ebook img

High Resolution Methods for the Aerodynamic Design of Helicopter Rotors by Alan Brocklehurst PDF

369 Pages·2013·29.91 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Resolution Methods for the Aerodynamic Design of Helicopter Rotors by Alan Brocklehurst

High Resolution Methods for the Aerodynamic Design of Helicopter Rotors by Alan Brocklehurst June 6, 2013 This Thesis is submitted in fulfillment of the requirements for the degree of Doctor of Philosophy CFD Laboratory School of Engineering Faculty of Science and Engineering University of Liverpool i Dedication This thesis is dedicated to my wife and family who I thank for their patience, support and understanding. ii Declaration I hereby declare that this thesis is a record of my own work and was undertaken on a part- time basis from 2003 to 2005 in the Department of Aerospace Engineering at the University of Glasgow, and from 2006 to 2013 in the School of Engineering, Faculty of Science and Engineering at the University of Liverpool. This thesis is original in content except where otherwise indicated. Alan Brocklehurst March 2013 iii Abstract The research reported here was driven by a desire to obtain a prediction method for helicopter rotor performance that would have sufficient resolution to evaluate changes to the design of the blade tip. This thesis examines the effectiveness of Computational Fluid Dynamics (CFD) methods to solve this problem. An accurate, high-fidelity prediction is essential to quantify the performance of a new rotor tip shape which hitherto could not be properly assessed by a traditional approach. The CFD method lends itself to the resolution of the compressible, viscous flow around the helicopter blade tip. Starting from the surface shape required to generate a grid, together with the flow conditions, the flowfield naturally evolves from the numericalsolutionofthe Navier-Stokesequations,basedon the principles ofconservationofmass,momentum and energy. Thus both the flow physics and the geometry of the tip are fully modelled by this technique. In order to demonstrate the process, the Helicopter Multi-block solver (HMB) is used to predict the per- formance of a series of example tail rotor configurations. The various tip shapes are evaluated and compared, initially using an Euler approach to economically cover a wide range of designs, before going on to apply the Navier-Stokes method. The concepts behind each of the tail rotor blade (TRB) tip designs are explained in the thesis. As further computational resources became available, the datum blade, and the down-selected Ku¨chemann-like and anhedral-Ku¨chemann tip blades were the subject of Navier-Stokes predictions. Early in thiswork,thenumericalmethodwasvalidatedagainstpublisheddata,andwasalsocomparedtoexistingmodel tailrotortestdataforbladeshavingdifferenttwist. Inthecentralpartofthisthesis,thecomputationalresults are further analysed to reveal the influence of blade design changes on the time-averagedinduced flow, and to extract more familiar aerodynamic parameters such as the angle of attack from the 3D rotor computations. Steady Navier-Stokes predictions were obtained over a range of pitch angles such that the induced power factor could be reliably determined and the trends on profile power could also be established for the selected tip shapes. The research reported in this thesis has established that this numerical approach provides a good prediction of rotor performance, adequately resolving the flow-field and tip aerodynamics. Sincetheassessmentofhelicopterrotorsmayinvolveadditionalinteractionaleffects,oradegreeofunsteady flow due to operating at high pitch angles near the onset of stall, an unsteady case was also demonstrated for a tail rotor blade adjacent to a fin. It is concluded that only by using a CFD approach can a sufficiently high-fidelity prediction be obtained for helicopter rotor aerodynamics to allow progressiveenhancements of future helicopter blade designs. iv Acknowledgements The writer wishes to thank his employers,Westland Helicopters Ltd (now partof AgustaWestland), andin particular, Rob Harrisonand Bob Hansford, for their help and support, and for giving permission to use data from the model rotor tests. More recently, Pierre Abdel-Nour, Antonio Saporiti, and Andrea D’Andrea have also given their support to this research, prior to my retirement on 6th April 2011. The assistance of Richard Markiewicz of DSTL is also gratefully acknowledgedfor helping to release data into the public domain for the Twisted Model Tail Rotor experiments which were carried out in the 1980’s with MoD funding. Special thanks are due to Professor George Barakos for his supervision, help and encouragement, and his valuable time which was so freely given throughout the course this research. His enthusiasm for this subject is infectious and has sustained me through this part-time PhD programme. I have benefited greatly from our many discussions. Sincere thanks are also due to Professor Ken Badcock for his help and support throughout this period of study, and to Rene Steijl and Mark Woodgate for their patience and assistance. The opportunity to meet and discuss many aspects of rotor aerodynamics with other researchers in the CFD lab, both in the early days at Glasgow and subsequently at Liverpool, is also much appreciated. v CONTENTS CONTENTS Contents 1 Introduction 1 1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.1 Review of Fixed-Wing Tip Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.2 Review of Helicopter Tip Shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.4.3 Conclusions from Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 2 Numerical Methods 93 2.1 Helicopter Multiblock Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 2.2 Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 2.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 2.4 Wake Visualisation and Vortex Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 2.5 2D Aerofoil Code - MSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3 Validation 100 3.1 Aerofoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 3.1.1 NACA 23012,M=0.2, Re=3 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 3.1.2 NACA 0012, M=0.5, Re=5 million . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 3.1.3 NACA 0012, M=0.5, Effect of Reynolds Number . . . . . . . . . . . . . . . . . . . . . . 111 3.1.4 NACA0012, M=0.5, Re=1 million, Unsteady Stall . . . . . . . . . . . . . . . . . . . . . 114 3.2 Grid Sensitivity Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 3.2.1 Model Tail Rotor - Hover - Euler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 3.3 UH60A Model Rotor with Swept Back Tip in Hover . . . . . . . . . . . . . . . . . . . . . . . . 122 3.3.1 Rotor Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.3.2 Aerofoils, and Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.3.3 Blade Drafting and Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.3.4 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.3.5 Comparison with Measured Pressure Distributions . . . . . . . . . . . . . . . . . . . . . 125 3.4 WHL Model Tail Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 3.4.1 Geometry and Grid for Model Tail Rotor Comparisons . . . . . . . . . . . . . . . . . . . 134 3.4.2 Performance Comparisons (Zero Twist) . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 3.4.3 Predicted and Measured Vortex Locations (Zero Twist) . . . . . . . . . . . . . . . . . . 137 3.4.4 Further Performance Comparisons (0, 8, 16 degrees Twist) . . . . . . . . . . . . . . . . 145 3.4.5 Comparison of Predicted Loading and Effect of Twist . . . . . . . . . . . . . . . . . . . 147 4 Tip Design 154 4.1 Design Aims. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.2 Tip Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.2.1 Datum Blade, TRB-000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4.2.2 TRB-001, Ku¨chemann-Type Tip (0.25c Wide) . . . . . . . . . . . . . . . . . . . . . . . 159 4.2.3 TRB-002, Ku¨chemann-Type Tip (0.5c Wide) . . . . . . . . . . . . . . . . . . . . . . . . 160 4.2.4 TRB-003, 70-degree Swept-Edge Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 4.2.5 TRB-004, Rectangular Tip with 20 degrees of Anhedral . . . . . . . . . . . . . . . . . . 161 4.2.6 TRB-005, Ku¨chemann-Type Tip (0.25c Wide) with Anhedral . . . . . . . . . . . . . . . 162 4.2.7 TRB-006, Rectangular with Volume-of-Revolution Tip Cap . . . . . . . . . . . . . . . . 162 4.2.8 TRB-007, Parabolic Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 4.2.9 Thoughts for a Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4.3 Tip Design Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 vi CONTENTS CONTENTS 5 Euler Evaluation 166 5.1 Comparison of Tip Shapes in Hover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.1.1 Thrust and Induced Power Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 5.1.2 Loading Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 5.1.3 Vortex Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 5.2 Selection of Tip Shapes for Further Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 5.3 Forward Flight Comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 5.4 Summary of Euler Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6 Navier-Stokes Hover 206 6.1 Tip Shapes and Grid Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 6.2 Navier-Stokes Evaluation at Low-to-Moderate Pitch . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.1 Performance Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.2.2 Loading Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 6.2.3 Vortex Trajectories - Comparisons of Euler and Navier-Stokes . . . . . . . . . . . . . . . 218 6.2.4 Vortex Trajectories - Navier-Stokes - Effect of Tip Shape . . . . . . . . . . . . . . . . . 223 6.3 Flowfield Variations at High Pitch Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 6.4 Performance Comparisons at High Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 6.4.1 Performance Near Stall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 6.4.2 Loading and Pressure Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 6.4.3 Stall Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 7 Further Analysis of CFD solutions 263 7.1 Angle of Attack from Time AveragedDownwash . . . . . . . . . . . . . . . . . . . . . . . . . . 264 7.2 Angle of Attack from Stagnation Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 7.3 Angle of Attack from Cp Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 7.4 Surface Pressures at Tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 8 Application of Unsteady Navier-Stokes 286 8.1 Tail Rotor Fin Blockage Test Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 8.2 Unsteady Isolated Rotor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 8.3 Unsteady Navier-Stokes - Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 9 Conclusions and Outlook 300 A 2D Euler Grid Sensitivity 319 B 3D Wing Exploratory Study 324 C Further Model Rotor Validation (R/c=13.7) 329 D Smoothed Co-ordinates for SC1095 and SC1095R8 334 E Co-ordinates for NACA 23012 with Sharp T.E. 337 F Co-ordinates for NACA 0012 with Sharp T.E. 339 G Rotor-Analyser Fortran Program Listing 341 vii CONTENTS CONTENTS Nomenclature Latin A Area of rotor disk AR Aspect ratio AoA Angle of Attack b wing span c chord C Chordwise Force Coefficient c C Drag Coefficient D C Sectional Drag Coefficient d C Lift Coefficient L C Sectional Lift Coefficient l C , C Moment Coefficient M m C Normal Force Coefficient n C Rotor Thrust Coefficient, Non-dimensional ratio of thrust to rotor disk area, density and T tip-speed squared, T 12ρS(RΩ)2 C /s Blade Loading Coefficient, Thrust Coefficient divided by Solidity T C Pressure Coefficient p C Power Coefficient P C Torque Coefficient, Non-dimensional ratio of torque to rotor disk area, density, tip-speed Q squared and length, Q 12ρSR(RΩ)2 e Internal energy of fluid element E Total Energy per unit volume f Rotation frequency FoM FigureofMerit,Ratioofpowerrequiredtoproducethrust,P tototalpowerrequired,P+P p C3/2 where Pp is the profile power to overcome aerodynamic drag of blades, 2CTQ. k Turbulent kinetic energy in k ω model − k constant k Fin Blockage Ratio, k =(Fin Force)/(Tail Rotor Shaft Thrust B B k Induced power factor i M Mach number N Number of blades b P Power p Pressure q Heat flux r Radial station along blade R Length of blade, radius of rotor, Residual Re Reynolds number, =U.c/ν S Area s rotor solidity, ratio of nominal blade area to rotor-disc area, Nbc. πR T Temperature t time U Velocity in a generic direction u Flow velocity in x-direction V Tip speed tip v Flow velocity in y-direction v Induced velocity i w Flow velocity in z-direction X A generic direction x x direction, or fractional distance along rotor blade, x=r/R y y direction z z direction viii CONTENTS CONTENTS Greek α Angle of attack β Rotor Blade Flapping Angle (Coning angle, β ) o γ Lock number, or Shaft Tilt Angle ∆ Anhedral Angle µ Advance Ratio, Ratio of forward velocity to blade tip velocity ξ Vorticity ρ Density λ Induced inflow ratio ν Kinematic Viscosity τ Viscous stress tensor σ Relative Density, also used for Rotor Solidity when used to divide USA CT (ie without the 1/2), CT/σ θ Local pitch angle, θ referenced to rotor centre o ψ Azimuth angle Ω Angular Velocity ω Specific Dissipation (defines scale of turbulence), ν =k/ω) T Gradient ∇ Subscripts and Superscripts avg Average c Average value of c c Cosine term s Sine term o Constant term B Blockage F Fin MR Main Rotor p Profile Drag or Power T, TR Tail Rotor tip Blade tip conditions W, WT Wind or wind tunnel Freestream conditions ∞ ix CONTENTS CONTENTS Acronyms and Definitions AHS American Helicopter Society AIAA American Institute of Aeronautics and Astronautics AW AgustaWestland (part of the Finemecanica Group) AW (Yeovil) Formerly Westland Helicopters Ltd, Yeovil, Somerset. BERP British Experimental Rotor Programme BET Blade ElementTheory - considering the spanof the blade as sep- arate strips. B´ezier curves Usuallydefinedby4 controlpoints,locatedatthe endpoints and with 2 intermediate points to define the gradient at the ends. B-splines Basis-splines are a more general form of B´ezier curves, allowing local knots to have more weight to control the curve. BVI Blade Vortex Interaction CFD Computational Fluid Dynamics CFL Courant-Friedrichs-Lewycondition DARP UK Defence Applied Research Programme Disk loading Thrust divided by rotor-disk area ERF European Rotorcraft Forum FoM Figure of Merit GOAHEAD EuropeanresearchprogrammefortheGenerationOfanAdvanced Helicopter ExperimentalAerodynamicDatabasefor CFDValida- tion HART Higher harmonic control Aeroacoustics Rotor Test HB Harmonic Balance HMB Helicopter Multiblock Solver LE Leading Edge MoD Ministry of Defence N-S Navier-Stokes NURBS Non-Uniform Rational B-Splines PIV Particle Image Velocimetry RAE Royal Aircraft Establishment REACT Rotor Embedded Active Control Technology SST Shear Stress Transport TE Trailing Edge TM Time Marching TRB Tail Rotor Blade US, USA United States of America Vorticity Ameasureoftherotationoffluidelementsinfluidflow. Givenas ξ = V =2ω ∇× WHL Westland Helicopters Limited, Yeovil, Somerset. x

Description:
a variation of aerofoils (a new root section, and existing high-lift mid-Mach number aerofoil and a thinner, less cambered . Results from HMB are also compared to the MSES aerofoil code. Tecplot .. The wind tunnel tests showed some small benefits, but at the time the results were regarded as rather
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.