ValimLevitin HighTemperatureStrain ofMetalsandAlloys RelatedTitles Herlach,D.M.(ed.) SolidificationandCrystallization 322pageswith204figuresand20tables 2004 Hardcover ISBN3-527-31011-8 Leyens,C.,Peters,M.(eds.) TitaniumandTitaniumAlloys FundamentalsandApplications 532pageswith349figuresand56tables 2003 Hardcover ISBN3-527-30534-3 Westbrook,J.H.(ed.) IntermetallicCompounds4VSet 1310pages 2000 Softcover ISBN0-471-60814-9 Mughrabi,H.(ed.) MaterialsScienceandTechnology AComprehensiveTreatment–Volume6 PlasticDeformationandFractureofMaterials 710pageswith436figuresand19tables 1992 Hardcover ISBN3-527-26819-7 Valim Levitin High Temperature Strain of Metals and Alloys PhysicalFundamentals TheAuthor AllbookspublishedbyWiley-VCHarecarefully produced.Nevertheless,authors,editorsand Prof.ValimLevitin publisherdonotwarranttheinformationcontained NationalTechnicalUniversity inthesebooks,includingthisbook,tobefreeof Zaporozhye,Ukraine errors.Readersareadvisedtokeepinmindthat [email protected] statements,data,illustrations,proceduraldetails orotheritemsmayinadvertentlybeinaccurate. Cover: “Blish”turbine LibraryofCongressCardNo.: UniversityofAppliedSciences appliedfor Gießen-Friedberg, DepartmentMND,MTU BritishLibraryCataloguing-in-PublicationData: Acataloguerecordforthisbookisavailablefromthe BritishLibrary. Bibliographicinformationpublishedby DieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationin theDeutscheNationalbibliografie;detailed bibliographicdataisavailableintheInternetat http://dnb.ddb.de (cid:1)c 2006WILEY-VCHVerlagGmbH&CoKGaA, Weinheim Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotocopying, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobeconsidered unprotectedbylaw. Typesetting:SteingraeberSatztechnikGmbH, Ladenburg Printing:StraussGmbH,Mörlenbach Binding:Litges&DopfBuchbindereiGmbH, Heppenheim Cover:aktivComm,Weinheim PrintedintheFederalRepublicofGermany Printedonacid-freepaper ISBN-13:978-3-527-31338-9 ISBN-10:3-527-31338-9 V Contents Introduction 1 1 MacroscopicCharacteristicsofStrainofMetallicMaterials atHighTemperatures 5 2 InsituX-rayInvestigationTechnique 13 2.1 ExperimentalInstallation 13 2.2 MeasurementProcedure 15 2.3 MeasurementsofStructuralParameters 17 2.4 DiffractionElectronMicroscopy 20 2.5 AmplitudeofAtomicVibrations 21 2.6 MaterialsunderInvestigation 23 2.7 Summary 24 3 StructuralParametersinHigh-TemperatureDeformedMetals 25 3.1 EvolutionofStructuralParameters 25 3.2 DislocationStructure 30 3.3 DistancesbetweenDislocationsinSub-boundaries 34 3.4 Sub-boundariesasDislocationSourcesandObstacles 34 3.5 DislocationsinsideSubgrains 35 3.6 VacancyLoopsandHelicoids 39 3.7 TotalCombinationofStructuralPeculiarities ofHigh-temperatureDeformation 40 3.8 Summary 41 4 PhysicalMechanismofStrainatHighTemperatures 43 4.1 PhysicalModelandTheory 43 4.2 VelocityofDislocations 45 4.3 DislocationDensity 49 4.4 RateoftheSteady-StateCreep 51 HighTemperatureStrainofMetalsandAlloys,ValimLevitin(Author) Copyright(cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-313389-9 VI Contents 4.5 EffectofAlloying:RelationshipbetweenCreepRate andMean-SquareAtomicAmplitudes 54 4.6 FormationofJogs 55 4.7 SignificanceoftheStackingFaultsEnergy 57 4.8 StabilityofDislocationSub-boundaries 58 4.9 ScopeoftheTheory 62 4.10 Summary 64 5 SimulationoftheParametersEvolution 67 5.1 ParametersofthePhysicalModel 67 5.2 Equations 68 5.2.1 StrainRate 68 5.2.2 ChangeintheDislocationDensity 68 5.2.3 TheDislocationSlipVelocity 69 5.2.4 TheDislocationClimbVelocity 69 5.2.5 TheDislocationSpacinginSub-boundaries 70 5.2.6 VariationoftheSubgrainSize 71 5.2.7 SystemofDifferentialEquations 71 5.3 ResultsofSimulation 71 5.4 DensityofDislocationsduringStationaryCreep 77 5.5 Summary 80 6 High-temperatureDeformationofSuperalloys 83 6.1 γ(cid:2)PhaseinSuperalloys 83 6.2 ChangesintheMatrixofAlloysduringStrain 88 6.3 InteractionofDislocationsandParticles 89 6.4 CreepRate.LengthofDislocationSegments 95 6.5 MechanismofStrainandtheCreepRateEquation 96 6.6 Compositionoftheγ(cid:2)PhaseandAtomicVibrations 102 6.7 InfluenceoftheParticleSizeandConcentration 104 6.8 ThePredictionofProperties 106 6.9 Summary 109 7 SingleCrystalsofSuperalloys 111 7.1 EffectofOrientationonProperties 111 7.2 DeformationatLowerTemperatures 116 7.3 DeformationatHigherTemperatures 124 7.4 OntheCompositionofSuperalloys 129 7.5 Rafting 130 7.6 EffectofCompositionandTemperatureonγ/γ(cid:2)Misfit 136 7.7 OtherCreepEquations 137 7.8 Summary 141 VII 8 DeformationofSomeRefractoryMetals 143 8.1 TheCreepBehavior 143 8.2 AlloysofRefractoryMetals 149 8.3 Summary 155 Supplements 157 Supplement1:OnDislocationsintheCrystalLattice 157 Supplement2:OnScrewComponentsinSub-boundary DislocationNetworks 161 Supplement3:CompositionofSuperalloys 163 References 164 Acknowledgements 168 Index 169 1 Introduction Whoevercontrolsthematerials, controlsthescienceandthetechnology E.Plummer Moderncivilizationisbasedonfourfoundations:materials,energy,tech- nology,andinformation. Metalsandalloysarematerials,whichhavebeenwidelyusedbymankind for thousands of years, and this is no mere chance: metals have many re- markableproperties.One–theirstrengthathightemperatures–isofgreat scientificandpracticalimportance. Thedurabilityofgasturbineengines,steampipelines,reactors,aeroplanes, andaerospacevehiclesdependsdirectlyontheabilityoftheirpartsandunits towithstandchangesinshape.Ontheotherhand,asignificantmobilityof crystal lattice defects and of atoms plays an important role in the behavior ofmaterialsunderappliedstressesathightemperaturesandisalsoofgreat interestformaterialsscienceresearchandpracticalapplications. Mechanical tests were historically the first method of investigating the high-temperaturedeformationphenomenon.Thetechniqueoriginatedfrom practicalneedstousemetallicmaterialsforvariousmachines.Adeepinves- tigationofmaterialstructurewasimpossibleinearlystudiesbecauseofthe lackofsuitableequipmentandappropriatetechniques.Evennowmechanical testsareasourceofindirectinformationaboutphysicalprocessesthattake placeintheatomiccrystallatticeofmetalsandalloys.However,ifwewant to understand the nature of these processes and to be able to use them in practiceweshouldtrytoinvestigatethemdirectly. Thephenomenaofhigh-temperaturestrainandcreephavebeenstudied for many years. Numerous theories have been developed, based on the de- pendences of the strain rate upon stress and temperature. The structure of tested metals was also studied. The obtained results are of great value and havebeendescribedinbooksandreviewsandimportantdataarealsoscat- teredinnumerousarticles.Previousinvestigationsimprovedourknowledge HighTemperatureStrainofMetalsandAlloys,ValimLevitin(Author) Copyright(cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-313389-9 2 Introduction oftheproblemandstimulatedfurtherexperimentalapproaches.Itisessen- tial,however,toemphasizethatthephysicalnatureofthehigh-temperature straininmetals,especiallyindustrialsuperalloys,isnotyetunderstoodsuffi- ciently.Bythiswemeanthephysicalbackgroundofthedeformationonthe atomicmicroscopicscale. Theproblemofthehigh-temperaturepropertiesofmetallicmaterialshas a number of experimental, theoretical and applied aspects. Naturally, it is necessarytoidentifythescopeoftheproblemconsideredinthisbook. Myideaisasfollows.Thehigh-temperaturediffusionmobilityofatomsand theeffectofappliedforcesaretheconditionsunderwhichspecialprocesses occur in the crystal lattice of metallic materials. Thus, external conditions resultinadistinctivestructuralresponseofthematerial.Intheirturnthese specificstructuralchangesleadtoadefinitemacroscopicbehaviorofthemate- rial,especially,toadefinitestrainrateandtoastressresistance.Consequently, structureevolutionistheprimarystageofresponse;mechanicalbehavioris thesecondaryresult.Theresponseinthecrystallatticeisacause,whilethe plasticstrainofametaloranalloyisaconsequence.Thestructuralevolution isthereforeakeyfactor,whichdeterminesthemechanicalpropertiesofthe metallicmaterialsathightemperatures. Thisbooktreatsdatafromexperimentalmeasurementsofimportantstruc- tural and kinetic characteristics which are related to physical fundamentals ofthehigh-temperaturestrainofmetallicmaterials.Anumberofspecificpa- rametersofsubstructure,whichhavebeendirectlymeasured,arepresented. Theories that have been worked out on the basis of these experiments are quantitative and contain values which have a definite physical meaning. A methodofcalculationofthesteady-statestrainratefromthematerial,struc- turalandexternalparametersisdevelopedforthefirsttime. Thebookconsistsofeightchapters. Asummaryoftheproblemispresentedinthefirstchapter.Thepeculiar- ities of the strain of metallic materials at high temperatures are described. The reader’s attention is drawn to the shortcomings of existing views and theauthor’sapproachtotheproblemissubstantiated.Itisadvisableforthe readertoremindhimselfofthemainprinciplesofdislocationtheorybyfirst readingSupplement1. The second chapter is devoted to experimental techniques. The unique equipmentdevelopedbytheauthorisintendedfortheinsituX-rayinvesti- gationofvariousmetals,i.e.fordirectstructuralmeasurementsduringthe high-temperaturetests.Themethodoftransmissiondiffractionmicroscopy isbrieflyconsidered.Thestudiedmetalsandalloysaredescribed. Dataonmeasurementsofstructuralparametersarepresentedinthenext chapter. Dependences on time of the size and misorientations of the sub- grains are obtained for various metals. Attention is given to the dislocation Introduction 3 structureofsub-boundariesthatareformedduringstrain.Theexperimental dataconcerningdislocationswithinsubgrainsarepresentedanddiscussedin moredetail.Thetotalitiesofthestructuralpeculiaritiesofthemetals,which havebeendeformedathigh-temperatures,areformulated. In the fourth chapter the physical mechanisms of the high-temperature deformationofpuremetalsandsolidsolutionsareworkedoutonthebasisof theobtaineddata.Thequantitativemodelofcreepisconsideredandvalidated. Equations are presented for the dislocation velocity and for the dislocation density.Thephysicallybasedforecastoftheminimumstrainrateisgiven. The subject of the fifth chapter is a computer simulation of the high- temperaturedeformationprocesses.Asystemofordinarydifferentialequa- tionsmodelsthephenomenonunderstudy.Evolutionofstructuralparame- tersandtheeffectofexternalconditionsontheparametersareanalyzed. High-temperaturedeformationofthecreep-resistantsuperalloysisthesub- jectofthesixthchapter.Structurechangesinmodernmaterialsandtheinter- actionbetweendeformingdislocationsandparticlesofthehardeningphase areanalyzed.Aphysicalmechanismofdeformationandastrainrateequa- tion are considered. Data are presented on the connection between mean- squareamplitudesofatomicvibrationsinthehardeningphaseandthecreep strength. Theseventhchapterisdevotedtothesingle-crystalsuperalloys.Theeffect of orientation, temperature and stress on the properties of single crystals isconsidered.Thephysicalmechanismsofthedislocationdeformationare described.Attentionisgiventothephenomenonofraftingandtotheroleof misfitbetweenthecrystallatticeparametersofthematrixandofthehardening phase. Thesubjectofthelastchapteristhepeculiaritiesofthestrainbehaviorof refractorymetals. Adetailedreviewofallaspectsoftheproblemunderconsiderationforpure metalsgoesbeyondthescopeofthisbook.Thereforeknownprinciplesand establishedfactsarementionedonlybriefly. The reader can find reviews concerning the creep of metals in different booksandarticles,forexample[1–8].
Description: