Loughborough University Institutional Repository High speed selective jet electrodeposition of gold and gold alloys using single circular jets ThisitemwassubmittedtoLoughboroughUniversity’sInstitutionalRepository by the/an author. Additional Information: • A Doctoral Thesis. Submitted in partial fulfillment of the requirements for the award of Doctor of Philosophy of Loughborough University. Metadata Record: https://dspace.lboro.ac.uk/2134/6740 Publisher: (cid:13)c C. Bocking Please cite the published version. This item is held in Loughborough University’s Institutional Repository (https://dspace.lboro.ac.uk/) and was harvested from the British Library’s EThOS service (http://www.ethos.bl.uk/). It is made available under the following Creative Commons Licence conditions. For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/ HIGH SPEED SELECTIVE JET ELECTRODEPOSITION OF GOLD AND GOLD ALLOYS USING SINGLE CIRCULAR JETS by C. E. BOCKING FIMF, Grad. IMF (Poly. South Bank) A Doctoral Thesis Submitted in fulfilment the of requirements for the the degree Doctor Philosophy award of of of the Loughborough University Technology of of Supervisor: Dr D. R. Gabe Institute Polymer Materials Engineering of and Loughborough University Technology of m by C. Bocking 1994 ABSTRACT High Speed Selective Jet Electrodeposition (HSSJE) is in a process which metals and alloys may be high in fashion for Ile electrodeposited at rates and a selective without the need masking. directing high jet be method consists of a velocity non-submerged of electrolyte at the surface to between Due flow plated and passing a current the nozzle and the substrate. to the nature of the distributioft jet, deposition high but in and the current within the takes place at rates only the impingement immediately This has little and surrounding region. technique seen commercial 7bese exploitationand onlyasmall numberof papers onthe subject. were concerned withdeveloping for The mathematical models the system. purpose of this work was to examine the structural, bothgold morphological and metallurgical characteristics of and gold alloy electrodeposits produced high flow (< Imm) By undervaried conditionsof electrolyte using small geometry nozzles. relating factors density, ion such as electrolyte velocity, current temperature and metal concentration etc deposits limiting for to the morphology of the produced, an understanding of the conditions deposition Results from deposits by HSSJE maximum rates was ascertained. obtained produced As were compared to those made under more conventional conditions. well as examining the deposits, information factors to the attempts were made gain on electrochemical controlling deposition. 71ese factors, such as mass transfer characteristics, required the production of identifying limiting densities Some the the polarisation curves current of system under study. discussed. the technique potential applications of are also ACKNOWLEDGEMENTS The author would like to thank the following for the invaluable to the people contribution work First, DrDavid Gabe, Academic Supervisor, carried outinthe experimental phaseof thisTbesis. my who originally suggested that I undertake this 7"hesis and without whom, it would never have been written. Also, my colleagues at the Hirst Research Centre. Dr Brian Cameron, Group Leader my Mr Ian Christie, Laboratory Manager Materials Science Laboratory and the of as well as my Industrial Supervisor, for freedom in the given to me the pursuit of the aims of the BRITE from this derived. In I like Dr Brian Cameron programme which work was addition, would to thank for carrying out the wear testing of connectors in this study. Mr Alan Vale, for the chemical deposits Mr Ian Gunter for analysis of the electrolytes and produced. the computer control program jet that controlled the plating equipment as well as advice and back-up on the electronic control Mr Colin Dineen, X-Ray Diffraction systems used. who operated the equipment and provided enormous expertise in the analysis and interpretation of the results. Mr David Prichard who the Scanning Electron Micrographs here. Mr Chris Fisher for produced some of shown the many interesting discussions had in fathom varied, and most useful that we trying to the complexities of the electrochemistry of the system. At Loughborough University Mr Frank Page, my thanks go to who produced some stunning and Scanning Electron Micrographs interesting deposits. Addi- prize winning of the more visually Dr Geoff Wilcox for he tionally, the assistance provided concerning conventional electrochemical procedures. Finally, I like Sue Laura Lewis for during would to thank my wife and children and their patience Thesis. the writing of this The inthis from BRITE (Basic Research inIndustrial thesis taken experimental workdescribed was a Technology) No. RI I B-304, "The improvement in high programme the control and attainment of It Centro Svillupo Materiali, speed electrodeposition processes". was undertaken with partners GEC-Marconi Hirst Research Centre Loughborough University Technology. The the and of work HSSJE Hirst Research Centre by on was carried out solely at the the author except where stated The different high deposition. As the above. other partners worked on aspects of speed such, its For programme was predetermined prior to commencement. this reason, certain avenues of interest be due definite could not pursued to the need to obtain milestones within pre-determined time periods. 11 Table Contents of CHAPTER 1 INTRODUCTION 1 .......................................................... 1.1 GENERAL BACKGROUND 1 ......................................................... 1.2 SCOPE OF THIS STUDY 4 ............................................................. CHAPTER 2 GOLD ELECTRODEPOSITION 6 ....................................... 2.1 GOLD PLATING IN THE ELECTRONICS INDUSTRY 6 ..................... 2.2 ELECTROLYTE TYPES 8 . ............................................................. 2.2.1 Alkaline 8 cyanide electrolytes . ................................................... 2.2.2 Acid 9 gold electrolytes ............................................................. 2.2.2.1 Pure 9 acid golds .............................................................. 2.2.2.2 Alloy 10 acid golds ............................................................. 2.2.3 Structural deposits 12 characteristics of gold . ..................................... 2.2.4 Ile influence 13 of pulsed current on gold electrodeposition . ................. CHAPTER 3 SELECTIVE PLATING TECHNIQUES 15 ............................. 3.1 DIELECTRIC MASKING 15 ................................................ 00 ...... 00 ... 3.1.1 Solvent based lacquers 16 .................................. o ......................... 3.1.2 Thick film inks 17 .................................................................... 3.1.3 Photo-resists 17 ........................................................................ 3.1.3.1 Photoresist 18 chemistry ....................................................... 3.1.3.1.1 Positive 18 working resists ............................................. 3.1.3.1.2 Negative 20 working resists ............................................ 3.1.3.2 Outline Printed Circuit Board Production Methods 21 of .......... 3.1.4 Pre-formed 23 masks ........................................... o ...................... 3.1.5 Controlled depth immersion 25 ...................................................... 3.2 BRUSH PLATING 25 .................................................... $00 ............... 3.3 ANODE PLACEMENT AND GEOMETRY 27 ....... o ............ o ................. 3.4 AUTOCATALYTIC (ELECTROLESS) DEPOSITION 29 ........................ CHAPTER 4 HIGH SPEED ELECTRODEPOSITION PROCESSES 30 ........... 4.1 THEORETICAL ASPECTS 30 .......................................................... 4.1.1 Transport diffusion layer 30 mechanisms and the . ............................... 4.1.2 Realistic limiting densities 32 current ............................................. 4.2 MEASUREMENT OF THE LIMITING CURRENT DENSITY 32 ............. 4.2.1 Limiting density 33 current measurement methods . ............................. 4.2.1.1 Galvanodynamic 34 methods ; . ........... ..................................... 4.2.1.2 Potentiodynamic 34 methods . ................................................ 4.2.1.3 Convective 35 control methods . .............................................. 4.3 PRODUCTION PROCESSES 36 ........................................................ CHAPTER 5 ELECTROCRYSTALLISATION AND MORPHOLOGY 39 ....... 5.1 SOME FUNDAMENTAL ASPECTS OF ELECTROCRYSTALLISATION 39 *00#0 ... 0 ..... 0 ............ *. 0 ... * ... *0 ......................... 00*00 ..... 00*0 ..... 9009* .... * .... 0.... 5.1.1 Electrocrystallisation low densities 42 at current . ............................... 5.1.2 Electrocrystallisation high densities 43 at current . ............................... 5.1.3 Mechanisms irregularity 44 of surface amplification . ........................... 5.1.4 Stability for development 45 theories roughness . ................................. 5.1.5 Theories dendritic, dense branching (DBM) of needle, morphology and fractal 46 growth . .......................................................................... ... I CHAPTER 6 HIGH SPEED JET ELECTRODEPOSITION 53 ....................... 6.1 CHARACTERISTICS OF FLUID FLOW WITHIN JETS 53 .................... 6.1.1 Flow free jet 54 the within region .................................................... 6.1.2 Flow impingement 54 the within region ........................................... 6.1.3 Flow jet 55 the within wall . .......................................................... 6.2 MASS TRANSFER CHARACTERISTICS OF IMPINGING JETS 55 ......... lll 6.2.1 Mass in jets transfer submerged 55 . ................................................ 6.2.2 Mass transfer in the jet non-submerged 56 ........................................ CHAPTER 7 EXPERIMENTAL STUDIES OF HIGH SPEED SELECTIVE JET ELECTRODEPOSITION 63 ............................................................... 7.1. EQUIPMENT USED IN THIS STUDY 63 . .......................................... 7.1.1. Computer X-Y drive controlled 63 system ....................................... 7.1.1.1 The nozzle and substrate mount 64 . ......................................... 7.1.1.2 The pump system 65 . .......................................................... 7.1.1.3 The X-Y Table 65 ............................................................... 7.1.1.4 Motion control system 66 . ..................................................... 7.1.1.5 The plating current power supply 66 . ....................................... 7.1.1.6 The computer and control program 67 ...................................... 7.1.2 Additional equipment 68 .............................................................. 7.2 EQUIPMENT AND METHODS USED FOR DEPOSIT EVALUATION 68 .. 7.2.1 Deposit Morphology 68 ............................................................... 7.2.2 Deposit thickness 69 ................................................................... 7.2.3 Deposit structure 69 ................................................................... 7.2.4 Deposit hardness 74 ................................................................... 7.2.5 Chemical analysis 74 . ................................................................. 7.2.6 Types of substrate used 74 . .......................................................... 7.3 METHODS USED FOR THE PRODUCTION OF EVALUATION SAMPLES 75 . ..................................................................................... 7.3.1 Pure deposits gold 75 . ................................................................. 7.3.1.1 Electrolyte composition 76 .................................................... 7.3.1.2 Experimental method 76 ....................................................... 7.3.2 Gold deposits alloy 77 ................................................................. 7.3.2.1 Initial for trials electrolyte selection 78 . .................................... 7.3.2.2 Optimising the gold/nickel electrolyte 78 . .................................. 7.3.2.3 Experimental method 79 . ...................................................... 7.4 MASS TRANSFER STUDIES 80 . ....................................................... 7.4.1 Principles SCPV SVPA of and 80 . ................................................. 7.4.2 The working electrode/reference 81 electrode assembly . ....................... 7.4.3 The equipment used 83 . ............................................................... 7.4.4 Experimental technique 83 . .......................................................... CHAPTER 8 RESULTS 85 ........................................ *.. * ........................ 8.1 PURE GOLD DEPOSITS 85 . ............................................................. 8.1.1 The effect of nozzle to substrate distance 85 ....................................... 8.1.2 The density effect of current 86 . .................................................... 8.1.2.1 General observations 86 ....................................................... 8.1.2.2 Deposit topography 88 . ........................................................ 8.1.2.3 Deposition rate 94 ............................................................... 8.1.2.4 Cathodic current efficiency 94 ................................................ 8.1.2.5 Hardness deposits of 95 ........................................................ 8.1.2.6 Selectivity deposit of the 96 ................................................... 8.1.2.7 Crystal structure and residual strain 97 . .................................... 8.1.3 The effect of electrolyte velocity 101 ................................................ 8.1.4 Temperature effects 101 . ............................................................... 8.1.5 The influence of the gold concentration 101 . ...................................... 8.1.6 The effect of pH 102 .................................................................... 8.1.7 The role of electrolyte conductivity 102 . ............................................ 8.1.8 The influence of nozzle size 103 . ...................................................... 8.1.8.1 Increased nozzle size 103 . ...................................................... 8.1.8.2 Decreased nozzle size 103 . ..................................................... 8.1.9 Pure deposition gold using pulsed current 104 . .................................... 8.1.9.1 Variation density of the average current 106 . ............................... 8.1.9.2 Variation of the on-time 106 . .................................................. 8.1.9.3 The increasing duty effect of the cycle 106 . ................................. IV 8.1.9.4 The influence deposition 106 of pulsed on selectivity . ..................... 8.1.10 Examination limiting factors deposition of the controlling maximum 107 rates . ......................................................................................... 107 8.1.10.1 Mass transfer studies . ..................................................... 8.1.10.1.1 Sampled Voltage Pulse Amperometry 108 . ......................... 8.1.10.1.2 Sampled Current Pulse Voltametry 109 . ............................. ill 8.2 GOLD ALLOY DEPOSITS . .......................................................... 8.2.1 The influence deposition for the Ronovel N of parameters electrolyte 112 with no nickel . ............................................................................. 8.2.2 The effect of the addition of nickel to the basic Ronovel N electrolyte. 113 .. 8.2.2.1 Relationship between nickel in the deposit, nickel in the electrolyte 113 density and current . ................................................................... 115 8.2.2.2 Deposit topography . ....................................................... 116 8.2.2.3 Deposition rate . .............................................................. 117 8.2.2.4 Current efficienc 117 8.2.2.5 Hardness of the 120 8.2.2.6 Selectivity the deposits of . ................................................. 122 8.2.2.7 Crystal structure . ............................................................ 8.2.3 Sampled current pulse voltammetry of the Ronovel N electrolyte 131 . ........ CHAPTER 9 THE APPLICATIONS OF HIGH SPEED SELECTIVE JET 132 ELECTRODEPOSITION ....................................................................... 132 9.1 APPLICATIONS WITHIN THE ELECTRONICS INDUSTRY . ............ 9.1.1 The direct Microwave Integrated Circuit Substrates (MICS). writing of 132 *****'*. ** ... ' 5. *i'i*Ee"s*el*ecti*ve*pl*at'i*ng*of*reel"t'o*re*el"co*mpone*n*ts***. 133 134 9.1.3 Bump plating . ....................................................................... for boards 134 9.1.4 The direct writing of etch resist printed circuit . ................. 135 OF THE USE OF HSSJE 9.2 DEMONSTRATIONS .......................... 135 50 lines 9.2.1 Microwave circuit test samples ohm - . ........................ 136 9.2.2 The plating of connectors with alloy gold . ..................................... 137 bonding HSSJE 9.2.3 Thermocompression properties of pure gold . ............. 137 9.2.4 The direct boards writing of printed circuit . .................................. 139 CHAPTER 10 ANALYSIS AND DISCUSSION # ... .................................... 139 10.1 GENERAL .............................................................................. 140 MEASUREMENTS 10.2 MASS TRANSFER .......................................... 146 OF DEPOSITION CONDITIONS 10.3 THE INFLUENCE ....................... 146 distance 10.3.1. Nozzle to substrate : . ............. ..................................... 146 10.3.2. Current density . .................................................................. 149 10.3.3. Electrolyte velocity :. . . ........................................................... 149 10.3.4. Temperature . ................................................................... 150 10.3.5. Electrolyte composition ......................................................... 151 10.3.6. The influence of nozzle size . .................................................. 153 10.3.7. The effects of pulsed current . ................................................. AND STRUCTURAL PROPERTIES OF PURE 10.4 SOME PHYSICAL 153 GOLD HSSJE DEPOSITS .......................................... *0-0 .......... so*. *-*... AND STRUCTURAL PROPERTIES OF GOLD 10.5 SOME PHYSICAL 155 ALLOY HSSJE DEPOSITS ..................................................... 0. *o .... so. 10.6 FLUID FLOW AND ITS INTERACTION WITH THE DEPOSIT 157 ........ flow below density 158 10.6.1 Interaction of the the maximum useful current ...... density. 161 flow 10.6.2 Interaction of the above the maximum useful cuff ent 161 10.6.2.1 Nodular deposits . ..................................... 161 10.6.2.2 Needle-ýype deposits ................................. .... 163 10.6.2.3 Field oriented jet core structures . ................................. 164 10.7 THE GROWTH OF NODULAR DEPOSITS . ............................ 165 10.7.1. Inhibition diffusion versus mechanisms ...................................... 10.8. SUMMARY OF FACTORS CONTROLLING THE MAXIMUM DEPO- 167 SITION RATE . ............................................................................... V REFERENCES 169 ........................................................................................... PHOTOGRAPHS 1-39 174 ................................................................................. TABLES 1-27 198 ............................................................................................ ý VI NOMENCLATURE A Amps A Lattice a parameter, Constant defined in (2 1) a as equation Specific CM2 CM-3 a,. area, Concentration, C mol crrr3 & Concentration in bulk the electrolyte, mol cm-3 Concentration CO at the electrode surface, Mol Cm-3 C Coulombs, A sec-1. Cf Local friction defined coeffficient of as -C. pU2X12 d diameter of the nozzle, cm. d' Radial distance from impingement centre of zone, cm D Diffusion coefficient, mol cm-2sec-I Deff The for faulting, effective crystallite size uncorrected A Dvw True crystallite size, E Electrical potential, volts F Faraday's 96,480 C constant, Hydrodynamic 9 constant sec-I H Distance from of the nozzle the substrate, cm. Cuff density, A ent CM-2 Limiting density, A Cm-2 current io Exchange density, A Cm-2 current JD Diffusion flux, Mol CM-2sec-I k Local mass transfer coefficient, cm sec-I K Mass transfer coefficient, cm sec-I KL Mass limiting density, transfer coefficient at the current cm. sec-I I Litres Order in hkI I of reflection, as M Molar involved in Number n of electrons an electrochemical reaction. r nozzle radius, cm, radius of cathode, cm, r R Gas 8.314 Joules K-1 constant, mol-I R Dimensionless distance d/r ratio, Re Reynolds defined Ud/v number as Re, Local Reynolds defined Ud'/v number as Vii
Description: