ebook img

Higher-Order Scheme-Independent Calculations of Physical Quantities in the Conformal Phase of a Gauge Theory PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Higher-Order Scheme-Independent Calculations of Physical Quantities in the Conformal Phase of a Gauge Theory

Higher-Order Scheme-Independent Calculations of Physical Quantities in the Conformal Phase of a Gauge Theory Thomas A. Ryttova and Robert Shrockb (a) CP3-Origins and Danish Institute for Advanced Study University of Southern Denmark, Campusvej 55, Odense, Denmark and (b) C. N. Yang Institute for Theoretical Physics Stony Brook University, Stony Brook, NY 11794, USA WeconsideranasymptoticallyfreevectorialSU(Nc)gaugetheorywithNf masslessfermionsina representationR,havinganinfrared fixedpoint(IRFP)oftherenormalization group atαIR inthe conformal non-Abelian Coulomb phase. The cases with R equal to the fundamental, adjoint, and symmetricrank-2tensorrepresentationareconsidered. Wepresentscheme-independentcalculations 7 oftheanomalous dimension γψ¯ψ,IR toO(∆4f) and βI′R toO(∆5f)at thisIRFP,where ∆f is an Nf- 1 dependentexpansion parameter. Comparisons are made with conventional n-loop calculations and 0 latticemeasurements. Asatestoftheaccuracyofthe∆f expansion,wecalculateγψ¯ψ,IR toO(∆3f) 2 in N =1 SU(Nc) supersymmetric quantum chromodynamics and find complete agreement, to this order, with the exactly known expression. The ∆ expansion also avoids a problem in which an n f IRFPmay not bemanifest as an IR zero of a higher n-loop beta function. a J 1 A fundamental problem in quantum field theory con- series expansions of γ¯ and β′ are [8] 2 ψψ,IR IR cerns the properties at a conformal fixed point of the h] rsievneorcmurarleiznattiionnvegsrtoiguapt.ioAn csopnecceifirncsqtuheestipornopuenrdtieersionfteann- γψ¯ψ,IR = ∞ κj∆jf (2) -t asymptotically free (AF) non-Abelian Yang-Mills vecto- Xj=1 p rialgaugetheory(ind=4spacetimedimensions)witha and [9] e set of massless fermions at an IRFP of the renormaliza- h ∞ [ tainodncgornoufoprminatlhinevCaroiualnocmeb[1p,h2a].seH, werheewreeitcoenxshidibeirtsastchaele- βI′R = dj∆jf , (3) 1 ory of this type, with gauge group G = SU(N ) and N Xj=1 v c f masslessfermionsψ , 1≤j ≤N , inarepresentationR, 3 j f where d1 =0 for all G and R. For general G and R, the where R is the fundamental (F), adjoint (adj), or sym- 8 κ were calculated to order j = 3 in [8] and the d to j j 0 metric rank-2 tensor (S). The dependence of the gauge orderj =4in[9], andforG=SU(3)andR=F, κ4 was 6 coupling g = g(µ) on the Euclidean momentum scale computed in [10] and d5 in [9]. 0 µ is described by the beta function, β = dα/dt, where Here we report our calculations of these scheme- 1. α(µ) = g(µ)2/(4π) and dt =dlnµ. The IRFP occurs at independentexpansionsofγ¯ andβ′ tothehighest ψψ,IR IR 0 an IR zero of β at αIR. At this fixed point, an operator orders yet achieved, presenting κ4 and d5 for an asymp- 7 O for a physical quantity exhibits scaling behavior with totically free SU(N ) gauge theory with a conformal IR 1 a dimension DO = DO,free−γO, where DO,free is the fixed point, for R =c F, adj, S. We also report our cal- : v free-field dimension and γO is the anomalous dimension. culation of κ3 for supersymmetric quantum chromody- i Twoimportantquantitiesthatcharacterizetheproper- namics (SQCD). We believe that our new results are a X ar tγiψe¯ψs,aItRthaendIRβFI′PR.αIHReraer,eβγIψ′¯Rψ [i3s]eaqnudivβa′le≡ntdtβo/dtαhe,daennoomtead- sthuebosrtya.ntiOaluardrveasnucltesinhatvheetkhneowadlevdagnetaogfecoonffsocrhmeamlefieinld- lous dimension of Fa,µνFaµν, where Faµν is the (rescaled) dependence at each order in ∆f, in contrast to scheme- field-strength tensor [4]. As physical quantities, γψ¯ψ,IR dependent (SD) series expansions of γψ¯ψ,IR and βI′R in and β′ are scheme-independent (SI) [5]. However,con- powers of α [11]-[16] and they complement other ap- IR ventional series expansions of these quantities in powers proaches to understanding conformal and superconfor- of α, calculated to a finite order, do not maintain this mal field theory, such as the bootstrap [17] and lattice scheme-independence beyond the lowest orders. Clearly, simulations [18]. it is very valuable to calculate and analyze series expan- Theconventionalpower-seriesexpansionsofβ andγ¯ ψψ sionsforγ¯ andβ′ thatarescheme-independentat are ψψ,IR IR each order. Some early work was in [6, 7]. A natural ∞ α ℓ expansion variable is β =−2α b (4) ℓ 4π Xℓ=1 (cid:16) (cid:17) ∆ =N −N , (1) f u f and ∞ α ℓ wNhfearlel,owfoerdabgyivaesnymNpctaontidcRfr,eeNduomis.thSechuepmpee-rin(due)pliemnditentot γψ¯ψ =Xℓ=1cℓ(cid:16)4π(cid:17) , (5) 2 wherebℓ andcℓ aretheℓ-loopcoefficients;b1 [19],b2 [20], byanelectrictheorywithdivergentαIR. Hence,another and c1 =6Cf are scheme-independent, while the bℓ with important finding here is that the complete agreement ℓ ≥ 3 and the c with ℓ ≥ 2 are scheme-dependent, i.e. that we obtain in SQCD to O(∆3) between Eq. (2) and ℓ f they depend on the scheme used for regularization and the exact Eq. (6) holds for arbitrarily strong α . Even IR renormalization [5]. We denote the n-loop (nℓ) β and apart from the issue of scheme dependence in Eq. (5), γψ¯ψ as βnℓ and γψ¯ψ,nℓ and the IR zero of βnℓ as αnℓ. this agreement could not be achieved with the conven- The calculation of κj requires,as inputs, the values of tional expansion (5) of γψ¯ψ,IR in powers of α. the b for 1 ≤ ℓ ≤ j +1 and the c for 1 ≤ ℓ ≤ j. The ℓ ℓ The ∆ expansion also avoids a problem in which an calculation of d requires, as inputs, the values of the b f j ℓ IRFPmaynotbemanifestasaphysicalIRzeroofthen- for1≤ℓ≤j. Thus,importantly,κ doesnotreceiveany j loopbetafunctionforsomen. Indeed,althoughβ hasa corrections from b with ℓ > j+1 or c with ℓ > j, and nℓ ℓ ℓ physicalα inSQCDforn=2, 3loops[27],wehave similarly, d doesnotreceiveanycorrectionsfromanyb IR,nℓ j ℓ with ℓ>j. analyzedβ4ℓ (in the DR scheme), and we find that for a range of N in the NACP, it does not exhibit a physical The coefficients κ were calculated in [8] for an (AF f j vectorial) supersymmetric gauge theory (SGT) with αIR,4ℓ. This is analogous to the situation that we found gauge group G and N pairs of chiral superfields in the for αIR,5ℓ in the non-supersymmetric gauge theory [16]. f R and R¯ representation, for j = 1, 2. Complete agree- In both cases,the ∆f expansions (2) and(3) circumvent thisproblemofapossibleunphysicalα thatonemay mentwasfound,totheordercalculated,withtheexactly IR,nℓ encounterinusingtheconventionexpansions(4)and(5). known result in the conformal non-Abelian Coulomb phase (NACP) [21–23] We next present our results for κ4 and d5 for a (non- supersymmetric)SU(N )gaugetheory,makinguseofthe γ = 32CTfA∆f . (6) impressiverecentcompuctationofb5 in[28]. (Wehaveac- IR,SGT 1− 2Tf ∆ tuallycalculatedκ4 andd5 forgeneralGandR[29], but 3CA f only present results here for R = F, adj, S.) The two- loop beta function has an IR zero (IRZ) in the interval In this theory, N = 3C /(2T ), and the conformal u A f I : N <N <N , with upper and lower(ℓ) ends at NACP is the interval N <N <N , where N =N /2, IRZ ℓ f u ℓ f u ℓ u N =11N /(4T )andN =17C2/[2T (5C +3C )][24]. so that ∆f varies from 0 to a maximum of (∆f)max = u c f ℓ A f A f The non-Abelian Coulomb phase extends downward in 3C /(4T ) in the NACP [24]. Hence, γ increases A f IR,SGT I from N to a lower value denoted N [30]. Since monotonically from 0 to 1 as N decreases from N to IRZ u f,cr f u chiral symmetry is exact in the NACP, one can classify Nℓ, saturating the upper bound γψ¯ψ,IR,SGT < 1 from the bilinear fermion operators according to their flavor conformal invariance in this SGT [25]. transformation properties. These operators include the Asatestoftheaccuracyofthe∆ expansion,wehave f flavor-singlet ψ¯ψ and the flavor-adjoint ψ¯T ψ, where T now calculated κ3 for SQCD with R = F, using inputs a a from [26]. We find κ3 =1/(3Nc)3, in perfect agreement, is a generator of SU(Nf). These have the same anoma- to this order, with the exact result, Eq. (6). This agree- lous dimension [31], which we write simply as γψ¯ψ. For generalGandR,thecoefficientsb werecomputedupto ment explicitly illustrates the scheme independence of ℓ loop order ℓ=4 [32] (checked in [33]) and the c also up the κ , since our calculations in [8] and here used inputs ℓ j to loop order ℓ = 4 [34], in the widely used MS scheme computedintheDRscheme,while(6)wasderivedinthe [35]. These results were usedin [8] to calculate the κ to NSVZscheme[21]. Ournewresulthasafar-reachingim- j order j =3 and in [9] to calculate d to order j =4. For plication: itstronglysuggeststhatκ =[2T /(3C )]j for j all j, so that the expansion (2) for jthis supfersymAmetric Nc = 3 and R = F, b5 was computed in [36], and this gaugetheory,calculatedtoorderO(∆p), agreeswiththe wasusedtocalculateκ4 in[10]andd5 in[9]forthis case f (see also [16]). exact result to the given order for all p. Because of electric-magnetic duality [22], as Nf →Nℓ We first report our results for κ4 and d5 for R = F, intheNACP,thephysicsisdescribedbyamagneticthe- usingb5 from[28]. WedenotetheRiemannzetafunction orywithcouplingstrengthgoingtozero,orequivalently, as ζ = ∞ n−s. We obtain s n=1 P 4(N2−1) κ4,F = 34Nc4(25cNc2−11)7 (cid:20)(cid:16)263345440Nc12−673169750Nc10+256923326Nc8 − 290027700N6+557945201N4−208345544N2+6644352 c c c (cid:17) + 384(25Nc2−11) 4400Nc10−123201Nc8+480349Nc6−486126Nc4+84051Nc2+1089 ζ3 (cid:16) (cid:17) + 211200Nc2(25Nc2−11)2(Nc6+3Nc4−16Nc2+22)ζ5 (cid:21) (7) 3 and 25 d5,F = 36Nc3(25Nc2−11)7 (cid:20)Nc12(cid:16)−298194551−423300000ζ3+528000000ζ5(cid:17) + Nc10 414681770+1541114400ζ3−821040000ζ5 +Nc8 80227411−4170620256ζ3+2052652800ζ5 (cid:16) (cid:17) (cid:16) (cid:17) + Nc6 210598856+5101712352ζ3−4268183040ζ5 +Nc4 −442678324−2250221952ζ3+2744628480ζ5 (cid:16) (cid:17) (cid:16) (cid:17) + Nc2 129261880+304571520ζ3−534103680ζ5 +3716152+1022208ζ3(cid:21) , (8) (cid:16) (cid:17) wherethesimplefactorizationsofthedenominatorshave beenindicated. ForthisR=F case,wefindthatκ4 >0, as was also true of κj with 1 ≤ j ≤ 3 (indeed, κ1 and κ2 are manifestly positive for any G and R). We also find the same positivity results for R = adj and R = S. The property that for all of these representations R, κ >0for1≤j ≤4andforallN impliestwoimportant j c monotonicityresults. First,fortheseR,andwithafixed p in the interval 1≤p≤4, γψ¯ψ,IR,∆p is a monotonically f increasing function of ∆ for N ∈ I . Second, for f f IRZ these R, and with a fixed Nf ∈ IIRZ, γψ¯ψ,IR,∆p is a f monotonically increasing function of p in the range 1 ≤ p ≤ 4. In addition to the manifestly positive κ1 and κ2, a plausible conjecture is that, for these R, κj > 0 for all j ≥ 3. Note that the exact result (6) for the supersymmetric gauge theory shows that in that theory, κ >0 for all j and for any G and R. j FIG. 1: Plot of γψ¯ψ,IR,∆p for R = F, Nc = 2, and 1 ≤ f In Figs. 1 and 2 we plot γIR,∆pf for R=F, Nc =2, 3 p ≤ 4 as a function of Nf ∈ IIRZ. From bottom to top, the and 1 ≤ p ≤ 4. In Table I we list values of these γIR,∆pf curves(withcolorsonline)refertoγψ¯ψ,IR,∆f (red),γψ¯ψ,IR,∆2f [37]. These all satisfy the upper bound γIR < 2 from (green), γψ¯ψ,IR,∆3f (blue),and γψ¯ψ,IR,∆4f (black). conformal invariance [25]. Below, we will often omit the ψ¯ψ subscript, writing γψ¯ψ,IR ≡ γIR and γψ¯ψ,IR,∆p ≡ f γIR,∆p. f Nc =4, Nf =16, γIR,4ℓ =0.269, while γIR,∆4 =0.352. For this R = F case we first remark on the compar- f ison of γIR,∆4 with calculations of γIR,nℓ from analyses We next compare our new results with lattice mea- f surements, restricting to cases where the lattice stud- ofpowerseriesinα, whichwereperformedton=4loop ies are consistent with the theories being IR-conformal level in [11]-[14] using b and c in the MS scheme (with ℓ ℓ [18, 30]. For N = 3, we compared our calculations of studies of scheme dependence in [15]) and extended to c n = 5 loop level for N = 3 in [16]. We have noted that γIR,∆4 with lattice measurements for Nf = 12 in [10], c f β5ℓ does not have a physical αIR,5ℓ for Nf in the lower finding general consistency with the range of lattice re- part of the interval IIRZ [16]. Although we were able sults,althoughourγIR,∆4f andextrapolationtotheexact tosurmountthisproblemviaPad´eapproximantsin[16], γIR were higher than some of the lattice values. We also thesearestillscheme-dependent,whilethe∆f expansion found consistency for the cases Nf = 10 and Nf = 8 has the advantage of being scheme-independent. In gen- [10]. Here,wecomparewithlattice resultsfor γIR inthe eral, we find that for a given Nc and Nf, the value of case Nc =2, Nf =8. (It is not clear from lattice studies γIR,∆p that we calculate to highest order,namely p=4, if the SU(2), R = F, Nf = 6 theory has a conformal is somfewhat larger than γ calculated to its high- IRFPornot[18,30,38].) Followinglatticestudiesofthe IR,nℓ est order [10, 13]. For example, for Nc = 3, Nf = 12, SU(2), R=F, Nf =8 theory by severalgroups [18, 39], γIR,4ℓ = 0.253, γIR,5ℓ ≃ 0.255 (using a value of αIR,5ℓ arecentmeasurementisγIR =0.15±0.02≡0.15(2)[40]. fromaPad´eapproximant[10,16]), whileγIR,∆4f =0.338 OlatutricvearlueseuγltI.R,∆4f = 0.298 is somewhat higher than this and an extrapolation yields the estimate 0.400(5) for γIR = limp→∞γIR,∆p [10]. Similarly, for Nc = 2 and We proceedto discussd5 for R=F. InFig. 3 we plot Nf = 8, γIR,4ℓ = 0.2f04, while γIR,∆4 = 0.298; and for βI′R,∆p for R = F, Nc = 3, and 2 ≤ p ≤ 5. In Table II f f 4 ′ FIG. 2: Plot of γψ¯ψ,IR,∆pf for R = F, Nc = 3, and 1 ≤ FIG.3: PlotofβIR,∆pf forR=F,Nc =3,and2≤p≤4asa p ≤ 4 as a function of Nf ∈ IIRZ. From bottom to top, the functionofNf ∈IIRZ. Frombottomtotop,thecurves(with curves(withcolorsonline)refertoγψ¯ψ,IR,∆f (red),γψ¯ψ,IR,∆2f colors online) refer to βI′R,∆2f (red), βI′R,∆3f (green), βI′R,∆4f (green), γψ¯ψ,IR,∆3f (blue), and γψ¯ψ,IR,∆4f (black). (blue),βψ′¯ψ,IR,∆5 (black). f TABLEI:Valuesofthescheme-independentanomalousdimension TABLEII: Scheme-independentvaluesofβI′R,∆p with2≤p≤4 γIR,∆pf with1≤p≤4forR=F andNc=2, 3. fIoIrRRZ.=TFhe,Nnocta=ti2o,n3aea-snfumnecatinosnaso×f1N0f−nin.theresfpectiveintervals Nc Nf γIR,∆f γIR,∆2f γIR,∆3f γIR,∆4f Nc Nf βI′R,∆2 βI′R,∆3 βI′R,∆4 βI′R,∆5 2 6 0.337 0.520 0.596 0.698 f f f f 2 6 0.499 0.957 0.734 0.6515 2 7 0.270 0.387 0.426 0.467 2 7 0.320 0.554 0.463 0.436 2 8 0.202 0.268 0.285 0.298 2 8 0.180 0.279 0.250 0.243 2 9 0.135 0.164 0.169 0.172 2 9 0.0799 0.109 0.1035 0.103 2 10 0.0674 0.07475 0.07535 0.0755 2 10 0.0200 0.0236 0.0233 0.0233 3 9 0.374 0.587 0.687 0.804 3 9 0.467 0.882 0.7355 0.602 3 10 0.324 0.484 0.549 0.615 3 10 0.351 0.621 0.538 0.473 3 11 0.274 0.389 0.428 0.462 3 11 0.251 0.415 0.3725 0.344 3 12 0.224 0.301 0.323 0.338 3 12 0.168 0.258 0.239 0.228 3 13 0.174 0.221 0.231 0.237 3 13 0.102 0.144 0.137 0.134 3 14 0.125 0.148 0.152 0.153 3 14 0.0519 0.0673 0.0655 0.0649 3 15 0.0748 0.0833 0.0841 0.0843 3 15 0.0187 0.0220 0.0218 0.0217 3 16 0.0249 0.0259 0.0259 0.0259 3 16 2.08e-3 2.20e-3 2.20e-3 2.20e-3 we list values of βI′R,∆p for R = F, Nc = 2, 3 and 2 ≤ case were given for κp with 1 ≤ p ≤ 3 in [8] and for dp f p≤5. ForR=F andgeneralNc,d2 andd3 arepositive, with 1≤p≤4 in [9]. Here we find wc1a2hl,ciluwelaedt4igoaentndyβiId′eRl5d,∆eadr5feβ=n′eg0a.t2i2v=8e..0F.T2o9rh5et5hceaonncdavseβen′tSioUn(a3l=),nN0-l.fo2o8=p2 κ4,adj = 523738·9331943 + 336108ζ3 IR,3ℓ IR,4ℓ 2170 33952 [41], so βI′R,∆5f is slightly smaller than βI′R,4ℓ. A recent + (cid:18)− 310 + 311 ζ3(cid:19)Nc−2 latticemeasurementyieldsβ′ =0.26(2)[42],consistent with both our β′ and β′IR . = 0.0946976+0.193637Nc−2 (9) IR,∆5 IR,4ℓ f WenextdiscussthecaseR=adj,forwhichN =11/4 and u andNℓ =17/16,soIIRZ includesthesingleintegervalue 7141205 5504 Nf = 2 (whence ∆f = Nu−2 = 3/4). Results for this d5,adj = − 23·316 + 312 ζ3 5 adj,alreadydiscussedabove. ForSU(3), wefocusonthe − (cid:18)30391428 + 463511352ζ3(cid:19)Nc−2 Nf = 2 theory, for which we find βI′R,∆5f = 0.333; and γIR,∆2 = 0.789, γIR,∆3 = 0.960, and γIR,∆4 = 1.132 = −(0.828739×10−2)−0.357173Nc−2 . [37]. fFor comparison, four n-loop results frofm [13] for this case are γIR,3ℓ = 0.500 and γIR,4ℓ = 0.470. Lattice (10) studies of this theory include one that concludes that it is IR-conformal and gets γ < 0.45 [50] and another IR We remark on the SU(2), N = 2, R = adj theory, f that concludes that it is not IR-conformal and gets an which has been of interest [43]. Extensive lattice studies effective γ ≃1 [51]. IR of this theory have been performed and are consistent with IR conformality [18]. We get βI′R,∆5 = 0.147; and anIdnβsu′mmataray,cwoenfhoarvmeaplrIeRsenfitxededcaplcouinlattioofnsanofaγsψy¯ψm,IpR- f IR γIR,∆2 = 0.465, γIR,∆3 = 0.511, and γIR,∆4 = 0.556. totically free gauge theory with fermions, to the high- f f f These γIR,∆p values are close to our n-loop calcula- est orders yet achieved. We believe that these results f tions in [13] for this theory, namely γIR,3ℓ = 0.543, are of fundamental value for the understanding of con- γIR,4ℓ =0.500. Latticemeasurementsofthistheoryhave formal field theory, especially because they are scheme- yielded a wide range of values of γ including, 0.49(13) independent. IR [44], 0.22(6) [45], 0.31(6) [46], 0.17(5) [47], 0.20(3) [48], This research was supported in part by the Danish 0.50(26) [49], and 0.15(2) [40] (see references for details National Research Foundation grant DNRF90 to CP3- of uncertainty estimates). Origins at SDU (T.A.R.) and by the U.S. NSF Grant Finally, we discuss the case R = S. For SU(2), S = NSF-PHY-16-1620628(R.S.). [1] The assumption of massless fermions incurs no loss of (2013); R. Shrock, Phys. Rev. D 90, 045011 (2014); R. generality, since if a fermion had a nonzero mass m0, it Shrock, Phys. Rev. D 91, 125039 (2015); T. A. Ryttov, would be integrated out of the effective field theory at Phys. Rev. D 89, 016013 (2014); T. A. Ryttov, Phys. scales µ < m0, and hence would not affect the IR limit Rev. D 89, 056001 (2014); T. A. Ryttov, Phys. Rev. D µ→0. 90,056007(2014); G.ChoiandR.Shrock,Phys.Rev.D [2] Some early analyses of connections between scale and 90,125029(2014); G.ChoiandR.Shrock,Phys.Rev.D conformalinvarianceincludeA.Salam,Ann.Phys.(NY) 93,065013(2016); G.ChoiandR.Shrock,Phys.Rev.D 53, 174 (1969); D. J. Gross and J. Wess, Phys. Rev. D 94,065038(2016);J.A.GraceyandR.M.Simms,Phys. 2,753 (1970); C. G.Callan, S.Coleman, andR.Jackiw, Rev. D 91, 085037 (2015); P. M. Stevenson, Mod. Phys. Ann. Phys. (NY) 59, 42 (1970). More recent works in- Lett. A 31, 1650226 (2016). cludeJ.Polchinski,Nucl.Phys.B303,226(1988);J.-F. [16] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105015 Fortin,B.GrinsteinandA.Stergiou,JHEP01(2013)184 (2016). (2013); A. Dymarsky, Z. Komargodski, A. Schwimmer, [17] Some recent reviews include S. Rychkov, EPFL Lec- and S. Thiessen, JHEP 10, 171 (2015) and references tures on Conformal Field Theory in D ≥ 3 Dimensions therein. [arXiv:1601.05000]; D. Simmons-Duffin, 2015 TASI Lec- [3] With flavorindices explicit, ψ¯ψ≡PNj=f1ψ¯jψj. tures on the Conformal Bootstrap [arXiv:1602.07982], [4] S. S. Gubser, A. Nellore, S. S. Pufu, and E. D. Rocha, and D.Poland, NaturePhys. 12, 535 (2016). Phys.Rev.Lett. 101, 131601 (2008). [18] See, e.g., talks in the CP3 Workshop at [5] D. J. Gross, in Methods in Field Theory, eds. R. Balian http://cp3-origins.dk/events/meetings/mass2013; and J. Zinn-Justin, Les Houches 1975 (North Holland, Lattice-2014 at https://www.bnl.gov/lattice2014; Amsterdam, 1976), p. 141. SCGT15athttp://www.kmi.nagoya-u.ac.jp/workshop/SCGT15; [6] T. Banks and A. Zaks, Nucl.Phys. B 196, 189 (1982). andLattice-2015athttp://www.aics.riken.jp/sympo/lattice2015, [7] G. Grunberg, Phys.Rev.D 46, 2228 (1992). Lattice-2016athttps://www.southampton.ac.uk/lattice2016; [8] T. A. Ryttov,Phys. Rev.Lett. 117, 071601 (2016). seealsoT.DeGrand,Rev.Mod.Phys.88,015001(2016). [9] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 125005 [19] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (2016). (1973); H.D.Politzer, Phys.Rev.Lett.30,1346(1973); [10] T. A. Ryttov and R. Shrock, Phys. Rev. D 94, 105014 G. ’t Hooft, unpublished. (2016). [20] W.E.Caswell, Phys.Rev.Lett.33,244(1974);D.R.T. [11] E.GardiandM.Karliner,Nucl.Phys.B529,383(1998); Jones, Nucl. Phys. B 75, 531 (1974). E. Gardi and G. Grunberg,JHEP 03, 024 (1999). [21] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. [12] F. A. Chishtie, V. Elias, V. A. Miransky, and T. G. I.Zakharov(NSVZ),Nucl.Phys.B229,381,407(1983); Steele, Prog. Theor. Phys.104, 603 (2000). Phys. Lett. B166, 329 (1986). [13] T.A.Ryttov,R.Shrock,Phys.Rev.D83,056011(2011). [22] N. Seiberg, Nucl. Phys. B435, 129 (1995). [14] C. Pica, F. Sannino, Phys.Rev. D 83, 035013 (2011). [23] CA and Cf are the quadratic Casimir invariants for [15] T. A. Ryttov and R. Shrock, Phys. Rev. D 86, 065032 the adjoint representation and the fermion representa- (2012); T. A. Ryttov and R. Shrock, Phys. Rev. D 86, tion R, and T is the trace invariant. We use the stan- f 085005 (2012); R. Shrock, Phys. Rev. D 88, 036003 dard normalizations for these, so that for G = SU(Nc), 6 CA =Nc2−1 and for R=F, Cf =(Nc2−1)/(2Nc) and convergenceoftheseriesEqs.(2)and(3).Thesesuggest ′ [24] THfer=e,1N/2. is formally extended to the nonnegative real thatforR=F,γIR,∆4f andβIR,∆5f shouldbereasonably f accurate over a substantial part of the NACP. The con- numbers,withtheunderstandingthatthephysicalvalues vergencemaybeslowerforR=adj andR=S,withthe are nonnegative integers. [25] G. Mack, Commun. Math. Phys. 55, 1 (1977); B. Grin- narrower intervals IIRZ in these cases. [38] Some SU(2) N = 6 lattice studies include F. Bursa et stein,K.Intriligator,andI.Rothstein,Phys.Lett.B662, al., Phys. Lett.fB696, 374 (2011); T. Karavirta et al., 367 (2008); for reviews, see Y. Nakayama, Phys. Repts. JHEP1205(2012)003;M.Tomiietal.,arXiv:1311.0099; 569, 1 (2015) and [17]. M. Hayakawa et al., Phys. Rev. D 88, 094504, 094506 [26] I. Jack, D. R. T. Jones, and C. G. North, Phys. Lett. (2013);T.Appelquistetal.,Phys.Rev.Lett.112,111601 B386, 138 (1996); A. G. M. Pickering, J. A. Gracey, (2014); V. Leino et al., arXiv:1610.09989; J. M. Suorsa andD.R.T.Jones,Phys.Lett.B510,347(2001),Phys. et al., arXiv:1611.02022 and references therein. Lett. B535, 377 (2002); I. Jack, D. R. T. Jones, and A. [39] H.Ohkietal.,PoSLattice2010,066,arXiv:1011.0373;C. Pickering,Phys.Lett.B435,61(1998);R.V.Harlander, Y.-H.Huang et al., PoS Lattice2015, arXiv:1511.01968. L.Mihaila, andM.Steinhauser,Eur.Phys.J.C 63,383 [40] V. Leino, J. Rantaharju, T. Rantalaiho, K. Rum- (2009). mukainen, J. M. Suorsa, and K. Tuominen, [27] T. A. Ryttov and R. Shrock, Phys. Rev. D 85, 076009 arXiv:1701.04666. (2012). [41] R. Shrock, Phys. Rev. D 87, 105005 (2013); Phys. Rev. [28] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, and D 87, 116007 (2013). A.Vogt, arXiv:1701.01404. [42] A. Hasenfratz and D.Schaich, arXiv:1610.10004. [29] T. A. Ryttovand R. Shrock,to appear. [43] D.D.DietrichandF.Sannino,Phys.Rev.D75,085018 [30] Fordiscussions of theintensivelattice program todeter- (2007); S. Catterall and F. Sannino, Phys. Rev. D 76, mine N for a given G and R, see [18]. We assume f,cr 034504 (2007). N > N here, to be in the NACP. For several theo- f f,cr [44] S.Catterall,L.DelDebbio,J.Giedt,andL.Keegan,PoS ries,thereisnotyetaconsensusamonglatticegroupson Lattice2010, 057 (2010) [arXiv:1010.5909]. therespective values of N . f,cr [45] L. Del Debbio, B. Lucini, A. Patella, C. Pica, and A. [31] J. A. Gracey, Phys.Lett. B 488, 175 (2000). Rago, Phys. Rev.D 82, 014510 (2010). [32] T.vanRitbergen,J.A.M.Vermaseren,andS.A.Larin, [46] T. DeGrand, Y.Shamir, and B. Svetitsky,Phys.Rev.D Phys.Lett. B 400, 379 (1997). 83, 074507 (2011). [33] M. Czakon, Nucl. Phys. B 710, 485 (2005). [47] T. Appelquist et al., Phys. Rev.D 84, 054501 (2011). [34] K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997); J. A. [48] J. Rantaharju,T.Rantalaiho, K.Rummukainen,andK. M.Vermaseren,S.A.Larin,andT.vanRitbergen,Phys. Tuominen, Phys. Rev.D 93, 094509 (2016). Lett.B 405, 327 (1997). [49] J. Giedt, Int.J. Mod. Phys. A 31, 1630011 (2016). [35] W.A.Bardeen, A.J. Buras, D.W.Duke,and T. Muta, [50] T. DeGrand, Y.Shamir, and B. Svetitsky,Phys.Rev.D Phys.Rev.D 18, 3998 (1978). 87, 074507 (2013). [36] P. A. Baikov, K. G. Chetyrkin, and J. H. Ku¨hn, [51] Z.Fodor,K.Holland,J.Kuti,D.Nogradi,C.Schroeder, arXiv:1606.08659. and C. H. Wong, Phys.Lett. B 718, 657 (2012). [37] For all R cases considered, we have studied the ratios κp−1/κp and|dp−1/dp|togetestimatesoftherapidityof

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.