ebook img

Higher topos theory PDF

619 Pages·2009·2.732 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Higher topos theory

Higher Topos Theory Jacob Lurie March 7, 2007 Introduction LetX beatopologicalspaceandGanabeliangroup. Therearemanydifferentdefinitionsforthecohomology group Hn(X;G); we will single out three of them for discussion here. First of all, we have the singular cohomologygroupsHn (X;G),whicharedefinedtobecohomologyofachaincomplexofG-valuedsingular sing cochains on X. An alternative is to regard Hn(•,G) as a representable functor on the homotopy category of topological spaces, so that Hn (X;G) can be identified with the set of homotopy classes of maps from X rep into an Eilenberg-MacLane space K(G,n). A third possibility is to use the sheaf cohomology Hn (X;G) sheaf of X with coefficients in the constant sheaf G on X. If X is a sufficiently nice space (for example, a CW complex), then these three definitions give the same result. In general, however, all three give different answers. The singular cohomology of X is constructed using continuous maps from simplices ∆k into X. If there are not many maps into X (for example if every path in X is constant), then we cannot expect Hn (X;G) to tell us very much about X. Similarly, the sing cohomology group Hn (X;G) is defined using maps from X into a simplicial complex, which (ultimately) rep relies on the existence of continuous real-valued functions on X. If X does not admit many real-valued functions, we should not expect Hn (X;G) to be a useful invariant. However, the sheaf cohomology of X rep seems to be a good invariant for arbitrary spaces: it has excellent formal properties and sometimes gives interestinginformation insituationstowhich theotherapproachesdo notapply(suchas the´etale topology of algebraic varieties). We will take the position that the sheaf cohomology of a space X is the correct answer in all cases. It is thennaturaltoaskforconditionsunderwhichtheotherdefinitionsofcohomologygivethesameanswer. We shouldexpectthistobetrueforsingularcohomologywhentherearemanycontinuousfunctionsinto X,and for Eilenberg-MacLane cohomology when there are many continuous functions out of X. It seems that the latter class of spaces is much larger than the former: it includes, for example, all paracompact spaces, and consequently for paracompact spaces one can show that the sheaf cohomology Hn (X;G) coincides with sheaf the Eilenberg-MacLane cohomology Hn (X;G). One of the main results of this paper is a generalization of rep the preceding statement to non-abelian cohomology, and to the case where the coefficient system G is not necessarily constant. Classically, the non-abelian cohomology H1(X;G) of X with coefficients in a possibly non-abelian group G can be understood as the set of isomorphism classes of G-torsors over X. When X is paracompact, such torsors can be classified by homotopy classes of maps from X into an Eilenberg-MacLane space K(G,1). Note that the group G and the space K(G,1) are essentially the same piece of data: G determines K(G,1) uptohomotopyequivalence,andconverselyGmayberecoveredasthefundamentalgroupofK(G,1). More canonically, specifying the group G is equivalent to specifying the space K(G,1) together with a base point; the space K(G,1) alone only determines G up to inner automorphisms. However, inner automorphisms of G act by the identity on H1(X;G), so that H1(X;G) really depends only on K(G,1). This suggests the proper coefficients for non-abelian cohomology are not groups, but “homotopy types” (which we regard as purely combinatorial entities, represented for example by simplicial complexes). We may define the non-abelian cohomology H (X;K) of X with coefficients in an arbitrary space K to be the collection rep of homotopy classes of maps from X into K. This leads to a good theory whenever X is paracompact. Moreover, we can learn a great deal by considering the case where K is not an Eilenberg-MacLane space. For example, if K = BU×Z is the classifying space for complex K-theory and X is a compact Hausdorff space,thenH (X;K)istheusualcomplexK-theoryofX,definedastheGrothendieckgroupofthemonoid rep of isomorphism classes of complex vector bundles on X. WhenX isnotparacompact,weareforcedtoseekabetterwayofdefiningH(X;K). Giventheapparent power and flexibility of sheaf-theoretic methods, it is natural to look for some generalization of sheaf coho- mology,usingascoefficients“sheavesofhomotopytypesonX.” Thisisanoldidea,laidoutbyGrothendieck in his vision of a theory of higher stacks. This vision has subsequently been realized in the work of various authors (most notably Brown, Joyal, and Jardine; see for example [28]), who employ various formalisms based on simplicial (pre)sheaves on X. The resulting theories are essentially equivalent, and we shall refer to them collectively as the Brown-Joyal-Jardine theory. According to the philosophy of this approach, if K 1 is a simplicial set, then the cohomology of X with coefficients in K is given by H(cid:98)(X;K)=π0(F(X)), where F is a fibrant replacement for the constant simplicial (pre)sheaf with value K on X. The process of “fibrant replacement” should be regarded as a kind of “sheafification”: the simplicial presheaf F is obtained from the constant (pre)sheaf by forcing it to satisfy a descent condition for arbitrary hypercoverings of open subsets of X. If K is an Eilenberg-MacLane space K(G,n), the Brown-Joyal-Jardine theory recovers the classical sheaf-cohomology group (or set, if n ≤ 1) Hn (X;G). It follows that if X is paracompact and K is an sheaf Eilenberg-MacLanespace,thenthereisanaturalisomorphismH(cid:98)(X;K)(cid:39)Hrep(X;K). However,itturnsout that H(cid:98)(X;K)(cid:54)=Hrep(X;K) in general, even when X is paracompact. In fact, one can give an example of a compactHausdorffspaceforwhichH(cid:98)(X;BU×Z)doesnotcoincidewiththecomplexK-theoryofX. Wewill proceedontheassumptionthattheclassicalK-groupK(X)isthe“correct”answerinthiscase,andgivean alternative to the Brown-Joyal-Jardine theory which computes this answer. Our alternative is distinguished fromtheBrown-Joyal-Jardinetheorybythefactthatwerequireour“sheavesofspaces”tosatisfyadescent condition only for ordinary coverings of a space X, rather than for arbitrary hypercoverings. Aside from this point we can proceed in the same way, setting H(X;K)=π (F(cid:48)(X)), where F(cid:48) is the (simplicial) sheaf 0 which is obtained by forcing the “constant presheaf with value K” to satisfy this weaker descent condition. In general, F(cid:48) will not satisfy descent for hypercoverings, and consequently it will not be equivalent to the simplicial presheaf F used in the definition of H(cid:98). The resulting theory has the following properties: (1) If X is paracompact, H(X;K) may be identified with the set of homotopy classes from X into K. (2) There is a canonical map θ :H(X;K)→H(cid:98)(X;K). (3) IfX isaparacompacttopologicalspaceoffinitecoveringdimension(oraNoetheriantopologicalspace of finite Krull dimension), then θ is an isomorphism. (4) If K has only finitely many nonvanishing homotopy groups, then θ is an isomorphism. In particular, taking K to be an Eilenberg-MacLane space K(G,n), then H(X;K(G,n)) is isomorphic to the sheaf cohomology group Hn (X;G). sheaf Our theory of higher stacks enjoys good formal properties which are not always shared by the Brown- Joyal-Jardine theory; we will summarize the situation in §6.5.4. However, these good properties come with a price attached. The essential difference between ∞-stacks (sheaves of spaces which are required to satisfy descent only for ordinary coverings) and ∞-hyperstacks (sheaves of spaces which are required to satisfy descent for arbitrary hypercoverings) is that the former can fail to satisfy the Whitehead theorem: one can have, for example, a pointed stack (E,η) for which π (E,η) is a trivial sheaf for all i ≥ 0, and yet E is not i “contractible” (for the definition of these homotopy sheaves, see §6.5.1). InordertomakeathoroughcomparisonofourtheoryofstacksonX andtheBrown-Joyal-Jardinetheory of hyperstacks on X, it seems desirable to fit both of them into some larger context. The proper framework is provided by the theory ∞-topoi. Roughly speaking, an ∞-topos is an ∞-category that “looks like” the ∞-category of ∞-stacks on a topological space, just as an ordinary topos is supposed to be a category that “looks like” the category of sheaves (of sets) on a topological space. For every topological space (or topos) X, the ∞-stacks on X constitute an ∞-topos, as do the ∞-hyperstacks on X. However, it is the former ∞-topos which enjoys a more universal position among ∞-topoi related to X. Theaimofthisbookistoconstructatheoryof∞-topoiwhichwillpermitustomakesenseoftheabove discussion,andtoillustratesomeconnectionsbetweenthistheoryandclassicaltopology. Theideasinvolved are fundamentally homotopy-theoretic in nature, and cannot be adequately described in the language of classical category theory. Consequently, most of this book is concerned with the construction of a suitable theory of higher categories. The language of higher category theory has many other applications, which we will discuss elsewhere ([34], [35]). 2 Summary Wewillbeginin§1withanintroductiontohighercategorytheory. Ourintentionisthat§1canbeusedasa short“user’sguide”tohighercategories. Consequently, manyproofsaredeferreduntillaterchapters, which contain a more detailed and technical account of ∞-category theory. Our hope is that a reader who does not wish to be burdened with technical details can proceed directly from §1 to the (far more interesting) material of §5 and beyond, referring back to §2 through §4 as needed. In order to work effectively with ∞-categories, it is important to have a flexible relative theory which allowsustodiscuss∞-categoriesfiberedoveragiven∞-categoryC. Wewillformalizethisideabyintroducing the notion of a Cartesian fibrations between simplicial sets. We will study the theory of Cartesian fibrations in §2 alongside several related notions, each of which play an important role in higher category theory. In§3,wewillstudythetheoryofCartesianfibrationsinmoredetail. Ourmainobjectiveistoprovethat giving a Cartesian fibration of ∞-categories C → D is equivalent to giving a (contravariant) functor from D into a suitable ∞-category of ∞-categories. The proof of this result uses the theory of marked simplicial sets, and is quite technical. In §4, we will finish laying the groundwork by analyzing in detail the theory of ∞-categorical limits and colimits. We will show that just as in classical category theory, the limit of a complicated diagram can be decomposed in terms of the limits of simpler diagrams. We will also introduce relative versions of colimit constructions, such as the formation of left Kan extensions. In some sense, the material of §1 through §4 of this book should be regarded as completely formal. All of our main results can be summarized as follows: there exists a reasonable theory of ∞-categories, and it behaves in more or less the same way as the theory of ordinary categories. Many of the ideas that we introducearestraightforwardgeneralizationsoftheirclassicalcounterparts,whichshouldbefamiliartomost mathematicians who have mastered the basics of category theory. In §5, we introduce ∞-categorical analogues of more sophisticated concepts from ordinary category theory: presheaves, Pro and Ind-categories, accessible and presentable categories, and localizations. The main theme is that most of the ∞-categories which appear “in nature” are large, but are determined by small subcategories. Taking careful advantage of this fact will allow us to deduce a number of pleasant results, such as our ∞-categorical version of the adjoint functor theorem. In§6wecometotheheartofthebook: thestudyof∞-topoi,whichcanberegardedasthe∞-categorical analogues of Grothendieck topoi. Our first main result is an analogue of Giraud’s theorem, which asserts the equivalence of “extrinsic” and “intrinsic” approaches to the subject. Roughly speaking, an ∞-topos is an ∞-category which “looks like” the ∞-category of spaces. We will show that this intuition is justified in the sense that it is possible to reconstruct a large portion of classical homotopy theory inside an arbitrary ∞-topos. In§7wewilldiscusstherelationshipbetweenourtheoryof∞-topoiandideasfromclassicaltopology. We show that, if X is a paracompact space, then the ∞-topos of “sheaves of spaces” on X can be interpreted in terms of the classical homotopy theory of spaces over X: this will allow us to obtain the comparison result mentioned in the introduction. The main theme is that various ideas from geometric topology (such as dimension theory and shape theory) can be reformulated using the language of ∞-topoi. We will also formulate and prove “nonabelian” generalizations of classical cohomological results, such as Grothendieck’s vanishingtheoremforthecohomologyofNoetheriantopologicalspaces,andtheproperbasechangetheorem. We have included an appendix, in which we summarize the ideas from classical category theory and the theoryofmodelcategorieswhichwewilluseinthebodyofthetext. Weadvisethereadertorefertoitonly as needed. Terminology A few comments on some of the terminology which appears in this book: • The word topos will always mean Grothendieck topos. 3 • We will refer to a category C as accessible or presentable if it is locally accessible or locally presentable in the terminology of [37]. • Unless otherwise specified, the term ∞-category will be used to indicate a higher category in which all n-morphisms are invertible for n>1. • We will study higher category theory in Joyal’s setting of quasicategories. However, we do not always followJoyal’sterminology. Inparticular,wewillusetheterm∞-categorytorefertowhatJoyalcallsa quasicategory (which are, in turn, the same as the weak Kan complex of Boardman and Vogt); we will use the terms inner fibration and inner anodyne map where Joyal uses mid-fibration and mid-anodyne map. Acknowledgements This book would never have come into existence without the advice and encouragement of many people. In particular, Iwould like tothank David Spivak, JamesParson, and MattEmerton, for many suggestionsand corrections which have improved the readability of this book; Andre Joyal, who was kind enough to share with me a preliminary version of his work on the theory of quasi-categories; Charles Rezk, for explaining to me a very conceptual reformulation of the axioms for ∞-topoi (which we will describe in §6.1.3); Bertrand To¨en and Gabriele Vezzosi, for many stimulating conversations about their work (which has considerable overlap with the material treated here); Mike Hopkins, for his advice and support throughout my time as a graduate student; Max Lieblich, for offering encouragement during early stages of this project, and Josh Nichols-Barrer, for sharing with me some of his ideas about the foundations of higher category theory. Finally, I would like to thank the American Institute of Mathematics for supporting me throughout the (seemingly endless) process of revising this book. 4 Contents 1 An Overview of Higher Category Theory 10 1.1 Foundations for Higher Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.1 Goals and Obstacles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.2 ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1.3 Equivalences of Topological Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.1.4 Simplicial Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.1.5 Comparing ∞-Categories with Simplicial Categories . . . . . . . . . . . . . . . . . . . 21 1.2 The Language of Higher Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2.1 The Opposite of an ∞-Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2.2 Mapping Spaces in Higher Category Theory . . . . . . . . . . . . . . . . . . . . . . . . 26 1.2.3 The Homotopy Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.2.4 Objects, Morphisms and Equivalences . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.2.5 ∞-Groupoids and Classical Homotopy Theory . . . . . . . . . . . . . . . . . . . . . . 32 1.2.6 Homotopy Commutativity versus Homotopy Coherence . . . . . . . . . . . . . . . . . 34 1.2.7 Functors between Higher Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.2.8 Joins of ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.2.9 Overcategories and Undercategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 1.2.10 Fully Faithful and Essentially Surjective Functors . . . . . . . . . . . . . . . . . . . . . 39 1.2.11 Subcategories of ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.2.12 Initial and Final Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1.2.13 Limits and Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 1.2.14 Presentations of ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.2.15 Set-Theoretic Technicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 1.2.16 The ∞-Category of Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.2.17 n-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.3 The Equivalence of Topological Categories with ∞-Categories . . . . . . . . . . . . . . . . . . 50 1.3.1 Composition Laws on ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 1.3.2 Twisted Geometric Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 1.3.3 A Comparison Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 1.3.4 The Joyal Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 2 Fibrations of Simplicial Sets 64 2.1 Left Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.1.1 Left Fibrations in Classical Category Theory . . . . . . . . . . . . . . . . . . . . . . . 66 2.1.2 Stability Properties of Left Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 2.1.3 A Characterization of Kan Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.1.4 The Covariant Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 2.2 Inner Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 2.2.1 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 2.2.2 Stability Properties of Inner Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.2.3 Minimal Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 2.2.4 A Characterization of n-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 2.3 Cartesian Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.3.1 Cartesian Morphisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2.3.2 Cartesian Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 2.3.3 Stability Properties of Cartesian Fibrations . . . . . . . . . . . . . . . . . . . . . . . . 98 2.3.4 Mapping Spaces and Cartesian Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . 101 2.3.5 Application: Invariance of Undercategories . . . . . . . . . . . . . . . . . . . . . . . . 104 2.3.6 Application: Categorical Fibrations over a Point . . . . . . . . . . . . . . . . . . . . . 105 2.3.7 Bifibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3 The ∞-Category of ∞-Categories 111 3.1 Marked Simplicial Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.1.1 Marked Anodyne Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 3.1.2 Stability Properties of Marked Anodyne Morphisms . . . . . . . . . . . . . . . . . . . 117 3.1.3 Marked Simplicial Sets as a Model Category . . . . . . . . . . . . . . . . . . . . . . . 119 3.1.4 Properties of the Marked Model Structure . . . . . . . . . . . . . . . . . . . . . . . . . 123 3.1.5 Comparison of Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.2 Straightening and Unstraightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.2.1 The Straightening Functor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 3.2.2 Cartesian Fibrations over a Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 3.2.3 Straightening over a Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 3.2.4 Straightening in the General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 3.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 3.3.1 Straightening and Unstraightening in the Unmarked Case . . . . . . . . . . . . . . . . 152 3.3.2 Structure Theory for Cartesian Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . 153 3.3.3 Universal Fibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 3.3.4 Limits of ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 3.3.5 Colimits of ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4 Limits and Colimits 167 4.1 Cofinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.1.1 Cofinal Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 4.1.2 Smoothness and Right Anodyne Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 4.1.3 Quillen’s Theorem A for ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 4.2 Techniques for Computing Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.2.1 Alternative Join and Slice Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . 181 4.2.2 Parametrized Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 4.2.3 Decomposition of Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 4.2.4 Homotopy Colimits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 4.2.5 Completion of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 4.3 Kan Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 4.3.1 Relative Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 4.3.2 Kan Extensions along Inclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 4.3.3 Kan Extensions along General Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 221 4.4 Examples of Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 4.4.1 Coproducts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 4.4.2 Pushouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 4.4.3 Coequalizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 4.4.4 Tensoring with Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 6 4.4.5 Retracts and Idempotents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 5 Presentable and Accessible ∞-Categories 241 5.1 ∞-Categories of Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 5.1.1 Other Models for P(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 5.1.2 Colimits in ∞-Categories of Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 5.1.3 Yoneda’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 5.1.4 Idempotent Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 5.1.5 The Universal Property of P(S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 5.1.6 Complete Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 5.2 Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 5.2.1 Correspondences and Associated Functors . . . . . . . . . . . . . . . . . . . . . . . . . 258 5.2.2 Adjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 5.2.3 Preservation of Limits and Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 5.2.4 Examples of Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 5.2.5 Uniqueness of Adjoint Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 5.2.6 Localization Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 5.3 ∞-Categories of Inductive Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 5.3.1 Filtered ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 5.3.2 Right Exactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 5.3.3 Filtered Colimits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 5.3.4 Compact Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 5.3.5 Ind-Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 5.4 Accessible ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 5.4.1 Locally Small ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 5.4.2 Accessibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306 5.4.3 Accessibility and Idempotent Completeness . . . . . . . . . . . . . . . . . . . . . . . . 309 5.4.4 Accessibility of Functor ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 312 5.4.5 Accessibility of Undercategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316 5.4.6 Accessibility of Fiber Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322 5.4.7 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327 5.5 Presentable ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 5.5.1 Presentability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 5.5.2 Representable Functors and the Adjoint Functor Theorem . . . . . . . . . . . . . . . . 337 5.5.3 Limits and Colimits of Presentable ∞-Categories . . . . . . . . . . . . . . . . . . . . . 339 5.5.4 Local Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344 5.5.5 Truncated Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 5.5.6 Compactly Generated ∞-Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361 6 ∞-Topoi 365 6.1 ∞-Topoi: Definitions and Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367 6.1.1 Giraud’s Axioms in the ∞-Categorical Setting . . . . . . . . . . . . . . . . . . . . . . 368 6.1.2 Groupoid Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372 6.1.3 ∞-Topoi and Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378 6.1.4 Free Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 6.1.5 Giraud’s Theorem for ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 6.1.6 ∞-Topoi and Classifying Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 6.2 Constructions of ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 6.2.1 Left Exact Localizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400 6.2.2 Grothendieck Topologies and Sheaves in Higher Category Theory . . . . . . . . . . . . 402 6.2.3 Effective Epimorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407 7 6.2.4 Canonical Topologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 6.3 The ∞-Category of ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 6.3.1 Geometric Morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 6.3.2 Colimits of ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420 6.3.3 Filtered Limits of ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421 6.3.4 General Limits of ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 6.3.5 E´taleMorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429 6.3.6 Structure Theory for ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430 6.4 n-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 6.4.1 Characterizations of n-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434 6.4.2 0-Topoi and Locales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436 6.4.3 Giraud’s Axioms for n-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 6.4.4 n-Topoi and Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 6.4.5 Localic ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 6.5 Homotopy Theory in an ∞-Topos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 6.5.1 Homotopy Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 6.5.2 ∞-Connectedness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455 6.5.3 Hypercoverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 6.5.4 Descent versus Hyperdescent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466 7 Higher Topos Theory in Topology 471 7.1 Paracompact Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 7.1.1 Some Point-Set Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472 7.1.2 Spaces over X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473 7.1.3 The Sheaf Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475 7.1.4 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 7.1.5 Base Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481 7.1.6 Higher Topoi and Shape Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483 7.2 Dimension Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 7.2.1 Homotopy Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 7.2.2 Cohomological Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491 7.2.3 Covering Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 7.2.4 Heyting Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503 7.3 The Proper Base Change Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 7.3.1 Proper Maps of ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510 7.3.2 Closed Subtopoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517 7.3.3 Products of ∞-Topoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521 7.3.4 Sheaves on Locally Compact Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526 7.3.5 Sheaves on Coherent Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532 7.3.6 Cell-Like Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535 A Appendix 540 A.1 Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 A.1.1 Compactness and Presentability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541 A.1.2 Lifting Problems and the Small Object Argument . . . . . . . . . . . . . . . . . . . . 542 A.1.3 Monoidal Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553 A.1.4 Enriched Category Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555 A.2 Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558 A.2.1 The Model Category Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559 A.2.2 The Homotopy Category of a Model Category . . . . . . . . . . . . . . . . . . . . . . 560 A.2.3 Left Properness and Homotopy Pushout Squares . . . . . . . . . . . . . . . . . . . . . 561 8 A.2.4 A Lifting Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563 A.2.5 Quillen Adjunctions and Quillen Equivalences . . . . . . . . . . . . . . . . . . . . . . . 564 A.2.6 Combinatorial Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565 A.2.7 Simplicial Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 572 A.2.8 Simplicial Sets as a Model Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573 A.2.9 Simplicial Model Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574 A.3 Simplicial Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577 A.3.1 The Model Structure on Simplicial Categories . . . . . . . . . . . . . . . . . . . . . . . 578 A.3.2 Path Spaces in the Category of Simplicial Categories . . . . . . . . . . . . . . . . . . . 581 A.3.3 Model Structures on Diagram Categories . . . . . . . . . . . . . . . . . . . . . . . . . 582 A.3.4 Model Categories of Presheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593 A.3.5 Homotopy Limits in Simplicial Model Categories . . . . . . . . . . . . . . . . . . . . . 594 A.3.6 Straightening of Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596 A.3.7 Localization of Simplicial Model Categories . . . . . . . . . . . . . . . . . . . . . . . . 597 A.3.8 The Underlying ∞-Category of a Model Category . . . . . . . . . . . . . . . . . . . . 601 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.