Dr. Le Tang, Vice President & Head of Corporate Research Center, ABB Inc. ARPA-E Power Technology Workshop, Feb 9, 2010 High Voltage DC Technologies ©ABB Group February 10, 2010| Slide 1 Transmissio From “AC vs DC” to “AC and DC” n V1/δ1 Powerflow PP V2/δ2 ~ = = ~ V V 1 2 P = (δ − δ ) sin + P 1 2 HVDC X 12 Static Var Series Phase HVDC Light Compensation Compen- Shifting (SVC) sation (SC) Transformers ©ABB GroFupA CTS = Flexible AC Transmission System February 10, 2010| Slide 2 HVDC Technology development Mercury Arc Valve Thyristor Valve IGBT (Transistor) Valve HVDC (Phased out) HVDC Classic HVDC Light Year 1954 1970 1980 2000 Pros: Low losses Pros: Reliable Pros: Controllability Cons: Reliability Scalable Footprint Maintenance Cons: Footprint DC Grids Environment Cons: Losses ©ABB Group February 10, 2010| Slide 3 Longquan, China - HVDC Converter Station 3000MW ± 500 kV Converter Station size: HVDC Classic 600m x 360m ©ABB Group February 10, 2010| Slide 4 HVDC interconnection: ultrahigh-voltage DC Customer need Development of renewable hydro power (cid:131) 2,000 km from load centre ABB’s response Worlds longest and largest transmission (cid:131) system ± 800 kV UHVDC, 6,400 MW (cid:131) Customer benefits High efficiency: 93 % (cid:131) Compact: land use 40 % less than (cid:131) conventional technologies Reliable transmission: (cid:131) forced unavailability < 0.5 % Customer: SGCC Year of commissioning: 2010-2011 ©ABB Group February 10, 2010| Slide 5 800 kV DC wall bushing ©ABB Group February 10, 2010| Slide 6 800 kV HVDC transformer ABB’s first 800 kV HVDC (cid:131) transformer successfully tested World’s highest-voltage power (cid:131) link with record capacity of 6.4 GVA 2000 km HVDC transmission (cid:131) corridor Xiangjiaba hydro plant to Shanghai Capable to supply 30 million (cid:131) people Developed and tested in one (cid:131) For each of the two converter stations (cid:131) year 24 transformers are required. ©ABB Group February 10, 2010| Slide 7 800 kV DC for long distance bulk power transmission Tranmission of 6000 MW over 2000 km. Total evaluated costs in MUSD 3500 3000 2500 Losses D 2000 S U Line cost M 1500 Station cost 1000 500 0 765 kV AC 500 kV DC 800 kV DC Number of lines: Right of way ~300 ~ 120 ~ 90 (meter) ©ABB Group February 10, 2010| Slide 8 Stacking up: HVDC Light IGBT Transistor IGBT Chip Press-Pin Unit Submodule StakPak Module IGBT Module 6‘000 pcs. 100‘000 pcs. 9 pcs. 4 pcs. 5 cm 1 cm 30 cm 21‘600‘000‘000 transistors Stack Cables Converter Station ©ABB Group February 10, 2010| Slide 9 Projects based on HVDC/SVC Light® Technology East West Int. NordE.ON1 Valhall Troll 2012, 500 MW 2009,400 MW 2010, 78 MW 2004, 2X40 MW Polarit Tjäreborg 2003, ±82 MVA 2000, 7 MW Gotland Cross Sound 1999, 50 MW 2002, 330 MW Hagfors 1999, ±22 MVAr Eagle Pass 2000, 36MW Liepajas, 2009 ±164 MVAr Directlink 2000,3X60 MW Holly Estlink 2004, ±95 MVAr 2006, 350 MW Murraylink 2002, 220 MW Charlotte 2007, ±32 MVAr ZPSS 2006, ±82 MVAr Mosel Evron 2000, ±38 MVAr 2003, ±16 MVAr Caprivi Link Legend 2009, 300 MW : HVDC Light ©ABB Group SVC Light February 10, 2010| Slide 10
Description: