceF andGareweaklyincreasing,wehave x (cid:6)Fx (cid:4)GFx (cid:6)Gx (cid:6)x , 1 0 0 1 2 (cid:5)4.13(cid:4) x (cid:6)Gx (cid:4)FGx (cid:6)Fx (cid:6)x 2 1 1 2 3 andcontinuingthisprocess,wehave x1 (cid:4)x2 (cid:4)···(cid:4)xn (cid:4)xn(cid:7)1 (cid:4)··· . (cid:5)4.14(cid:4) Nowsincex2n−1andx2narecomparablethen,wecanusetheinequality(cid:5)4.7(cid:4)forthesepoints thenwehave T(cid:5)d(cid:5)Fx2n,Gx2n−1(cid:4),d(cid:5)x2n,x2n−1(cid:4),d(cid:5)x2n,Fx2n(cid:4),d(cid:5)x2n−1,Gx2n−1(cid:4), (cid:5)4.15(cid:4) d(cid:5)x2n,Gx2n−1(cid:4),d(cid:5)x2n−1,Fx2n(cid:4)(cid:4)≤0 andso T(cid:5)d(cid:5)x2n(cid:7)1,x2n(cid:4),d(cid:5)x2n,x2n−1(cid:4),d(cid:5)x2n,x2n(cid:7)1(cid:4),d(cid:5)x2n−1,x2n(cid:4),0,d(cid:5)x2n−1,x2n(cid:7)1(cid:4)(cid:4)≤0. (cid:5)4.16(cid:4) NowusingT ,wehave 1 T(cid:5)d(cid:5)x2n(cid:7)1,x2n(cid:4),d(cid:5)x2n,x2n−1(cid:4),d(cid:5)x2n,x2n(cid:7)1(cid:4),d(cid:5)x2n−1,x2n(cid:4),0,d(cid:5)x2n−1,x2n(cid:4)(cid:7)d(cid:5)x2n,x2n(cid:7)1(cid:4)(cid:4)≤0, (cid:5)4.17(cid:4) andformT(cid:11) thereexistsarightcontinuousfunctionf :R(cid:7) → R(cid:7),f(cid:5)0(cid:4)(cid:6)0,f(cid:5)t(cid:4)<t,fort>0, 2 wehaveforalln∈{1,2,...} d(cid:5)x2n(cid:7)1,x2n(cid:4)≤f(cid:5)d(cid:5)x2n,x2n−1(cid:4)(cid:4). (cid:5)4.18(cid:4) Similarly, since x2n and x2n(cid:7)1 are comparable, then we can use the inequality (cid:5)4.7(cid:4) for these pointsthenwehave T(cid:5)d(cid:5)Fx2n,Gx2n(cid:7)1(cid:4),d(cid:5)x2n,x2n(cid:7)1(cid:4),d(cid:5)x2n,Fx2n(cid:4),d(cid:5)x2n(cid:7)1,Gx2n(cid:7)1(cid:4), (cid:5)4.19(cid:4) d(cid:5)x2n,Gx2n(cid:7)1(cid:4),d(cid:5)x2n(cid:7)1,Fx2n(cid:4)(cid:4)≤0

Description:
Hindawi Publishing Corporation. Fixed Point Theory and Applications. Volume 2010, Article ID 621469, 17 pages doi:10.1155/2010/621469. Research Article.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.