ebook img

High Speed and Wide Bandwidth Delta-Sigma ADCs PDF

133 Pages·2014·0.96 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Speed and Wide Bandwidth Delta-Sigma ADCs

ACSP · Analog Circuits And Signal Processing Muhammed Bolatkale Lucien J. Breems Kofi A.A. Makinwa High Speed and Wide Bandwidth Delta-Sigma ADCs Analog Circuits and Signal Processing SeriesEditors: MohammedIsmail.TheOhioStateUniversity MohamadSawan.ÉcolePolytechniquedeMontréal Forfurthervolumes: http://www.springer.com/series/7381 Muhammed Bolatkale (cid:129) Lucien J. Breems Kofi A.A. Makinwa High Speed and Wide Bandwidth Delta-Sigma ADCs 123 MuhammedBolatkale LucienJ.Breems NXPSemiconductors NXPSemiconductors Eindhoven,TheNetherlands Eindhoven,TheNetherlands KofiA.A.Makinwa DelftUniversityofTechnology Delft,TheNetherlands ISSN1872-082X ISSN2197-1854(electronic) ISBN978-3-319-05839-9 ISBN978-3-319-05840-5(eBook) DOI10.1007/978-3-319-05840-5 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2014935880 ©SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Contents 1 Introduction .................................................................. 1 1.1 TrendsinWideBandwidthandHighDynamicRangeADCs........ 3 1.2 MotivationandObjectives.............................................. 4 1.3 OrganizationoftheBook............................................... 5 References..................................................................... 6 2 Continuous-TimeDelta-SigmaModulator................................ 9 2.1 IdealDelta-SigmaModulator........................................... 9 2.1.1 SystemOverview............................................... 9 2.1.2 Quantizer........................................................ 12 2.1.3 DAC............................................................. 15 2.1.4 LoopFilter ...................................................... 16 2.2 System-LevelNon-idealities ........................................... 19 2.2.1 Noise ............................................................ 20 2.2.2 Non-linearity.................................................... 22 2.2.3 ExcessLoopDelay ............................................. 24 2.2.4 Metastability .................................................... 30 2.3 Summary ................................................................ 33 References..................................................................... 34 3 Continuous-Time Delta-Sigma Modulators at High SamplingRates............................................................... 37 3.1 System-LevelDesign ................................................... 37 3.1.1 CT(cid:2)†ModulatorDesignatHighSamplingRates........... 37 3.1.2 ExcessLoopDelayCompensationwithanActive Amplifier........................................................ 40 3.1.3 High-SpeedCapacitiveFeedforwardCT(cid:2)†Modulator..... 46 3.2 Block-LevelDesignRequirements..................................... 50 3.2.1 LoopFilter ...................................................... 51 3.2.2 Quantizer........................................................ 57 3.2.3 FeedbackDAC(DAC1) ........................................ 64 3.2.4 QuantizerDAC(DAC2)........................................ 68 v vi Contents 3.3 Conclusions ............................................................. 70 References..................................................................... 71 4 A4GHzContinuous-Time(cid:2)†ADC...................................... 73 4.1 Introduction ............................................................. 73 4.2 ImplementationDetails................................................. 74 4.2.1 CT(cid:2)†ADCArchitecture...................................... 74 4.2.2 QuantizerDesignandTimingDiagramoftheModulator.... 75 4.2.3 FeedbackDACs................................................. 78 4.2.4 OperationalTransconductanceAmplifier...................... 80 4.2.5 DecimationFilter ............................................... 81 4.3 ExperimentalResults ................................................... 81 4.3.1 MeasurementSetup............................................. 81 4.3.2 MeasurementResults........................................... 82 4.4 Conclusions ............................................................. 92 References..................................................................... 92 5 A2GHzContinuous-Time(cid:2)†ADCwithDynamicError Correction .................................................................... 95 5.1 Introduction ............................................................. 95 5.2 DynamicErrorCorrectionTechniquesin(cid:2)†Modulators........... 100 5.2.1 TheErrorSwitchingTechnique................................ 104 5.3 Multi-modeHigh-Speed(cid:2)†ADCDesign............................ 105 5.4 ImplementationDetails................................................. 108 5.4.1 InputStageandtheLoopFilter................................ 109 5.4.2 PulseGenerator................................................. 110 5.5 ExperimentalResults ................................................... 112 5.6 Conclusions ............................................................. 115 References..................................................................... 115 6 Conclusions................................................................... 117 6.1 Benchmarking........................................................... 118 6.2 FutureWork............................................................. 119 References..................................................................... 121 A ComparisonofADCArchitectures ........................................ 123 B Non-linearityofanIdealQuantizer ....................................... 127 References..................................................................... 128 Glossary........................................................................... 129 Index............................................................................... 131 Chapter 1 Introduction Analog-to-digitalconverterdevelopmentsaredrivenbythe increasingdemandfor signal bandwidth and dynamic range in applications such as medical imaging, high-definitionvideo processing and, in particular, wireline and wireless commu- nications. Figure 1.1 shows a block diagram of a basic wireless receiver. It has threemainbuildingblocks:anRFfront-end,ananalog-to-digitalconverter(ADC) anda digitalbasebandprocessor. Therole of the RF front-endis to filter, amplify the signals present at the antenna input and down-convertthem to baseband. The ADC samples and digitizes the analog signals at the output of the RF front- end and outputs the results to the baseband processor. To achieve high data rates, wireless standards rely on advanced digital modulation techniques that can be advantageously implemented in baseband processors fabricated in nanometer- CMOS,whichalsomotivatesthedevelopmentofADCsinthesetechnologies. InmodernwirelessapplicationssuchasdigitalFMandLTE-advanced,theADC receivesasignalwhosebandwidthcanbeaslargeas100MHz[1–3].Awideband ADCwhichcancapturesuchsignalssimplifiesthedesignoftheRFfront-end,since the channel selection filters can then be implemented in the baseband processor. However, due to the limited filtering characteristic of the RF front-end, large unwantedsignals(blockers)areoftenpresentattheinputoftheADC.Therefore,the ADC shouldhave a high dynamicrange,oftenmore than 70dB. Wide bandwidth and high dynamic range (DR) are thus importantattributes of ADCs intended for highdata-ratenext-generationwirelessapplications. Practically,NyquistADCshavebeenpreferredforapplicationswhichtargetwide bandwidth, since the sampling frequency (f ) only has to be slightly higher than s 2 (cid:2) BW, where BW is the bandwidth of the desired signal. A plot of dynamic range vs. bandwidthfor variousstate-of-the-artADCs with energy efficiency less than 1pJ/conv.-step. is shown in Fig.1.2. As can be seen, many Nyquist ADCs achieve both wide bandwidths and high DR. A Nyquist ADC requires an input sampling circuit which is often implemented with a switched-capacitor network. AchievinghighDR,thenrequireslowthermalnoise,whichinturn,leadstoalarge M.Bolatkaleetal.,HighSpeedandWideBandwidthDelta-SigmaADCs,AnalogCircuits 1 andSignalProcessing,DOI10.1007/978-3-319-05840-5__1, ©SpringerInternationalPublishingSwitzerland2014 2 1 Introduction Antenna RF X(t) Y(n) Baseband Data ADC Front end Processor Out f f s s Fig.1.1 Abasicblockdiagramofawirelessreceiver 100 Nyquist ADC 90 Delta-Sigma ADC Delta-Sigma ADC - ISSCC 2012 80 B) d e ( 70 This work [4] g an 60 R c mi 50 a n y 40 D 30 20 0 10 20 30 40 50 60 70 80 90 100110120130140150160 Bandwidth (MHz) Fig.1.2 Dynamicrangevs.bandwidthofstate-of-the-art ADCswithpowerefficiencylessthan 1pJ/conv.-step.ThehighspeedCT(cid:2)†ADCsimplementedinnm-CMOSthathaverecentlygained popularityareincludedtoemphasizethedevelopmentsinoversampledconverters[5] inputcapacitance.However,thismustbeprecededbyananti-aliasingfilterandan inputbuffercapableofdrivingalargecapacitance,whichincreasesthecomplexity andpoweroftheRFfront-end. Oversampledconvertersareverywellsuitedforapplicationswhichrequirehigh dynamic range. In particular,a delta-sigma modulator ((cid:2)†M), which trades time resolution for amplitude resolution, can achieve a high dynamic range with very goodpowerefficiency(Fig.1.2).The(cid:2)†Misoneofthemostpromisingconverter architectures for exploiting the speed advantage of CMOS process technology. However,achievingawidebandwidthwitha(cid:2)†Mrequiresahigh-speedsampling frequency due to the large OSR (f D 2 (cid:2) OSR (cid:2) BW, where OSR is the s oversamplingratio). The stability and power efficiencyof the modulatorat a high sampling rate, together with achieving a high dynamic range at the low supply voltages required by the nanometer-CMOS fabrication process, are important challengesthatfacethenextgenerationofoversampledconverters. 1.1 TrendsinWideBandwidthandHighDynamicRangeADCs 3 This book focuses on the design of wide-bandwidth and high dynamic range (cid:2)†Ms that can bridge the bandwidth gap between Nyquist and oversampled converters.Morespecifically,thisbookdescribesthestability,thepowerefficiency andthelinearitylimitsof(cid:2)†MsaimingataGHzsamplingfrequency. 1.1 Trendsin WideBandwidthandHighDynamic RangeADCs As shown in Fig.1.2, Nyquist ADCs based on the pipeline architecture have achievedsamplingspeedsofupto125MHzanddynamicrangesgreaterthan70dB in standard CMOS [6–8]. To achieve higher sampling rates, a Bi-CMOS or SiGe Bi-CMOSprocesscanbeusedatthecostofhigherpowerconsumptionduetotheir highersupplyvoltages(1.8–3.0V)[9,10].AfurtherdrawbackofpipelineADCsis that they typically rely on high-gain wideband residue amplifiers and/or complex calibration techniques to reduce gain errors [7–9], thus increasing their area and complexity. Recently,NyquistADCsbasedonthesuccessiveapproximationregister(SAR) architecturehaveachievedsignalbandwidthsofup to 50MHz with 56–65dBDR andexcellentpowerefficiency(<80fJ/conv.-step)[11–14].Greaterbandwidthcan be achievedby using time-interleaving.However,the linearity of time-interleaved SAR ADCs is limited by gain, offset, and timing errors and so such ADCs also require extensive calibration [15]. Furthermore, time interleaving increases input capacitanceandchiparea,andthusplacesmoredemandsontheinputbuffer[16]. Bycontrast,CT(cid:2)†ADCscanhaveasimpleresistiveinputthatdoesnotrequire theuseofapower-hungryinputbufferorananti-aliasingfilter,whichfurtherrelaxes the requirements of the RF front-end. When implemented in CMOS, such ADCs haveachievedsignalbandwidthsofupto25MHzwitha70–80dBdynamicrange andgoodpowerefficiency(<350fJ/conv.-step)[17–19].TypicalCT(cid:2)†modulators employ a high-order loop filter with a multi-bit quantizer, which, for a 20MHz bandwidth,requiresamplingfrequenciesof0.5–1GHztoachievemorethan70dB of dynamic range. Assuming that the sampling frequency is proportional to the bandwidth, sampling frequencies of 2.5–5GHz will be then required to achieve bandwidthsgreaterthan100MHz.However,atGHzsamplingrates,parasiticpoles andquantizerlatencycaneasilycausemodulatorinstability. CT(cid:2)† modulatorswith signalbandwidthsup to 20–25MHz havebeen imple- mentedin90–130nmCMOS.TheswitchingspeedofanNMOStransistorin45nm CMOS isapproximately1.6(cid:2)faster thanin 90nm CMOS and2.7(cid:2)faster thanin 130nm CMOS[20]. Implementing a (cid:2)† modulator in 45nm LP CMOS is thus advantageous for circuits such as quantizers and DACs whose delay is important for stability. However, the dynamic range of circuits in 45nm CMOS is limited by the low intrinsic gain and poor matching of the transistors [21,22]. The low operatingsupply(1.1–1.0V)furthermoreimpliesthatcascadedstagesarerequired

Description:
This book describes techniques for realizing wide bandwidth (125MHz) over-sampled analog-to-digital converters (ADCs) in nano meter-CMOS processes. The authors offer a clear and complete picture of system level challenges and practical design solutions in high-speed Delta-Sigma modulators. Readers w
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.