Astronomy&Astrophysicsmanuscriptno.relat_tsz_publi (cid:13)c ESO2017 February1,2017 High significance detection of the tSZ effect relativistic corrections G.Hurier1,2 1 CentrodeEstudiosdeFísicadelCosmosdeAragón(CEFCA),PlazadeSanJuan,1,planta2,E-44001,Teruel,Spain 2 Institutd’AstrophysiqueSpatiale,CNRS(UMR8617)UniversitéParis-Sud11,Bâtiment121,Orsay,France e-mail:[email protected] Received/Accepted Abstract 7 1 ThethermalSunyaev-Zel’dovich(tSZ)effectisproducedbytheinteractionofcosmicmicrowavebackground(CMB)photonswith 0 the hot (a few keV) and diffuse gas of electrons inside galaxy clusters integrated along the line of sight. This effect produces a 2 distortionofCMBblackbodyemissionlaw.Thisdistortionlawdependsontheelectronictemperatureoftheintra-clusterhotgas,Te, throughtheso-calledtSZrelativisticcorrections.Inthiswork,wehaveperformedastatisticalanalysisofthetSZspectraldistortion n onlargegalaxyclustersamples.Weperformedastackinganalysisforseveralelectronictemperaturebins,usingbothspectroscopic a measurementsofX-raytemperaturesandascalingrelationbetweenX-rayluminositiesandelectronictemperatures.Wereportthe J firsthighsignificancedetectionoftherelativistictSZatasignificanceof5.3σ.WealsodemonstratethattheobservedtSZrelativistic 1 correctionsareconsistentwithX-raydeducedtemperatures.ThismeasurementofthetSZspectrallawdemonstratesthattSZeffect 3 spectraldistorsioncanbeusedasaprobetomeasuregalaxyclustertemperatures. Keywords.Cosmology:Observations–Cosmicbackgroundradiation–Sunyaev-Zel’dovicheffect ] O C . 1. Introduction The TCMB measurement using tSZ effect by Hurier et al. h (2014)hasshownthatPlanckfullskymulti-wavelengthobserva- p Galaxy clusters contain a hot thermal plasma that Comptonize tions of the sub-millimeter and microwave skies are tailored to - o the cosmic microwave background (CMB) photons when they studythepropertiesofthetSZspectraldistorsions.Inthiswork, r are traversing the galaxy cluster. This interaction produces the we present the first high-significance detection of the tSZ rela- t s well known thermal Sunyaev-Zel’dovich (tSZ) effect (Sunyaev tivistic correction using a statistical analysis of a large galaxy a & Zeldovich 1972), which induces a spectral distortion of the cluster sample. The paper is organized as follows, Section 2 [ CMB blackbody emission law. This spectral distortion can be presents the data used in this analysis, Section 3 describes the 1 considered as independent of the electron energies as long as tSZ effect, Section 4 describes the methodology, and Section 5 v the electron velocities are significantly smaller than the speed presentstheresults. 0 oflight,c.Typicalplasmainsidegalaxyclustershaveatemper- 2 ature of several keV. Thermal electrons in hot galaxy clusters 0 ((cid:39) 5 keV) have velocities of the order of 0.1 c. Consequently, 9 relativistic corrections have to be applied to the tSZ spectral 0 distorsions (Wright 1979). Fitting formula have been proposed . 1 toeasethemodelingofthetSZrelativisticcorrections(Nozawa 2. Thedata 0 etal.2000). 7 2.1. Planckintensityfull-skymaps 1 : These relativistic corrections offer the possibility of using v thetSZeffectspectraldistorsionasaprobetomeasurethetem- This paper uses the first 15.5 month survey mission of Planck i X peratureofthehotplasmainsidegalaxyclusters(Pointecouteau HFI (Planck Collaboration early I 2011), corresponding to two full-sky surveys (Planck Collaboration results I 2014). We r et al. 1998; Ensslin & Hansen 2004). Recent works (Zemcov a refer to Planck Collaboration results VI (2014) and Planck etal.2010,2012)havereportedevidenceofthetSZrelativistic CollaborationresultsVIII(2014)forthegenericschemeoftime- correctionsupto3σusingZ-Spec. orderedinformation(TOI)processingandmap-making,aswell asforthetechnicalcharacteristicsofthePlanckfrequencymaps. Galaxy clusters host galaxies, and consequently the tSZ ThePlanckchannelmapsareprovidedinHEALPix(Górskietal. effect is spatially correlated with radio and infrared emission 2005)N =2048atfullresolution.Anerrormapisassociated side fromgalaxies.Radiogalaxiesandinfraredemissionshavebeen witheachchannelmapandisobtainedfromthedifferenceofthe showntobeasignificantbiasfortSZ-basedstudies(Hurieretal. firsthalfandsecondhalfofthesurveyrings,foragivenpoint- 2013; Planck Collaboration 2015 results XXIII 2016). Thus, if ing position of the satellite spin axis. Here we approximate the notconsideredcarefullytheseemissionscouldsignificantlybias PlanckHFIbeamsbyeffectivecircularGaussianswithFWHM anattemptofdetectionforthetSZrelativisticcorrections. up to 5 arc minutes that can be found in Planck Collaboration resultsVII(2014). 1 G.Hurier:HighsignificancedetectionofthetSZeffectrelativisticcorrections Table1.Maincharacteristicsofthegalaxyclustercatalogs. N Compton parameter to CMB temperature, K , conversion cl CMB isthenumberofobjectsinthecatalog,T andT arethe factors for each frequency channel depend of the convolution e,min e,max coveredrangeoftemperature,T isthemedian,z andz of this tSZ contribution to the sky intensity with the Planck e,med min max arethecoveredrangeofredshiftandz isthemedianredshift frequencyresponses. med Catalog Ncl Te,min Te,max Te,med zmin zmax zmed This characteristic spectral signature of tSZ effect makes it MCXC 1743 0.11 10.25 2.81 0.00 1.26 0.14 auniquetoolforthedetectionofgalaxyclustersaspresentedin CAV08 192 2.44 19.13 6.99 0.03 1.24 0.26 Planck Collaboration2015 results XXVII(2016) and is related ZHA08 37 3.2 11.6 6.7 0.14 0.30 0.23 toT throughrelativisticcorrections. VIK09 85 2.13 14.72 4.4 0.03 0.89 0.09 e The relativistic corrections on the tSZ emission law have been PRA09 31 2.07 8.91 3.85 0.06 0.18 0.12 computedaspresentedin(Pointecouteauetal.1998).Fromthis ECK11 26 0.62 2.99 1.61 0.01 0.05 0.02 estimation, if we assume that the relativistic corrections on the MIT11 64 0.90 15.91 4.37 0.00 0.22 0.05 REI11 232 2.0 15.0 5.9 0.04 1.46 0.30 tSZemissionlawcanbedescribedasafirstorderapproximation MAH13 50 3.1 12.1 6.5 0.15 0.55 0.24 (seeNozawaetal.2000,foradetailedfittingformula), LAG13 117 2.0 15.2 5.8 0.11 1.24 0.35 ∆Trelat(T )=∆Tunrelat+T ∆Tcor , (5) CMB e CMB e CMB 2.2. Catalogs theaveragedtSZemissionfromdifferentelectronpopulationsat varioustemperaturescanbemodeledwithasingletemperature. Weusedtwodifferentgalaxyclustersamples.Thefirstonecon- This approach enables the possibility to perform stacking siders all galaxy clusters in the MCXC catalog (Piffaretti et al. analyses of the tSZ relativistic corrections. This approximation 2011). For this sample we computed the electron temperatures is already implicitly considered when fitting a single temper- usingthescalingrelationfromPrattetal.(2009), ature on the observed tSZ signal. Considering that electronic L =(0.079±0.008)(T[keV])2.70±0.241044erg.s−1. (1) temperature varies along the line of sight. We stress that the X quasi linear behavior of the tSZ spectral distorsion relativistic In the second sample we considered galaxy clusters for correctionswithrespecttoTeisonlyusedtomotivateastacking which we have a spectroscopic temperature (Cavagnolo et al. analysis.Inthefollowing,whenfittingforTeonthestackedtSZ 2008;Zhangetal.2008;Vikhlininetal.2009;Prattetal.2009; signal we use the exact tSZ spectral distorsion as a function of Eckmiller et al. 2011; Mittal et al. 2011; Reichert et al. 2011; Te. Mahdavietal.2013;Laganáetal.2013). In Table. 1, we summarize the main characteristics of each galaxyclustercatalogs,N isthenumberofobjectsinthecata- cl log,T andT arethecoveredrangeoftemperature,T e,min e,max e,med isthemedian.Westressthatthedifferentcatalogspresentover- lapsofobjects.Thisoverlaphasbeenconsideredinthefollow- inganalysis. 3. ThetSZeffect The thermal Sunyaev-Zel’dovich effect (Sunyaev & Zeldovich 1972)isadistortionoftheCMBblackbodyradiationthroughin- verseComptonscattering.CMBphotonsreceiveanaverageen- ergyboostbycollisionwithhot(afewkeV)ionizedelectronsof theintra-clustermedium(seee.g.,Birkinshaw1999;Carlstrom etal.2002,forreviews).ThethermalSZComptonparameterin agivendirection,n,ontheskyisgivenby (cid:90) k T y(n)= n B eσ ds, (2) Figure1.tSZspectraldistorsionasafunctionofthefrequency em c2 T e forvarioustemperaturesofthehotplasmafrom0to20keV. wheredsisthedistancealongtheline-of-sight,n,andn andT e e aretheelectronnumberdensityandtemperature,respectively.In unitsofCMBtemperature,thecontributionofthetSZeffectfor Figure 1 shows the tSZ spectral dependance as a function of the frequency for various temperatures of the hot plasma agivenobservationfrequencyνis ranging from 0 to 20 keV. We observe that the main conse- ∆T quence of relativistic corrections is a modification of the zero CMB =g(ν)y. (3) TCMB flaretiqouneνncy(cid:39),ν201,7o.f4t+heTtS/Z2.sWpeectarlaslodoisbtsoerrsvioena,sthigantiffioclalonwtisntchreearsee- 0 e Neglectingrelativisticcorrectionswehave of the 353 to 545 GHz tSZ intensity ratio. In general, higher (cid:20) (cid:18)x(cid:19) (cid:21) temperaturesfortheplasmawillfavorahighertSZamplitudeat g(ν)= xcoth −4 , (4) high-frequencies,andalowertSZintensityatlowfrequencies. 2 ThePlanckexperimenthasalargefrequencycoverageatlow with x = hν/(k T ). At z = 0, where T (z = frequency(< 217GHz)wherethetSZeffectproducesaninten- B CMB CMB 0) = 2.726±0.001 K, the tSZeffect is negative below 217GHz sitydecrement,at217GHzwheretSZeffectisalmostnull,and andpositiveforhigherfrequencies. athigherfrequencies(> 217GHz)wheretSZproducepositive 2 G.Hurier:HighsignificancedetectionofthetSZeffectrelativisticcorrections anisotropies on the CMB. This makes Planck HFI a really tai- Table2.Correlationmatrixofstatisticaluncertaintiesforemis- lored instrument for the tSZ effect detection and scientific ex- sion tSZ emission law, estimate from 1000 random positions ploitation. acrossthesky. 4. Methodology Frequency(GHz) 100 143 353 545 100 1 0.62 -0.49 -0.48 4.1. EstimationoftSZfluxperfrequencyandstacking 143 0.62 1 -0.49 -0.56 WerefertoHurieretal.(2014)foradetaileddescriptionofthe 353 -0.49 -0.49 1 0.83 tSZ flux extraction in Planck intensity maps. We first extracted 545 -0.48 -0.56 0.83 1 2x2o patches around each galaxy clusters. We cleaned for in- fraredemissionusingthe857GHzchannel.Wealsocomputed secondaryanisotropiesthemselvesthroughthekSZeffect. a tSZ y-map with the MILCA method (Hurier et al. 2013) and we estimated the tSZ flux in each Planck frequency using the MILCAmapasatemplatetobuildthespectralenergydistribu- tion (SED) toward each galaxy clusters. Then, we subtract the 4.3.1. Cosmicinfraredbackground 217 GHz signal to other channels in order to clean for CMB For the estimation of T from tSZ measurement, the 545 GHz emission. Finally, we divided our galaxy clusters samples into e mapisthekeyfrequencychannel,howeveritisalsoafrequency T bins. We separated the MCXC into five temperature bins (∆eT = 2 keV) and the spectroscopic sample into three tem- for which one the detection of the tSZ effect is the most chal- e perature bins (∆T = 4 keV). Then, we performed a stack of lenging.Atthisfrequency10%oftheCIBemissionisproduced e by objects with redshift lower than 1.0 (Lagache et al. 2005; individualgalaxyclustermapsforeachtemperaturebin. Addison et al. 2012). See Planck Collaboration 2015 results Figure2showstheresultsofthestackingproceduretoward XXIII (2016), for a measurement of the tSZ×CIB cross corre- MCXC clusters for the lowest temperature bin (top panel) and lation.Anexcessofemissionathighfrequencyisproducedby for the highest temperature bin (bottom panel). We observe a theCIBresiduals,whichthusmimictheeffectofrelativisticcor- significantamountoftSZsignalinthe545GHzstackedmapfor rectionsonthetSZspectraldistorsion. thehigh-temperaturebin,whereasthelow-temperaturebindoes ThetSZemissionscalesasM tothepowerof1.79(Planck notpresentasignificanttSZemissionatthisfrequency. 500 CollaborationresultsXXIX2014)andtheCIBscalesasM to 500 the power of (cid:39) 1.00 (Planck Collaboration 2015 results XXIII 4.2. Backgroundandforegroundcontamination 2016).Consequently,thetSZ-CIBratiodecreasewith M and 500 thus with T as F ∝ T−1.20 assuming that T evolves as Toestimatethecontaminationbyothersourcesofanisotropiesin 500 CIB 500 500 Planckfrequencymaps,weperformedthefluxextraction,asde- M2/3.ThisimpliesthatCIBresidualswillbemoreimportantfor 500 scribedinHurieretal.(2014),at1000randompositionsacross lowtemperaturegalaxyclusters.Consequently,CIBcontamina- the sky. These random positions follow the same spatial repar- tioncanbeseparatedfromtSZrelativisticcorrectionsbyconsid- tition in latitude as our sample of galaxy clusters to avoid any eringseveralbinsoftemperature. biascomingfromthegalacticplanearea,whichdoesnotcontain We also stress that our dust-cleaning procedure using the 857 galaxyclustersintheusedsample.Inthefollowingweconsider GHzchannelwillremovemostoftheCIBcontamination,con- thatuncertaintiesareuncorrelatedbetweentwodifferentgalaxy sideringthattheclustersinoursampleareessentiallylow-zob- clusters. jects (Planck Collaboration 2015 results XXIII 2016). Indeed, Consequentlywecanderivedthefullcovariancematrixforthe dusty galaxy emission in these galaxy clusters presents a very fluxestimationinfrequencychannelsfrom100to545GHz,an similarspectralbehaviortotheMilkyWay. example of such a correlation matrix is presented in Table. 2. This covariance matrix has a determinant of 2.4 10−4, which 4.3.2.Radiopointsources quantifies the volume occupied by the swarm of the data sam- plesinourfourdimensionsubspace(HFIfrequenciesfrom100 Inordertoavoidcontaminationbyradioloudactivegalacticnu- to545GHzexcluding217GHz). cleus(AGN),weremovedfromtheanalysisclustersthatpresent Considering that most foreground and background emissions an emission above 0.5 mK at 100 GHz in a radius of 30’ CMB havebeencleanedfromthemaps,thecovariancematrixisdom- fromthegalaxyclusterposition. inatedbytheinstrumentalnoise,thatiscorrelatedbetweenfre- quenciesduetothecleaningprocess.Thehighlevelofcorrela- 4.3.3.kSZ tionbetween353and545GHzalsoreceivescontributionsfrom thermaldustresidualsinthesemaps.Westressthatthiscorrela- The kSZ effect follows the same spectral dependance as the tion matrix only accounts for uncertainties produced by uncor- CMB and thus is suppressed from our analysis by the CMB relatedcomponentswithrespecttothetSZeffect. cleaningperformedwiththe217GHzchannel.However,some kSZresidualsmayremainsinthemeasuredSEDduetocalibra- tionuncertainties(PlanckCollaboration2015resultsVIII2016). 4.3. Correlatedforegroundcontamination The inter-calibration uncertainties at 100, 143, 217, 353, and AswediscussinSect4.2,errorsinducedbyuncorrelatedfore- 545 GHz are 0.09, 0.07, 0.16, 0.78, and 5% respectively. We groundscanbefairlyestimatedusingrandompositionsoverthe stress that absolute calibration uncertainty does not affects the sky. However this estimation does not account for extra-noise tSZ spectral signature, it only affects the overall Compton pa- and bias produced by physically correlated emissions, such as rameter normalization, which did not impact the estimation of radio sources contamination at low frequency, cosmic infrared T . e background (CIB) contamination at high frequency, and CMB Propagatingtheseuncertaintiesthroughourdataprocessing,we 3 G.Hurier:HighsignificancedetectionofthetSZeffectrelativisticcorrections Figure2.Fromlefttoright:stackofPlanckintensitymapsat100,143,353,545GHzcleanedbythe857and217GHzchannel, and MILCA tSZ map, centered on the location of Planck MCXC clusters for a low-T bin (top panel) and a high-T bin (bottom e e panel).Eachstackedmaprepresentsanareaof2◦×2◦. deduced that the calibration uncertainties induce a leakage of for temperature bin j, and Async a synchrotron spectrum with i thekSZeffectamplitudeintotSZeffectfluxmeasurementwith spectral index -1. Adjustable parameters are Yj, T , and Fj e sync a standard deviation of 0.2%. The kSZ is typically one order thesynchrotronamplitude. ofmagnitudefainterthanthetSZeffect,similarlytSZrelativis- tic corrections modify the tSZ spectral distorsion by (cid:39) 10%. TofitthevalueofT ineachtemperaturebins,weusedapro- Consequently,kSZeffectresidualsmayaffectthetSZrelativis- filelikelihoodapproache.Weuseaflatpriorforthesynchrotron ticcorrectionsmeasurementat(cid:39) 0.2%forasinglegalaxyclus- contamination: 0% < Fj < 15%. For each value of T and ter.Additionally,thekSZeffectisaveragingtozerowhenstack- sync e Fj , we compute through an unbiased linear fit the tSZ flux, ing galaxy clusters,the bias for agiven temperature bin is thus sync (cid:39) 0.2%/N . Consequently, the kSZ component contamination (cid:98)Yj,ofourmeasurement. cl canbesafelyneglected. Inthisanalysiswehaveuncertaintiesonboththemeasurement (mainly the CMB contamination) and the model (bandpass un- certainties),thistwosourcesofuncertaintieshavesimilarampli- 4.4. Systematicsproducedbybandpassandcalibration tudes.Consequentlyweusethefollowingestimator: uncertainties TheonlyPlanckchannelthatpresentsasignificantrelativeband- (cid:98)Yj =(cid:104)ATWA−Tr(CTW)(cid:105)−1(cid:104)ATW(cid:98)Fj(cid:105), (7) A pass uncertainty for the tSZ effect is the 217 GHz channel (Planck Collaboration results IX 2014). However, as we clean WithAthetSZtransmissionvector,CAtheAcovariancematrix, for CMB using this channel, we are not sensitive to this uncer- (cid:98)FjisthemeasuredtSZemissionlawandW =C−1istheinverse Fj tainty in the measurement of Te through relativistic corrections ofthenoisecovariancematrixon(cid:98)Fj.Thenwecomputetheχ2, tothetSZeffectspectraldistorsion. foreachcoupleofparameters(T ,Fj )as However, the relative calibration uncertainty is a major limi- CMB sync tation, as this uncertainty is higher at high frequency (Planck χ2 =(cid:16)(cid:98)Fj−Fj(cid:17)T(cid:16)C +(cid:98)Y2C (cid:17)−1(cid:16)(cid:98)Fj−Fj(cid:17). (8) CollaborationresultsVIII2014),wherethetSZrelativisticcor- Fj A rectionspresentasignificantdepartureformnon-relativistictSZ. Calibrationuncertaintiesare< 0.2%for100,143and217GHz Finally,weestimatethevalueofTe bymarginalizingoverFsjync channels,<1%at353GHzand5%at545and857GHz.Inthe andcomputingthefirst-ordermomentumofthelikelihoodfunc- following,weconsideruncertaintiesfromcalibrationandprop- tion,L = e−χ2/2,withrespecttoT .Wecomputetheuncertain- e agatethemtoouranalysis. tiesonT usingthesecond-ordermomentumofL. e 5.2. Averagedelectronictemperatures 5. Dataanalysis IfweassumeafirstorderapproximationofthetSZspectraldis- 5.1. Profilelikelihoodanalysis torsion,thenthebin-averagedtemperatureisgivenby, Todescribeourmeasurement,themostgeneralmodelreads (cid:80) TkYk Fj =YjA(T )+Fj Async, (6) Tej (cid:39) (cid:80)k Yek , (9) i i e sync i k with Ai(Te)beingthee(cid:82)xacttSZspectraldistorsionforaplasma where Tej is the averaged temperature for the bin j, Tek is the temperature,T ,Yj = ydΩtheintegratedComptonparameter temperatureofagivengalaxycluster,k,inthebin j,andYk the e 4 G.Hurier:HighsignificancedetectionofthetSZeffectrelativisticcorrections integratedComptonparameterofthegalaxyclusterk.However, tSZrelativisticcorrectionsarenotlinearwithrespecttoT ,thus e TjdiffersfromtheComptonparameterweightedaverageofTk. e e We estimated the discrepancy between the Compton parameter weightedtemperatureandtherealaveragebyperformingstacks oftherealtSZspectraldistorsionsintemperaturebins,forelec- tronic temperatures ranging from 0 to 15 keV and bin width rangingfrom1to10keV.Then,wefitforasingletemperature in each temperature bin using Eq. 8. We stress that the bias is thusdependentontheexperimentalsetting(frequencycoverage anddatacovariancematrix).WefoundthatinsmallT binsthis e discrepancyisnegligible,below0.05keVforbinwidth∆T <5 e keV. This supports the first order linear assumption when per- formingastackinganalysisofthetSZrelativisticcorrections. Figure4.MeasuredtemperaturefromtSZrelativisticcorrection forthegalaxyclusterswithX-rayspectroscopictemperature,as 5.3. Results afunctionofthetemperaturederivedfromX-rays.The1:1rela- tionisshownasasolidredline. Figure 3 shows the relation between the temperature derived from tSZ relativistic corrections and the temperature derived from X-ray luminosity. Fitting for the slope of this relation we obtain T = (1.65±0.45)T , with a significance of 3.7 σ inalltemperaturebins.InFig.4,thehighesttemperaturebinis e,tSZ e,X dominated by calibration uncertainties, which supports the cal- andconsistentwitha1:1relationat1.4σ.Consideringthelarge ibration origin of the observed high-temperature overall excess numberofgalaxyclustersinsideeachbin,theuncertaintiesover forthetSZrelativisticcorrections. theX-raytemperatureaverageissmallcomparedtotemperature bin width and tSZ temperature uncertainties. Thus, we did not displaytheseuncertainties. 6. Discussionandconclusion Wehaveperformedthefirsthighsignal-to-noiseratiodetection of the tSZ relativistic corrections at a significance level of 5.3 σ. We have considered potential contamination by radio and infraredemissionandshownthatthessourcesofcontaminations arenegligible. In this work, the tSZ relativistic corrections detection has been achieved through a statistical analysis of large galaxy cluster samples. In particular, we used several temperature bins to distinguish real tSZ relativistic corrections signature from systematic effects such as CIB contamination or calibration uncertainties. This analysis exhibits the complexity of the tSZ relativistic corrections recovery from a small number of frequencies due to the required cleaning of CMB and infrared astrophysicalcomponents. However, future CMB-experiments, such as COrE+1, which Figure3. Measured temperature from tSZ relativistic correc- willhavebettersensitivityoramorerefinedfrequencycoverage tion for the MCXC galaxy cluster sample, as a function of the will offer the possibility of performing better measurements, temperature derived from X-ray luminosity. The 1:1 relation is and scientific exploitation of the tSZ relativistic corrections shownasasolidredline. (Hurieretal.,inprep). The tSZ effect spectral distorsion is commonly used as a prior forgalaxyclusterdetection,thisanalysisshowsthatwearenow Figure4showstherelationbetweenthetemperaturederived reachingthelevelofaccuracywheretSZrelativisticcorrections from tSZ relativistic corrections and the temperature derived canbedetected.Thisimpliesthatgalaxyclusterdetectionbased from spectroscopic X-ray analyses. Fitting for the slope of this relationweobtain,T =(1.38±0.26)T ,withasignificance onthetSZspectraldistorsionneglectingrelativisticcorrections e,tSZ e,X might be biased toward low-temperature objects, and then bias of5.3σandconsistentwitha1:1relationat1.5σ.Uncertainties thedetectionofhigh-zhigh-massgalaxyclusters. overtheX-rayspectroscopictemperaturearesmallcomparedto thebinwidthandtSZtemperatureuncertainties.Consequently, theyaredisplayedonthefigure. Inbothcases,Figs.3and4,werecovertheexpectedrelation Acknowledgements between tSZ estimated temperatures and X-ray temperatures. We do not observe significant contamination produced by CIB The author thanks N.Aghanim & D.Poletti for useful discus- residuals, that would appears as an overestimation of the tSZ sionsandcomments.WeacknowledgethesupportoftheFrench temperatureinthelowesttemperaturebins.Weobserveinboth AgenceNationaledelaRechercheundergrantANR-11-BD56- casesthatthetSZtemperatureforthehighestX-raytemperature 015. bins overestimates the X-ray temperature. This bias might be produced by calibration uncertainties leading to an overall bias 1 http://hdl.handle.net/11299/169642 5 G.Hurier:HighsignificancedetectionofthetSZeffectrelativisticcorrections References Addison,G.E.,Dunkley,J.,&Spergel,D.N.2012,MNRAS,427,1741 Birkinshaw,M.1999,Phys.Rep.,310,97 Carlstrom,J.E.,Holder,G.P.,&Reese,E.D.2002,ARA&A,40,643 Cavagnolo,K.W.,Donahue,M.,Voit,G.M.,&Sun,M.2008,ApJ,682,821 Eckmiller,H.J.,Hudson,D.S.,&Reiprich,T.H.2011,A&A,535,A105 Ensslin,T.A.&Hansen,S.H.2004,ArXivAstrophysicse-prints Górski,K.M.,Hivon,E.,Banday,A.J.,etal.2005,ApJ,622,759 Hurier,G.,Aghanim,N.,Douspis,M.,&Pointecouteau,E.2014,A&A,561, A143 Hurier,G.,Macías-Pérez,J.F.,&Hildebrandt,S.2013,A&A,558,A118 Lagache,G.,Puget,J.-L.,&Dole,H.2005,ARA&A,43,727 Laganá,T.F.,Martinet,N.,Durret,F.,etal.2013,A&A,555,A66 Mahdavi,A.,Hoekstra,H.,Babul,A.,etal.2013,ApJ,767,116 Mittal,R.,Hicks,A.,Reiprich,T.H.,&Jaritz,V.2011,A&A,532,A133 Nozawa,S.,Itoh,N.,Kawana,Y.,&Kohyama,Y.2000,ApJ,536,31 Piffaretti,R.,Arnaud,M.,Pratt,G.W.,Pointecouteau,E.,&Melin,J.-B.2011, A&A,534,A109 PlanckCollaboration2015resultsVIII.2016,A&A,594,A8 PlanckCollaboration2015resultsXXIII.2016,A&A,594,A23 PlanckCollaboration2015resultsXXVII.2016,A&A,594,A27 PlanckCollaborationearlyI.2011,A&A,536,A1 PlanckCollaborationresultsI.2014,A&A,571,A1 PlanckCollaborationresultsIX.2014,A&A,571,A9 PlanckCollaborationresultsVI.2014,A&A,571,A6 PlanckCollaborationresultsVII.2014,A&A,571,A7 PlanckCollaborationresultsVIII.2014,A&A,571,A8 PlanckCollaborationresultsXXIX.2014,A&A,571,A29 Pointecouteau,E.,Giard,M.,&Barret,D.1998,A&A,336,44 Pratt,G.W.,Croston,J.H.,Arnaud,M.,&Böhringer,H.2009,A&A,498,361 Reichert,A.,Böhringer,H.,Fassbender,R.,&Mühlegger,M.2011,A&A,535, A4 Sunyaev,R.A.&Zeldovich,Y.B.1972,CommentsonAstrophysicsandSpace Physics,4,173 Vikhlinin,A.,Burenin,R.A.,Ebeling,H.,etal.2009,ApJ,692,1033 Wright,E.L.1979,ApJ,232,348 Zemcov,M.,Aguirre,J.,Bock,J.,etal.2012,ApJ,749,114 Zemcov,M.,Rex,M.,Rawle,T.D.,etal.2010,A&A,518,L16 Zhang,Y.-Y.,Finoguenov,A.,Böhringer,H.,etal.2008,A&A,482,451 6