Advanced Structured Materials Holm Altenbach Wolfgang H. Müller Bilen Emek Abali Editors Higher Gradient Materials and Related Generalized Continua Advanced Structured Materials Volume 120 Series Editors Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen, Germany Lucas F. M. da Silva, Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal Holm Altenbach, Faculty of Mechanical Engineering, Otto-von-Guericke-UniversitätMagdeburg,Magdeburg,Sachsen-Anhalt,Germany Common engineering materials reach in many applications their limits and new developments are required to fulfil increasing demands on engineering materials. The performance ofmaterials can beincreasedby combiningdifferent materials to achieve better properties than a single constituent or by shaping the material or constituents in a specific structure. The interaction between material and structure mayariseondifferentlengthscales,suchasmicro-,meso-ormacroscale,andoffers possible applications in quite diverse fields. Thisbookseriesaddressesthefundamentalrelationshipbetweenmaterialsandtheir structure on the overall properties (e.g. mechanical, thermal, chemical or magnetic etc) and applications. The topics of Advanced Structured Materials include but are not limited to (cid:129) classical fibre-reinforced composites (e.g. glass, carbon or Aramid reinforced plastics) (cid:129) metal matrix composites (MMCs) (cid:129) micro porous composites (cid:129) micro channel materials (cid:129) multilayered materials (cid:129) cellular materials (e.g., metallic or polymer foams, sponges, hollow sphere structures) (cid:129) porous materials (cid:129) truss structures (cid:129) nanocomposite materials (cid:129) biomaterials (cid:129) nanoporous metals (cid:129) concrete (cid:129) coated materials (cid:129) smart materials Advanced Structured Materials is indexed in Google Scholar and Scopus. More information about this series at http://www.springer.com/series/8611 ü Holm Altenbach Wolfgang H. M ller (cid:129) (cid:129) Bilen Emek Abali Editors Higher Gradient Materials and Related Generalized Continua 123 Editors HolmAltenbach WolfgangH.Müller Institut für Mechanik Institut für Mechanik Otto-von-Guericke-UniversitätMagdeburg Technische UniversitätBerlin Magdeburg, Germany Berlin, Germany Bilen EmekAbali Institut für Mechanik Technische UniversitätBerlin Berlin, Germany ISSN 1869-8433 ISSN 1869-8441 (electronic) AdvancedStructured Materials ISBN978-3-030-30405-8 ISBN978-3-030-30406-5 (eBook) https://doi.org/10.1007/978-3-030-30406-5 ©SpringerNatureSwitzerlandAG2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface The idea for this volume of the Advanced Structured Materials Series was born duringtwoseminars,namely“NewDevelopmentsinMicropolarTheory,”and“Ad- vancedSeminar:GeneralizedContinuainEngineering—Theory,Experiments,and Applications,”whichwereheldonNovember6-7,2017andSeptember3-5,2018, respectively, both at the Technische Universität Berlin. The first seminar was or- ganized by Wolfgang H. Müller (Berlin) and Elena Vilchevskaya (St. Petersburg) and the second by Wolfgang H. Müller (Berlin) & Holm Altenbach (Magdeburg) andattendedbymanyscientistsfromGermany,Russia,Italy,USA,Sweden,Geor- gia, France, Estonia, and Finland. The organizers were assisted by B. Emek Abali (Berlin). GeneralizedContinuahaverecentlyseenaformidablerenaissance:theCosserat brothersgaveafirstsummaryin1909.Theirideasstayeddormantforawhileand werepickedupafterWorldWarIIbyEricksen&Truesdellresultinginacontinu- ousstreamoftheoreticalpapersuntiltoday.Mostrecently,thetheorywascomple- mentedbyapplicationsandembeddedinexperimentsfocusingonhowtodetermine thevariousnewmaterialparametersrequiredformakingthetheoryapplicable. DuringthelastdecadevariouscolloquiaheldinParis(2009)1,Wittenberg(2010, 2012)2,3,andMagdeburg(2015)4,aswellastheCISMCourse“GeneralizedCon- tinua—from the Theory to the Engineering Applications” (Udine, 2011)5 helped to promote this type of research. During this new “Advanced Seminar,” attention 1 Maugin,G.A.,Metrikine,A.V.(eds)MechanicsofGeneralizedContinua:OneHundredYears AftertheCosserats.Springer,NewYork,2010 2Altenbach,H.,Maugin,G.A.,Erofeev,V.(eds)MechanicsofGeneralizedContinua.Advanced StructuredMaterials,vol.7.Springer,Berlin,Heidelberg,2011 3Altenbach,H.,Forest,S.,Krivtsov,A.(eds)GeneralizedContinuaasModelsforMaterials.Ad- vancedStructuredMaterials,vol.22.Springer,Berlin,Heidelberg 4 Altenbach, H., Forest, S. (eds) Generalized Continua as Models for Classical and Advanced Materials.AdvancedStructuredMaterials,vol.42.Springer,Cham 5AltenbachH.,EremeyevV.A.(eds)GeneralizedContinuafromtheTheorytoEngineeringAp- plications.CISMInternationalCentreforMechanicalSciences(CoursesandLectures),vol541. Springer,Vienna,2013 v vi Preface waspaidonthemostrecentresearchitems,e.g.,newgeneralizedmodels,materials withsignificantmicrostructure,multi-fieldloadingsoridentificationofconstitutive equations.Finallyyetimportantly,acomparisonwithdiscretemodelingapproaches andexperimentswasdiscussed. Aseditors,weintendtothankallauthorsfortheircrucialcontributionsaswell asallreviewersfortheirinvaluabletimeandeffort.WedelightedlyacknowledgeDr. ChristophBaumann(SpringerPublisher)forinitiatingthebookproject.Inaddition, wehavetothankDr.MayraCastro(SeniorEditorAppliedSciences;MaterialsSci- ence; Materials Engineering; Nanotechnology and Nanomedicine) and Mr. Ashok Arumairaj (Production Administrator) giving the final support. Last but not least, the first editor has to acknowledge the Fundacja na rzecz Nauki Polskiej (Funda- tionforPolishScience)allowingtofinalizethisbookatthePolitechnikaLubelska (host: Prof. dr.hab.inz˙. Tomasz Sadowski, dr.h.c.) with the help of the Alexander vonHumboldtPolishHonoraryResearchFelloship. Berlin,Magdeburg HolmAltenbach July2019 WolfgangH.Müller BilenEmekAbali Contents 1 AComputationalApproachforDeterminationofParametersin GeneralizedMechanics....................................... 1 BilenEmekAbali,HuaYang,andPanayiotisPapadopoulos 1.1 Introduction.............................................. 1 1.2 HomogenizationBetweenMicro-andMacroscales ............. 4 1.3 DeterminationofParameters................................ 6 1.4 ComputationofOneSpecificCase........................... 8 1.5 AlgorithmforAllDeformationCases ........................ 9 1.6 Examples................................................ 10 1.7 Conclusion............................................... 13 References..................................................... 14 2 ExtensibleBeamModelsinLargeDeformationUnderDistributed Loading:aNumericalStudyonMultiplicityofSolutions .......... 19 Francescodell’Isola,AlessandroDellaCorte,AntonioBattista,and EmilioBarchiesi 2.1 Introduction.............................................. 20 2.2 TheModel............................................... 21 2.2.1 KinematicsandDeformationEnergy ................. 21 2.2.2 LagrangeMultipliersMethod ....................... 22 2.3 NumericalSimulations..................................... 23 2.3.1 NumericalMethods................................ 23 2.3.2 TheNumberofEquilibriumConfigurationswhenthe LoadIncreases.................................... 25 2.3.3 EquilibriumConfigurations ......................... 26 2.3.4 ParametricStudyontheExtensionalStiffness.......... 29 2.4 Conclusions.............................................. 32 Appendix ...................................................... 36 References..................................................... 37 vii viii Contents 3 OntheCharacterizationoftheNonlinearReducedMicromorphic ContinuumwiththeLocalMaterialSymmetryGroup............. 43 VictorA.Eremeyev 3.1 Introduction.............................................. 43 3.2 MicromorphicContinua.................................... 44 3.3 LocalMaterialSymmetryGroup ............................ 46 3.4 RelaxedMicromorphicMediumasaMicromorphicSubfluid .... 47 3.5 Conclusions.............................................. 52 References..................................................... 52 4 Structural Modeling of Nonlinear Localized Strain Waves in GeneralizedContinua........................................ 55 VladimirI.Erofeev,AnnaV.Leontyeva,AlexeyO.Malkhanov,and IgorS.Pavlov 4.1 Introduction.............................................. 55 4.2 PrinciplesofStructuralModeling............................ 56 4.3 One-dimensional Model of a Nonlinear Gradient-elastic Continuum. .............................................. 60 4.4 NonlinearStrainWaves .................................... 62 4.5 Conclusions.............................................. 66 References..................................................... 67 5 ADiffusionModelforStimulusPropagationinRemodelingBone Tissues .................................................... 69 IvanGiorgio,UgoAndreaus,FarisAlzahrani,TasawarHayat,and TomaszLekszycki 5.1 Introduction.............................................. 70 5.2 AcceptedAssumptionsandMainVariables.................... 72 5.3 PoromechanicalFormulation................................ 75 5.4 EvolutionaryEquationsforBoneRemodeling ................. 77 5.5 StimulusModelingWithoutTimeDelayandDiffusionPhenomena 79 5.6 AnImprovedVersionofStimulusModeling................... 80 5.7 NumericalSimulations..................................... 82 5.7.1 APhysiologicalCase .............................. 83 5.7.1.1 UniformTensionTest..................... 83 5.7.1.2 Non-uniformTensionTest ................. 85 5.7.2 SimulationofaHealingProcess ..................... 86 5.8 Conclusions.............................................. 87 References..................................................... 89 6 AC1IncompatibleModeElementFormulationforStrainGradient Elasticity .................................................. 95 RainerGlüge 6.1 Introduction.............................................. 95 6.1.1 Outline .......................................... 96 6.1.2 Notation ......................................... 96 Contents ix 6.2 From Local Balance of Momentum to Minimization of the ElasticPotential .......................................... 97 6.3 CiarletsElasticEnergy..................................... 99 6.3.1 StrainGradientExtension........................... 99 6.3.2 Stress-strainRelations..............................100 6.3.3 Materialparameters................................101 6.4 ElementFormulation ......................................101 6.4.1 Overview ........................................101 6.4.2 IncompatibleModeElementFormulation .............102 6.4.3 NumericalIntegration..............................105 6.4.4 TestingoftheImplementation .......................106 6.5 SingleForceIndentationSimulations.........................107 6.5.1 TheBoundaryConditions ..........................107 6.5.2 Meshing .........................................108 6.5.3 Results ..........................................108 6.5.3.1 TransitionBehaviorasα=0...∞ .........108 6.5.3.2 Singularity ..............................108 6.5.4 ACommentonPseudorigidBodies ..................110 6.6 SharpCornerSimulations ..................................111 6.6.1 TheBoundaryConditions ..........................111 6.6.2 Meshing .........................................112 6.6.3 Results ..........................................112 6.6.3.1 TransitionBehaviorasα→∞ .............112 6.6.3.2 ConvergenceonMeshRefinement ..........114 6.7 ImprovementoftheElementFormulation .....................116 6.8 ConvergenceStudy........................................116 6.9 Conclusion...............................................118 References.....................................................119 7 AComparisonofBoundaryElementMethodandFiniteElement MethodDynamicSolutionsforPoroelasticColumn ............... 121 LeonidA.Igumnov,AleksandrA.Ipatov,AndreyN.Petrov,Svetlana Yu.Litvinchuk,AronPfaff,andVictorA.Eremeyev 7.1 Introduction..............................................121 7.2 MathematicalModel.......................................123 7.2.1 us–p-formulationinLaplaceDomain .................124 i 7.2.2 us–p-formulationinTimeDomain ...................125 i 7.3 BoundaryIntegralEquationandBoundaryElementMethodology.125 7.4 LaplaceTransformInversion................................127 7.5 NumericalExample .......................................127 7.6 Conclusion...............................................130 Appendix ......................................................131 References.....................................................133