RESEARCHARTICLE Higher risk of gastrointestinal parasite infection at lower elevation suggests possible constraints in the distributional niche of Alpine marmots StefaniaZanet1☯*,GiacomoMiglio1☯,CaterinaFerrari2,BrunoBassano2,EzioFerroglio1, AchazvonHardenberg2,3 1 DepartmentofVeterinarySciences,UniversityofTurin,Grugliasco(To),Italy,2 AlpineWildlifeResearch a1111111111 Centre,GranParadisoNationalPark,Valsavarenche(Aosta),Italy,3 ConservationBiologyResearchGroup, a1111111111 DepartmentofBiologicalSciences,UniversityofChester,Chester,UnitedKingdom a1111111111 a1111111111 ☯Theseauthorscontributedequallytothiswork. *[email protected] a1111111111 Abstract OPENACCESS AlpinemarmotsMarmotamarmotaoccupyanarrowaltitudinalnichewithinhighelevation alpineenvironments.Foranimalslivingatsuchhighelevationswhereresourcesarelimited, Citation:ZanetS,MiglioG,FerrariC,BassanoB, FerroglioE,vonHardenbergA(2017)Higherrisk parasitismrepresentsapotentialmajorcostinlifehistory.Usingoccupancymodels,we ofgastrointestinalparasiteinfectionatlower testedifmarmotslivingathigherelevationhaveareducedriskofbeinginfectedwithgastro- elevationsuggestspossibleconstraintsinthe intestinalhelminths,possiblycompensatingtheloweravailabilityofresources(shorterfeed- distributionalnicheofAlpinemarmots.PLoSONE ingseason,longersnowcoverandlowertemperature)thanmarmotsinhabitinglowereleva- 12(8):e0182477.https://doi.org/10.1371/journal. pone.0182477 tions.Detectionprobabilityofeggsandoncospheresoftwogastro-intestinalhelminthic parasites,AscarislaevisandCtenotaeniamarmotae,sampledinmarmotfeces,wasused Editor:HeikeLutermann,UniversityofPretoria, SOUTHAFRICA asaproxyofparasiteabundance.Aspredicted,themodelsshowedanegativerelationship betweenelevationandparasitedetectability(i.e.abundance)forbothspecies,whilethere Received:August18,2016 appearedtobeanegativeeffectofsolarradianceonlyforC.marmotae.Site-occupancy Accepted:July19,2017 modelsareusedhereforthefirsttimetomodeltheconstrainsofgastrointestinalparasitism Published:August1,2017 onawildspeciesandtherelationshipexistingbetweenendoparasitesandenvironmental Copyright:©2017Zanetetal.Thisisanopen factorsinapopulationoffree-livinganimals.Theresultsofthisstudysuggestthefutureuse accessarticledistributedunderthetermsofthe ofsite-occupancymodelsasaviabletooltoaccountforparasiteimperfectdetectionineco- CreativeCommonsAttributionLicense,which parasitologicalstudies,andgiveusefulinsightstofurtherinvestigatethehypothesisofthe permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal contributionofparasiteinfectioninconstrainingthealtitudinalnicheofAlpinemarmots. authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaper. Funding:TheprojectwasfundedbyEnteParco NazionaleGranParadiso,aspartofthe"Marmot Introduction Project".Thefunderhadnoroleinstudydesign, datacollectionandanalysis,decisiontopublish,or Parasiteinfectionsarecostlytotheirhosts:thedevelopmentandmaintenanceofantiparasitic preparationofthemanuscript. defensescompetesforresourceswithotherlife-historyfunctions,suchasreproduction, growth,anddevelopmentofsecondarysexualtraits[1,2,3,4].Highectoparasiteloadsinyel- Competinginterests:Theauthorshavedeclared thatnocompetinginterestsexist. low-belliedmarmotsMarmotaflaviventerwererelatedtoslowergrowth,loweroverwinter PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 1/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots survival,andreducedreproduction,suggestingthatectoparasitesareadirectfitnesscostfor marmots[5]andcanleadtoindirectdensity-mediateddemographicscosts[6].Naturalselec- tionshouldthereforehavefavoredtheevolutionofbehavioralandlifehistorystrategieswhich minimizetheriskofinfection.Forexample,ithasbeenshownthatAlpineibex(Capraibex) activelyavoidsforagingnearfeces,possiblyasanantiparasiticstrategy[7],andYellowbaboons (Papiocynocephalus)alternatesleepinggroveseveryfewnightstoavoidtheaccumulationof infectiveparasiteovaandlarvae[8].Theorypredictsthatthecostofmaintainingthesestrate- giesistradedoffbythecostofcontrollingparasiteinfection[2,9].Whiletherearemanystud- iesandexamplesoftradeoffsbetweenbehavioralandlifehistorytraitsandparasiteresistance inwildpopulations[9,10,11],onlyfewstudieshaveinvestigatedthepotentialrolesucha tradeoffcouldhaveinconstrainingthedistributionalnicheofwildlifepopulationstoareasin whichthecostoftheriskofparasiteinfectionisbelowthecostofmaintainingantiparasitic strategies[12,13,14]. Wildlifepopulationsoccupyingnarrowaltitudinalnichesinhighelevationenvironments, suchasAlpinemarmots(Marmotamarmota),arepotentiallyagoodtargetspeciestoinvesti- gatethishypothesis.Indeed,theconstraintsofashorterfeedingseason,longersnowcoverand lowertemperaturessufferedbymarmotsathigherelevations,maybecompensatedbylower parasiteloadsinsituationsofcomparablepredationpressureandpopulationdensity.Alpine marmotsareground-dwellingsciuridsadaptedtoliveathighelevation,wheretheyinhabit meadowsandpasturesbetween1,700and2,800ma.s.l.[15].Habitatpreferredbymarmots arecharacterizedbycoldandhighlyseasonalclimate,butotherfactorshavebeenshownto stronglyinfluencethepresenceofmarmotsandparticularlytheavailabilityandqualityoffood resourcesandthepermanenceofsnowcover[16,17]. Alpinemarmotsareterritorial[18]andliveinfamilygroups[19]whichincludearesident pair,youngoftheyearandsubordinates(youngofpreviousyearswithdelayeddispersal)[20, 21].Alpinemarmotscopewithlongwinterseasonwithstressfulambienttemperaturesand withthelackoffoodresources,throughhibernation[22]makingthisthepivotalpointoftheir annualcycle[23,24,25].Duringthesixmonthsofhibernation,Alpinemarmotsrelyexclu- sivelyonbodyfatreservestofuelalltheirenergeticdemandsandactivesummermonthsare thusofparamountimportancetoaccumulatethenecessaryresourcestooverwinter[22].Dur- inghibernation,themassofthegastrointestinaltractisselectivelyreducedtodecreaseenergy demands[26].Theparasiticloadofadultgastrointestinalhelminthsislargelyreducedthrough aprocessknownas“self-cure”causedbymucosalatrophyandlumenobliteration[27].Cteno- taeniamarmotaeandAscarislaevistogetherwithCitellinaalpinaandCoccidiaofthegenus Eimeria,typicallyparasitizeAlpinemarmotswithhighprevalencesandabundances[24,28, 29].ThehighadaptationofAlpinemarmotstotheirAlpineenvironment,correspondstoan extremespecializationoftheirparasiteswhichadaptedtothehostpeculiarlife-cycleanddevel- opedspecificyetdifferentoverwinteringstrategies[27]:fromco-hibernation(C.alpina)[30], toexploitationofOribatidmitesasintermediatehosts(C.marmotae)[31],topassiveresis- tanceintheexternalenvironmentwithlarvatedeggs(A.laevis)[32,33].Eggsand,oncospheres ofthesegastrointestinalparasitesareexcretedinthefecesoftheirhosts[24]andthereforethe analysisoffecalsamplescollectedfrommarmotfamiliesalonganelevationalrangecould potentiallybeusedtocalculatetheprobabilityofinfectionatdifferentelevations.Theabsence ofparasiteeggsoroncospheresinafecalsampleishowevernotavaliddiagnosticindicatorfor theabsenceofparasiticinfection,asitiswellknownthatparasitedetectioninfecalsamples suffersahighrateoffalsenegativesduetotheirinconstantshedding[34].Thisproblemiscon- ceptuallysimilartotheproblemencounteredbyecologistswhenestimatingtheprobabilityof asitebeingoccupiedbyaspeciesfrompresence-absencedata[35].Thiskindofdatacouldbe modeledwithaclassiclogisticregression,includingvariablessuchaselevationaspredictors. PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 2/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots However,theresultingprobabilityestimaterepresentsamixofbothoccupancy(ψ)anddetec- tionprobability(theprobabilitypthataspeciesisdetectedwhenasiteisoccupied),providing potentiallybiasedandmisleadingresults[35,36].Site-occupancymodels[37]havebeenpro- posedasaformalsolutiontothisproblem.Throughasamplingprotocolthatusesmultiple, independentvisitstoMsamplingsites,site-occupancymodelseffectivelydisentangleandpro- videseparateestimatesofψandp.Theresponsetoeachvisit,isabinaryvalueY (detection ij Y=1,ornon-detectionY=0)duringj=1,....,ivisitstotheithsitewithinthesameseason [37,38].Byassumingthattheprobabilityofdetectingaspecieswhenitispresentatagiven siteismostlyinfluencedbylocalabundanceofthespeciesitself,detectionprobabilityp becomesanindirectestimatorofabundance[39].Similarly,wecanassumethattheprobability ofdetectionofdigestiveparasitesstagesfromfeces,increaseswiththeactualabundanceof theseparasites[40] HereweinvestigatethehypothesisthatAlpinemarmotssufferahigherriskofbeing infectedbythegastrointestinalhelminthsC.marmotaeandA.laevisatthelowerboundaryof theirelevationalrange,applying,forthefirsttimeintheeco-parasitologicalcontext,siteoccu- pancymodels[37]tothedetection/non-detectionofeggsandoncospheresrecordedinfecal samplesrepeatedlycollectedoveroneactiveseason(April–September2012)from22Alpine marmotterritoriesalongthewholeelevationalrangeofthespeciesintheGranParadiso NationalPark(NorthwesternItalianAlps). Materialandmethods CollectionofAlpinemarmotfecalsamples ThestudyareawaslocatedinValsavarenche,withintheGranParadisoNationalPark,North- westernItalianAlps(45˚34’N-7˚11’E)spanningtheentireelevationalrangeofAlpinemarmots [41],fromapprox.1700to2800ma.s.l.(Tab.1).Atotalof22siteslocatedwithinthehome rangeof22marmotfamiliespreviouslyidentified[42]weresampledonceevery15days(±3 days)frommid-ApriltotheendofSeptember2012.Thesamplingstartedassoonasmarmots emergedfromhibernationandendedwhentheanimalsburrowedinautumn;inourstudy areaemergencefromhibernationstartsaroundmid-Marchatlowelevation(1700–2000ma.s. l.)uptotheendofAprilathigherelevation(2000ma.s.l.andabove),accordingtodifferences intemperatureandexposure(C.Ferrari,pers.obs.).Insites6,7and8samplinghadtobeinter- ruptedearlier(mid-July2012)becausetheunexpectedpresenceoftallgrassandofhighdensi- tiesofcoprophagousbeetleswhichpreventedthedetectionofviablefecalsamples.The samplingcoveredanoverallperiodof180days.Onlyfreshfecalsampleswerecollected:by directobservationofdefecatingmarmotsorfromlatrines[19],whichwereavailableandregu- larlyusedbyallstudiedfamilies.EthicalapprovalfortheAlpineMarmotResearchProjectwas obtainedbytheGranParadisoNationalParkAgencyfromtheItalianNationalInstitutefor EnvironmentalProtectionandResearch(ISPRA).Wecollectedonlyfecesofadultsandyear- lingsandsystematicallyexcludedthosesamplesthatforshapeanddimensioncouldbeattrib- utedtopups(<1yearofage).Atotalof605fecalsampleswerecollectedforanalysis.Allfecal specimenswereplacedintopolythenebagsandkeptat+4˚Cuntilanalysisforamaximum periodof5days. Coprologicalanalysis EachspecimenwasexaminedtodeterminethepresenceofparasiteeggsbytheModified McMasterMethod[43]usingzincsulfate(ZnSO (cid:1)7H2O330g,H Obroughtto1000ml,with 4 2 adensityof1.200)asfloatationsolution.Fecalsampleswerediluted1:15intheflotationsolu- tion(2goffecesin28mlofzincsulfate—ZnSO ).PresenceofA.laevisandC.marmotae 4 PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 3/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots togetherwiththoseofanyotherparasitewererecorded.Parasiticformsweremicroscopically identifiedfollowingthemorphologicalcriteriaofshape,sizeandcolorasspecifiedbyBassano etal.[24],CallaitandGauthier[27]andBabero[33].Coprologicalprevalence(P)wascalcu- latedasnumberofsamplesinwhichatleastoneparasiteegg/onchospherewasdetected,on thetotalnumberofsamplescollectedpertimeperiod.TheConfidenceIntervals(CI)foreach coprologicalprevalencevaluewerecalculatedwitha95%confidencelevelusingthesoftware Epinfo7[44]. Site-occupancymodels Datawascollectedtobesuitableforasite-occupancymodel[37]toestimatetheprobabilityof presenceateachsamplingsite(ψ=occupancy)andrelativeabundance(p=detectionproba- bility)oflifestagesofthetwoselectedparasitesC.marmotaeandA.laevisinthefecescollected withintheterritoriesofthe22familygroupsofAlpinemarmotsconsideredinthisstudy.Each territorywasdirectlygeoreferenced(attheentranceofthemainborrow)usingaGPSreceiver (meandistancebetweenthesampledburrowsd=2343m).Samplingsiteswerecharacterized bytwosite-specificcovariates,namelyelevation(metera.s.l.)andmeanyearlysolarradiance (kW/h/year)inaGeographicInformationSystem(GIS)environmentusingthesoftwareQGIS 2.8.0[45](Table1).Progressivedateofsampling(Juliandate)wastheonlysampling-specific Table1. Numberofsamplesandsite-specificcovariatesateachsamplingsite. Site Numberofsamples Elevation MeanannualSolarradiance(kW/h) (ma.s.l.) 1 2 1748 1843 2 20 1760 1786 3 37 1675 1548 4 25 1683 1530 5 44 1682 1714 6 17 1981 1921 7 7 2004 1778 8 23 2027 1892 9 32 2169 1671 10 46 2180 1704 11 21 2210 1312 12 19 2235 1593 13 42 2301 1809 14 37 2342 1890 15 30 2345 1832 16 34 2551 2003 17 33 2541 2187 18 38 2583 1863 19 42 2831 1588 20 13 2670 1935 21 15 2737 1711 22 10 2640 1291 Elevation(metersa.s.l.)andmeanannualsolarradiance(kW/h)wereconsideredintheoccupancymodelas sitespecificcovariates.Bothparameterswerecalculatedforeachofthe22marmotfamiliesincludedinthe study.Thevalueofeachcovariateisreportedinthetabletogetherwiththenumberofsamplescollected/ analyzedfromeachsamplingsite. https://doi.org/10.1371/journal.pone.0182477.t001 PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 4/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots covariatethatwasincludedinthemodel.Occupancyanddetectionprobabilityweremodeled usingbinomialdetection/non-detectiondataforbothC.marmotaeandA.laevisinthefeces collectedateachsite.Differentfecalsamplescollectedineachsitewheretreatedinthemodel asreplicatedsamples,inordertoestimatedetectionprobability.Occupancymodelswerecom- putedusingthepackage‘Unmarked’[38]inthestatisticalenvironmentRversion3.0.2[46]. TheAkaikeinformationcriterion(AIC)[47]wasusedformodelselectionconsideringmodels withinaΔAICof2asequivalent[48].Thesurveywasconceivedtomeetthespecificrequire- mentsofoccupancymodels:independencebetweenreplicatedsurveys,closepopulationand abundance-inducedheterogeneityofp[37]. Results Coprologicalanalysis Eighteensampleshadtobeexcludedfromthestudyduetoinsufficientquantityortounsuit- ableconservationstatus(totalnumberofviablespecimensn=587).Oncospheresand/orpro- glottidsofC.marmotaeweredetectedin274/587specimens(P=46.68%,95%CI=42.68– 50.72%)fromallfamiliesandallstudysites.C.marmotaewasfirstdetectedattheendofMay (May22nd),infivefecalspecimensfromthesamplingsiteslocatedatthelowestelevation(sites 2,3and5).ThehighestcoprologicalprevalencewasrecordedinJuly,reachingP=61.90% (95%CI=53.19%-69.91%)(Table2)butoncospheresweredetecteduntiltheendofthesam- plingperiod(September27th)withintheentireelevationalrange(sitesfrom1to22). A.laeviswasfirstdetectedinmid-June(June13th)fromtwofamiliesofthelowereleva- tionalzone(sites1and2).Theoverallcoprologicalprevalenceacrosstheentireactiveseason andacrossallsamplingsiteswasP=37.65%(95%CI=33.82%-41.64%).Monthlycoprological prevalenceincreased,astheseasonproceeded,from10.09%(CI95%5.73%-17.17%)inJune, to79.34%(CI95%71.28%-85.60%)inSeptember(Table2).A.laeviswasdetectedwithinall families,fromallsamplingsitesexcludingthosewherethesamplinghadtobeinterruptedin mid-July(sites6,7and8)andfromwherealowernumberofsampleswascollected(sites1 and22). TheonlyotherparasitespeciesdetectedwereCoccidiaofthegenusEimeria. Table2. CopromicroscopicanalysisforA.laevisandC.marmotae. C.marmotae April May June July August September Total absent 11 100 49 48 50 55 313 present 0 5 60 78 65 66 274 Total 11 105 109 126 115 121 587 CoprologicalPrevalence 0.00 0.048 0.551 0.619 0.565 0.546 0.467 CI95% 0.00–0.269 0.021–0.107 0.457–0.641 0.532–0.699 0.474–0.652 0.457–0.632 0.427–0.507 A.laevis absent 11 105 98 90 37 25 366 present 0 0 11 36 78 96 221 Total 11 105 109 126 115 121 587 CoprologicalPrevalence 0.000 0.000 0.101 0.286 0.678 0.793 0.377 CI95% 0.00–0.259 0.00–0.035 0.057–0.172 0.214–0.37 0.588–0.757 0.713–0.856 0.338–0.416 ThenumberofsamplesrespectivelypositiveandnegativeforC.marmotaeandA.laevisarereportedforeachmonthofsampling(columns“April”to “September”)andfortheentirestudyperiod(column“Total”)togetherwithmonthlyandtotalcoprologicalprevalencevaluesandconfidenceintervals (CI95%). https://doi.org/10.1371/journal.pone.0182477.t002 PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 5/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots Occupancymodels C.marmotaewaspresentinallsamplingsites(ψ=1).Site-specificandsampling-specific covariateswereaddedtotheconstantmodelψ(.)p(.)andcombinedindifferentmodelswhose performanceswererankedbyAICvalues.Thebestperformingmodel(AIC=739.17;Table3) includesaconstantoccupancyandlinearadditiveeffectsofsolarradiance,elevationandsam- plingdateondetectionprobability[Modelψ(.)p(Elev+Date+Rad)](Table4).Inthefinal modelbothElevation(Fig1A)andsolarradiance(Fig1B)arenegativelyrelatedtop,while samplingDateshowsapositiverelationshipwithdetectionprobability(Fig1C). LikeC.marmotae,A.laevispresentedanoccupancyof100%(ψ=1).Siteandsampling-spe- cificcovariates(solarradiance,elevation,andsamplingdate)wereusedtomodelhowparasite detectability(p),usedasaproxyofabundance,variesacrosstimeandspace.Thebestperform- ingmodel(AIC=471.35)(Table3)includeselevationandsamplingdate[ψ(.)p(Elev+Date)] (Table4).Elevationisnegativelyrelatedtodetectionprobability(Fig2A)whileJuliandatehas apositiverelationshipwithdetectionprobability(Fig2B). Discussion LivingathighelevationshassubstantialcostsforAlpinemarmots:ashorterfeedingseason influencesover-wintersurvivalandlongersnowcoverinspringaffectsthereproductivesuc- cessoffemalemarmotsbylimitingfoodresourcesatthebeginningoftheactiveseason[18, 49,50].Eachfamilymusthavewithinitshome-rangeadequatefoodresourcesandhibernacula [19]whichbotharelimitingfactorsformarmot’sexpansion[51].Elevation,slope,solarexpo- sure,aswellasvegetationtypeandavailabilityperiod,typeofsoilandsnowcoverpermanence influence,todifferentextents,Alpinemarmot’shabitatpreferences[23,51].Marmotsatlower elevationsaresubjectedtohigherambienttemperatures,whichcanrepresentamajorcauseof stress[52].Ontheopposite,highaltitudehabitatsoffercoldertemperaturesbutalsoashorter vegetativeperiodduetolongersnowcoverattheendofthewinter.Withinthiscomplex mosaicofinfluencingfactors,weinvestigatedthepotentialroleofparasitisminconstraining thealtitudinalnicheofAlpinemarmots.Wehypothesizedthatlessfavorableenvironmental conditionslikethosethatmarmotsfacewhenlivingathigherelevations(withintheiraltitudi- nalrangeofpresence),mightbepartiallycompensatedbyalowerriskofinfectionwithgastro- intestinalmacro-parasites.Byusingsite-occupancymodels[37]wewereabletoassessthe probabilityofdetectionp(asapredictorofabundance[39])ofC.marmotaeoncospheresand A.laeviseggsduringtheentireperiodofactivityinrelationtoelevationandsolarradiancein Table3. AIC-basedmodelselection. C.marmotae AIC AICwt cumltvWt A.laevis AIC AICwt cumultvWt ψ(.)p(Elev+Date+Rad) 739.17 8.5e-01 0.85 ψ(.)p(Elev+Date) 471.35 9.1e-01 0.91 ψ(.)p(Elev+Date) 742.56 1.5e-01 1.00 ψ(.)p(Elev+Date+Rad) 476.08 8.6e-02 1.00 ψ(.)p(Date+Rad) 757.89 7.3e-05 1.00 ψ(.)p(Date) 485.61 7.3e-04 1.00 ψ(.)p(Date) 761.10 1.5e-05 1.00 ψ(.)p(Date+Rad) 485.66 7.1e-04 1.00 ψ(.)p(Rad) 797.37 1.9e-13 1.00 ψ(.)p(.) 727.38 2.3e-56 1.00 ψ(.)p(.) 815.16 2.7e-17 1.00 ψ(.)p(Rad) 737.04 1.8e-58 1.00 ψ(.)p(Elev) 821.02 1.4e-18 1.00 ψ(.)p(Alt) 737.97 1.2e-58 1.00 ψ(.)p(Elev+Rad) 847.61 2.4e-24 1.00 ψ(.)p(Elev+Rad) 739.51 5.4e-59 1.00 Foreachmodel(nullmodelormodelswithcovariatesElevation(Elev),SolarRadiance(Rad),JulianDate(Date))theAICvalue,AICweight(AICwt),and cumulativeAICweight(cumltvWt)arereported. https://doi.org/10.1371/journal.pone.0182477.t003 PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 6/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots Table4. DetailsofestimatesofdetectionprobabilityofC.marmotaeandA.laevis. C.marmotae Estimate(β) SE z P-value (Intercept) 1.251 0.458 2.733 0.006 Elev -0.001 0.000280 -3.852 0.0001 Date 0.015 0.002 7.586 <0.0001 Rad -0.0004 0.0005 -0.804 0.422 A.laevis Estimate(β) SE z P-value (Intercept) -2.465 0.771 -3.20 0.001 Elev -0.002 0.0002 -5.28 <0.0001 Date 0.046 0.004 13.12 <0.0001 Estimatedslopes,standarderror(SE),zandp-valuesforeachvariable(Elevation—Elev,SolarRadiance—Rad,JulianDateofsampling—Date)includedin thebestperformingmodelsforC.marmotaeandA.laevisarereportedinthetable. https://doi.org/10.1371/journal.pone.0182477.t004 Alpinemarmots.ElevationwasapredictorofbothC.marmotaeandA.laevisabundance,and ourmodelssuggestthatmarmotfamilieslivingathigherelevationshavesignificantlylessC. marmotaeandA.laevisabundances,reflectingalowerriskofinfection.Agivenenvironment canbecomelessdisadvantageousforaspeciesifthesamedisadvantageousconditions,with thenecessaryspecies-specificconstraints,applyalsotoitshostedparasitesduringtheir Fig1.CovariatetrendinsiteoccupancymodelsforC.marmotae.Detectionprobability(solidline)andconfidenceintervals (dashedline)ofC.marmotaearepicturedasfunctionofsitespecificcovariates:(1a)elevation(1b)solarradianceandJulian date(1c).Therepresentedvaluesofpwereobtainedconsideringthemedianvalueofeachcovariatewithinthemodel[ψ(.)p (Elev+Rad+Date)]. https://doi.org/10.1371/journal.pone.0182477.g001 PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 7/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots Fig2.CovariatetrendinsiteoccupancymodelsforA.laevis.Detectionprobability(solidline)andconfidenceintervals (dashedline)ofA.laevisarepicturedasfunctionof(2a)ElevationandofJuliandate(2b).Therepresentedvaluesofpwere obtainedconsideringthemedianvalueofeachcovariatewithinthemodel[ψ(.)p(Elev+Date)]. https://doi.org/10.1371/journal.pone.0182477.g002 externalenvironmentalphase.Theeffectsofelevationonparasitesaremultiplebutmostly referringtothetemperaturegradient[53,54,55].Temperatureisinverselyrelatedtoelevation andelevationdifferencescancausesignificantchangesintemperatureovershortgeographic distances[56].EmbryonationrateofAscarideggsisdirectlyrelatedtotemperature,whileegg recoveryandsurvivalarefavoredbywinterclimaticconditions[57,58].Temperature-depen- dentdynamicsofAscaridscanexplainthelowrecordedabundanceofA.laevisathigheleva- tionsitesbutalsotheirenvironmentalpersistencedespiteharshwintertemperatures. TemperatureaffectsalsoembryonationofcysticercoidsinOribatidmitesasdevelopmental durationisinverselyrelatedtotemperature[59].Solarradiancewasnegativelyrelatedtothe detectionprobabilityofC.marmotae.TheeffectofsolarexposureontheabundanceofC.mar- motaeispossiblyindirectasitisknownthatdesiccationduetosolarexposureandhighevapo- rationratesaffectsnegativelyOribatidabundance[60].ForA.laevisinstead,solarradiancedid notappeartobeasignificantpredictorofabundancesuggestingresistanceofAscarideggsto solarultravioletradiationasalsodemonstratedundersimulatedsolardisinfectionconditions forparasitesofthesamegenus[61]. Forbothparasitespecies,detectionprobabilitywaspositivelyrelatedtothedateofsam- pling.InthespecificcaseofA.laevis,thisisreflectedintheestimateofcoprologicalprevalence whichreachesitsmaximumvalueinSeptember,towardstheendoftheactiveseason,asfound alsobyBassanoetal.[24]inthesamestudyarea.CoprologicalprevalenceofC.marmotae insteadpeakedinJulyreachingP=61.90%.WefirstdetectedA.laevisinJune,about70days aftertheemergencefromhibernation.Ourdatafallinbetweentheprepatentperiodof90days estimatedbyBabero[62]andofabout40daysasreportedbyCallait[63].Suchanextended andvariableprepatentperiodisconsistentwithtwooverwinteringstrategiespreviouslypro- posedforA.laevis:larvatedeggsasformofexternalresistanceand/orthepersistenceof migratinglarvaeinthetissuesofmarmotsduringhibernation[24,27].Thereisnodefiniteevi- denceofsuccessfuloverwinteringofmigratinglarvae,butstudiescarriedoutongoldenham- sters(Mesocricetusauratus)demonstratedthatloweredbodytemperatureinthehostinhibits Trichinella spiralisdevelopmentwithoutresultingintheeliminationofinfection[64,65].As forC.marmotaeoverwinteringmightbeeitherrealizedintheintermediatehostsintheform ofinfectivecysticercoidsorbypersistenceinthehibernatinganimal[24,27].Thescolexof Hymenolepiscitelli,forexample,hasbeenrecoveredfromhibernatingSpermophilustridecemli- neatus[66].Ourresults,asthosereportedbyBassanoetal.[24]andCallaitandGauthier[27] PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 8/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots suggestthattheemissionofoncospheresstartsinJune,aprepatentperiodthatfavorsthefirst hypothesis,namelythemaintenanceofC.marmotae,intheformofcysticercoidintheinter- mediatehosts. ThehighadaptationofAlpinemarmotstotheirenvironmentcorrespondstoanextreme specializationofitsparasitesC.marmotaeandA.laevis,whicharereportedinAlpinemarmots togetherwithC.alpina,withhighfrequencyandabundanceinstudiesbasedonnecropsy[63]. WedidnotdetectanyeggofC.alpinabutasconfirmedpreviously[24,27,63,67],copromi- croscopicanalysisishighlyunsuitableforthisparasiteduetoitsshortmatingperiodandto themarkeddisproportionbetweensexesduringtheactiveseason[27].Coccidiaofthegenus Eimeriaweretheonlyotherparasitesspeciesdetected. Conclusions Thepresentworkwasaimedtoinvestigatefromanecologicalpointofview,theprobabilityof infectionofAlpinemarmotsbytwoofitsmostcommonandabundantparasites(A.laevisand C.marmotae)alonganaltitudinalgradient.Parasitismcanaffecthostsbothatpopulationlevel withanindirectdemographiceffect[6]anddirectlybyinfluencingindividualanimalbehavior [68,69].Thehypothesisofatrade-offbetweenthecostoflivingathigherelevationsandthe lowerriskofparasiteinfectionwassupportedbysiteoccupancymodelsdevelopedonpresence dataofA.laevisandC.marmotaedetectedbycoprologicalexaminations.Theinsightsonthe possibletrade-offbetweenhabitat-suitabilityandlowerparasiteloadthatemergedfromthis studywillbeusefultofurtherinvestigatepatternsofhabitatselectionandtheeffectsofparasite infectiononAlpinemarmotfitnessandlife-history.Habitatpreferencesofalpinemarmots havebeenevaluatedinregardtoavarietyofenvironmentalfactorsthattodifferentextents influencemarmot’shabitatpreferences[70].Withinthecomplexmosaicofinfluencingfac- tors,ithasbeendemonstratedthatcertainelementsarepreponderantingivensituations,and othersunderdifferentcircumstances[18].Furtherresearchisneededtoassesshowparasitism canaffectindividualfitnessandthushaveademographiceffectonmarmotcommunitiesat lowerelevations. Theexistenceofathresholdvalueinparasiteloadwillalsoneedfurtherinvestigation.To ourknowledge,onlyfewstudieshaveinvestigated,undernaturalsettings,theconstraintsthat parasiteinfectionscanmakeonthedistributionalnicheofawildspecies[14],especiallyin birdsinthecaseofmalariaandvector-bornediseases[12,13].Site-occupancymodelshave beenusedpreviouslytoinvestigatetheprevalenceofecto-parasiticvectorsonhosts[71],the detectionofpathogensthroughthehistologicalexaminationoftissuesamples[72]andPCR diagnosisofmalariainbloodsamples[73].Inthisstudyinsteadweexploit,forthefirsttime, siteoccupancymodelstoformallyovercometheissueofimperfectdetectioninstudiesbased onthedetectionofparasitelifestagesinfecalsamples.Theinconstantsheddingandthus detection,ofparasiticdevelopmentalstages(eggs,oncospheres,orgravidproglottids)isan intrinsiclimitofcopromicroscopicdiagnosis[34].Wethusproposetheuseofsiteoccupancy modelsinanyeco-parasitologicalstudywherethedetectionprobabilityislowerthanone. Acknowledgments Theauthorswouldliketoacknowledgetheprecioushelpofallthegraduateandundergradu- atestudentswhosecontributionovertheyearsisfundamentalforthesustainabilityofthe “AlpinemarmotResearchProject”.WewishtothankalsothesupportoftheSurveillanceser- viceoftheGranParadisoNationalParkandinparticulartheParkwardensofOrvieilles,Mar- tinoNicolinoandEdiChenal. PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 9/13 LowerelevationsfavorendoparasiteinfectioninAlpinemarmots AuthorContributions Conceptualization:EzioFerroglio. Datacuration:StefaniaZanet,GiacomoMiglio. Formalanalysis:AchazvonHardenberg. Fundingacquisition:BrunoBassano,EzioFerroglio. Investigation:StefaniaZanet,GiacomoMiglio,CaterinaFerrari. Methodology:AchazvonHardenberg. Projectadministration:CaterinaFerrari,BrunoBassano,EzioFerroglio. Supervision:CaterinaFerrari,BrunoBassano. Writing–originaldraft:StefaniaZanet,AchazvonHardenberg. Writing–review&editing:StefaniaZanet,AchazvonHardenberg. References 1. HamiltonWD,ZukM.Heritabletruefitnessandbrightbirds:aroleforparasites?Science.1982; 218: 384–6.https://doi.org/10.1126/science.7123238PMID:7123238 2. SheldonBC,VerhulstS.Ecologicalimmunology:costlyparasitedefensesandtrade-offsinevolutionary ecology.TrendsEcolEvol.1996; 11(8):317–321.https://doi.org/10.1016/0169-5347(96)10039-2 PMID:21237861 3. NorrisK,EvansMR.Ecologicalimmunology:lifehistorytrade-offsandimmunedefenseinbirds.Behav Ecol.2000; 11(1):19–26.https://doi.org/10.1093/beheco/11.1.19 4. AshleyNT,WingfieldJC.Sicknessbehaviorinvertebrates:allostasis,life-historymodulation,andhor- monalregulation.In:NelsonRM,DemasG,editors.Eco-Immunology. OxfordUniv.Press, Oxford. 2012:45–91. 5. VanVurenD.Ectoparasites,Fitness,andSocialBehaviourofYellow-BelliedMarmots.Ethology.1996; 102(4):529–704. 6. CreelS,ChristiansonD.Relationshipsbetweendirectpredationandriskeffects.TrendsEcolEvol. 2008; 23(4):194–201.https://doi.org/10.1016/j.tree.2007.12.004PMID:18308423 7. BrambillaA,vonHardenbergA,KristoO,BassanoB,BoglianiG.Don’tspitinthesoup:faecalavoid- anceinforagingwildAlpineibex,Capraibex.AnimBehav.2013; 86(1):153–158.https://doi.org/10. 1016/j.anbehav.2013.05.006 8. HausfaterG,MeadeBJ.Alternationofsleepinggrovesbyyellowbaboons(Papiocynocephalus)asa strategyforparasiteavoidance.Primates.1982; 23(2):287–297.https://doi.org/10.1007/BF02381167 9. AuldSKJ,PenczykowskiRM,HousleyOchsJ,GrippiDC,HallSR,DuffyMA.Variationincostsofpara- siteresistanceamongnaturalhostpopulations.JEvolutionBiol.2013; 26:2479–2486.https://doi.org/ 10.1111/jeb.12243PMID:24118613 10. FolstadI,KarterAJ.Parasites,brightmales,andtheimmunocompetencehandicap.AmNat.1992; 39 (3):603–622. 11. SearsBF,SnyderPW,RohnJR.Hostlifehistoryandhost–parasitesyntopypredictbehaviouralresis- tanceandtoleranceofparasites.JAnimEcol.2015; 84(3):625–636.https://doi.org/10.1111/1365- 2656.12333PMID:25583069 12. VanRiperIIIC,vanRiperSG,LeeGoffM,LairdM.Theepizootiologyandecologicalsignificanceof malariainHawaiianlandbirds.EcolMonogr.1986; 56(4):327–344.https://doi.org/10.2307/1942550 13. AtkinsonCT,SamuelMD.AvianmalariaPlasmodiumrelictuminnativeHawaiianforestbirds:epizooti- ologyanddemographicimpactson‵apapaneHimationesanguinea.JAvianBiol.2010; 41:357–366. https://doi.org/10.1111/j.1600-048X.2009.04915.x 14. BozickBA,RealLA.Integratingparasitesandpathogensintothestudyofgeographicrangelimits.Q RevBiol.2015; 90(4):361–380.https://doi.org/10.1086/683698PMID:26714350 15. HerreroJ,ZimaJ,CoroiuI.Marmotamarmota.TheIUCNRedListofThreatenedSpecies2008:e. T12835A3388819.Available:http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T12835A3388819.en 16. ArmitageKB.Theevolution,ecologyandsystematicsofmarmots,OecologiaMontana.2000; 9:1–18. PLOSONE|https://doi.org/10.1371/journal.pone.0182477 August1,2017 10/13
Description: