ebook img

High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging. PDF

0.41 MB·English
by  PierceMark
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging.

JournalofVisualizedExperiments www.jove.com VideoArticle High-resolution Fiber-optic Microendoscopy for in situ Cellular Imaging Mark Pierce1,Dihua Yu2,Rebecca Richards-Kortum1 1DepartmentofBioengineering,RiceUniversity 2DepartmentofMolecularandCellularOncology,TheUniveristyofTexasM.D.AndersonCancerCenter Correspondenceto:[email protected] URL:http://www.jove.com/details.php?id=2306 DOI:10.3791/2306 Keywords:Bioengineering,Issue47,Opticalimaging,intravitalmicroscopy,invivomicroscopy,endoscopicmicroscopy,fiberbundle, DatePublished:11/1/2011 Thisisanopen-accessarticledistributedunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution, andreproductioninanymedium,providedtheoriginalworkisproperlycited. Citation:Pierce, M.,Yu, D.,Richards-Kortum, R. High-resolutionFiber-opticMicroendoscopyforinsituCellularImaging.J.Vis.Exp.(47),e2306, DOI:10.3791/2306(2011). Abstract Manybiologicalandclinicalstudiesrequirethelongitudinalstudyandanalysisofmorphologyandfunctionwithcellularlevelresolution. Traditionally,multipleexperimentsareruninparallel,withindividualsamplesremovedfromthestudyatsequentialtimepointsforevaluationby lightmicroscopy.Severalintravitaltechniqueshavebeendeveloped,withconfocal,multiphoton,andsecondharmonicmicroscopyall demonstratingtheirabilitytobeusedforimaginginsitu1.Withthesesystems,however,therequiredinfrastructureiscomplexandexpensive, involvingscanninglasersystemsandcomplexlightsources.Herewepresentaprotocolforthedesignandassemblyofahigh-resolution microendoscopewhichcanbebuiltinadayusingoff-the-shelfcomponentsforunderUS$5,000.Theplatformoffersflexibilityintermsofimage resolution,field-of-view,andoperatingwavelength,andwedescribehowtheseparameterscanbeeasilymodifiedtomeetthespecificneedsof theenduser. Weandothershaveexploredtheuseofthehigh-resolutionmicroendoscope(HRME)ininvitrocellculture2-5,inexcised6andlivinganimal tissues2,5,andinhumantissuesinvivo2,7.Usershavereportedtheuseofseveraldifferentfluorescentcontrastagents,includingproflavine2-4, benzoporphyrin-derivativemonoacidringA(BPD-MA)5,andfluoroscein6,7,allofwhichhavereceivedfull,orinvestigationalapprovalfromthe FDAforuseinhumansubjects.High-resolutionmicroendoscopy,intheformdescribedhere,mayappealtoawiderangeofresearchersworking inthebasicandclinicalsciences.Thetechniqueoffersaneffectiveandeconomicalapproachwhichcomplementstraditionalbenchtop microscopy,byenablingtheusertoperformhigh-resolution,longitudinalimaginginsitu. VideoLink Thevideocomponentofthisarticlecanbefoundathttp://www.jove.com/details.php?id=2306 Protocol 1. MicroendoscopeAssembly Thehigh-resolutionmicroendoscopedescribedhere(figure1a)shouldbeconsideredasabaseconfigurationwithseveralvariationspossiblein assemblyandapplication.Wedescribeindetailhereanembodimentoftheplatformwhichisdesignedtobeusedwithproflavineasafluorescent contrastagent.Proflavineisabrightnuclearstainwithpeakabsorptionandemissionwavelengthsof445nmand515nmrespectively.Theuseof othercontrastagentswillrequiretheusertoselectexcitation,emission,anddichroicfiltersappropriately.Severalelementsofthehigh-resolution microendoscopearegenericandmaybeobtainedfrommultiplevendors.Forexample,optomechanicalpositioningcomponentsareavailable fromThorlabs,Newport,Linosamongothers.CompactCCDcamerasareavailablefromcompaniesincludingPointGreyResearch,Prosilica, andRetiga;camerasensitivityshouldbechosenwithconsiderationofthebrightnessofthefluorophoretobeused,aswellasthedesiredframe rate.High-powerlightemittingdiodes(LEDs)maybeobtainedfromLuxeon,Cree,andNichiaamongothers.Fiber-opticbundlesareavailable fromSumitomo,Fujikura,andSchott.Inselectingcomponentsforaspecificapplication,theusershouldconsidertheinherentrelationships involvedinfluorescencemicroscopybetweenfluorophoreconcentration,photobleaching,illuminationintensity,camerasensitivity,gain,and exposuretime. 1. Connectthe6"cagerodstothe1.5"cagerods,toformapairof7.5"longrods.Screwtheserodsintoonefaceofthefoldmirrorunit.Screw the0.5"rodsintotheoppositeface.Slidethecagecubeontothecagerods,viathetwolowerthroughholes.Screwthe2"rodsintotheside faceofthecagecube(figure1b). 2. AttachthecameratoacageplatebyusingaC-mounttoSM1adapter.Securethecageplateonthe0.5"cagerods,flushwiththefaceofthe foldmirrorunit. 3. Insertthe"tube"lensintoa3"longlenstubeandsecurethelenswitharetainingring.Thefocallengthofthelensshouldbeselectedsuch thatthecoresofthefiber-opticbundlearesampledbyatleasttwopixelswhenprojectedontothecamera.Droptheemissionfilterintothe tubeontopofthefirstretainingring,andaddanotherringtosecurethefilterinplace.Observethefilterorientationconventionindicatedby thefiltermanufacturer.ScrewthelenstubeintothesideofthecagecubenearesttotheCCDcamera.Notethatinfigure1c,thislensand filterareshownwithoutthe3"lenstubeforclarity. Copyright©2011 CreativeCommonsAttributionLicense January2011| 47 |e2306|Page1of4 JournalofVisualizedExperiments www.jove.com 4. Connectthecameratoacomputerandviewtheimageonscreen.Directthecageassemblyatadistantobjectandslidethecagecubealong therailsuntilanimageappearsinfocus.Lockdownthecagecubeatthislocation.(Thisisasimplemethodofensuringthatthetubelenswill formafocusedimagewhencombinedwiththeinfinity-correctedobjectivelens). 5. Insertthedichroicmirrorintotheholderandplaceat45°inthecagecube. 6. Screwtheobjectivelens,viaaRMStoSM1threadadapterandanadjustablelenstube,intothefaceofthecagecubeoppositethetubelens holder.Az-translatormaybeusedinplaceoftheadjustablelenstubeforeasierfocusing.ScrewanSMAconnectorintoacageplateand mountthisontherods,approximatelyattheworkingdistanceoftheobjectivelens. 7. MountanLEDonacageplateandslideontotheendofthe2"rods.Addalenstoa0.5"lenstubesuchthatwhenthistubeisscrewedinto thesideofthecagecube,itwillformanimageoftheLEDthatfillsthebackapertureoftheobjectivelens.This(Kohlerillumination) configurationwillensurethattheproximalfaceofthefiber-opticbundleisuniformlyilluminated.Addtheexcitationfiltertothe0.5"lenstube andsecureinplacewitharetainingring(figure1c). 8. AttachaSMAconnectortoafiber-opticbundle.ScrewtheSMAconnectorizedbundleintotheSMAreceptaclemountedonthecagerods. Directthedistalendofthebundletowardsabroadbandlightsource(fluorescentlightingwillsuffice)andobservetheimageofthebundle proximalfaceontheCCDcamera.Adjustthepositionoftheobjectivelensbyscrewinginoroutofthecagecubeuntilthefiberbundleimage appearsinfocus.Theindividualcoresshouldbeclearlyvisible(Figure2). 2. GRIN LensAssembly Thespatialresolutionofthemicroendoscopecanbeincreasedbyattachingamicro-lensorlensassemblytothedistaltipofthefiberbundle. Theseopticsareconfiguredsuchthatinsteadofplacingthebundletipdirectlyontothetissue,thetipisimagedontothetissuesurfacewith demagnification,therebyincreasingthespatialsamplingfrequencyimposedbythelight-guidingcoresofthefiberbundle.Thedegreeof demagnificationcorrespondstotheincreaseinspatialresolution,andatthesametime,toaproportionatedecreaseinfield-of-view.Gradient index(GRIN)lenscomponentsarecompatiblewithfiber-opticsandareavailablefromGrinTech,NSG,Schott,amongothers,andcanbedirectly bondedtothedistaltipofafiberbundle. 1. SelectaGRINlenswiththedesiredmagnificationandworkingdistanceforyourapplication.Ensurethatthediameterofthelensexceeds thatofthefiberbundleyouplantoworkwith.WerecommendthatthefiberbundleandGRINlensbemountedonseparate3-axismanual positioningstagesunderalowpowermicroscopeorstereoscopeforaccuratealignmentpriortobonding. 2. Placeadropofopticaladhesive(eg.NorlandUVcuringadhesive)oneitherthelensorbundleface.Bringthetwocomponentsintocontact byusingthemanualpositioners.ExposetheinterfacetoUVlightforthedoserecommendedbythemanufacturer. 3. ToprotecttheGRINlensandthebondedinterface,ashortlengthofaluminumcapillarytubing(SmallPartsInc.)canbeusedtoenclosethe joint.Slidethetubingoverthejointandsecureinplacewithepoxy.Heatshrinktubingcanbeusedtofinishtheassembly. 3. Microendoscope Imaging 1. Applythecontrastagenttothecellsortissuetobeimaged.Withproflavine(0.01%w/vinPBS),invitroimagingofcellsinculturecanbe performedbybriefincubation(<1minute)andthoroughrinsing.Imagingofexvivotissuespecimensorinvivotissuesispossiblefollowing topicalapplicationofthedye.Uptakeofproflavineundertheseconditionshasbeenfoundtobenear-instantaneous,withimagingpossible withinafewsecondsandlastingforseveralminutes. 2. Placethefiberopticbundleinlightcontactwiththesampletobeimaged.Whenimagingcellsincultureorexvivotissuespecimens,we recommendmountingthedistalendofthefiberbundleinasecurefixturewithmanualpositioningstagesonXYZaxesforstabilityduring imaging. 4. Representative Results: Whenassembledcorrectly,themicroendoscopewilloperateasanepi-fluorescencemicroscope,relayedthroughacoherentfiber-opticbundle. Foroptimalimagingresults,attentionshouldbepaidtoensuringthatthreekeyconditionsaremet: 1. TheproximalfaceofthefiberbundleshouldbeimagedontotheCCDcamerawithoutdefocus,inordertoachievethefullresolutionofthe system.Figure2a,b,cdemonstrateaportionofafiberbundleimagedwithpoorfocus,slightdefocus,andgoodfocus,respectively.The optimumfocusisfoundbyadjustingtheaxialpositionoftheobjectivelensrelativetothebundleface. 2. Theproximalfaceofthefiberbundleshouldbeuniformlyilluminatedoveritsfulldiameter(field-of-view).AsdescribedintheProtocolText (1.7),thisisachievedbyconfiguringtheilluminationopticsforKohlerillumination.Figure2dshowsanimageacquiredwhenauniform fluorescentsampleisilluminatedinthispreferredconfiguration,withFigure2edemonstratingthecorrespondingresultundercritical illumination.Inthelattercase,thestructureoftheLEDisimagedontothefiberbundleface,resultingintheappearanceofthisunwanted patternsuperimposeduponthetruesamplestructure. 3. Boththeproximalanddistalfacesofthefiberbundleshouldbecleanandfreeofscratchesandchips.Figure2fdemonstratesthepresence ofdebrisattachedtothebundleface,withdamageintheformofasmallchipat5o'clockonthefiberperimeter.Debriscanberemovedfrom thebundlefacesbycleaninginthesamefashionasconventionalfiber-opticconnectors,withlenspaperandisopropanol,orstandard fiber-opticcleaningtools.Ifeitherendofthefiberbundleisscratchedorchipped,orifthebundlebreaksalongitslength,thefacemaybe polishedflatbystandardmanual,ormechanicalpolishingtechniques.Werecommend12-15μmlappingpaperforaninitialcoarsepolish, withafinalpolishon0.5-1.0μmpaper. Figure3ademonstratesimagingof1483cellsinvitro,followinglabelingwithproflavineandlightplacementofthebarefiberbundleonthe sample.Figure3bdemonstratestheimprovementinspatialresolutionandreductioninfield-of-viewprovidedbya2.5xGRINlensbondedtothe bundletip.Movie1demonstratesinvivoimagingofthemammaryfatpadinamousemodel.Here,afiberbundlewith0.5mmouterdiameter (330μmfield-of-view)waspassedthrougha21-gaugeneedleandadvancedintothetissue.Fatcellsareclearlyvisible,withmotionduetothe cardiaccycleapparentinthisacquisitionat15framespersecond.Figure3cdemonstratesimagingoftheoralmucosainahealthyhuman volunteer,thistimeusingalargerfiberbundlewith1.5mmouterdiameter(1.4mmfield-of-view).Inallexamplesshown,proflavinewasusedas anuclearlabelingfluorescentcontrastagent. Copyright©2011 CreativeCommonsAttributionLicense January2011| 47 |e2306|Page2of4 JournalofVisualizedExperiments www.jove.com Figure1.Assemblingthehigh-resolutionmicroendoscope(HRME).(a)SchematicdiagramoftheHRMEsystem.(b)Assemblyofthemain optomechanicalsupportstructure.(c)Additionofopticalelements,illuminationLED,andCCDcamera.(d)PhotographoftheHRMEsystem, packagedina10"x8"x2.5"enclosure. Figure2.SettinguptheHRME.Examplesofimagingwiththefiber-opticbundlein(a)poorfocus,(b)closetogoodfocus,(c)idealfocus.In(d),a uniformfluorescenttargetatthebundle'sdistaltipisimagedunderKohler(uniform)illumination.(e)Auniformfluorescenttargetimagedunder criticalillumination,withthesourcestructureapparentontheobject.(f)Loosetissueandcellscansticktothefiberbundleface,whichisalso pronetominordamageatitsperiphery. Figure3.ImagingwiththeHRME.(a)1483cellsinvitro,imagedwithabarefiberbundle(IGN-08/30)followinglabelingwithproflavine0.01% (w/v).(b)Thesame1483cellcultureasshownin(a),imagedwithafiberbundlewith2.5xGRINlensattached.(c)Imageofnormalhumanoral mucosainvivo,followingtopicalapplicationofproflavine0.01%(w/v). Movie1.Imagingthemammaryfatpadofamouseviainsertionofa450μmouterdiameterfiberbundlewithinthelumenofa21-gaugeneedle passedintothetissue.Proflavine0.01%(w/v)wasdeliveredtotheimagingsitethroughthesameneedlepriortoinsertionoftheimagingfiber. Clickheretowatchvideo Copyright©2011 CreativeCommonsAttributionLicense January2011| 47 |e2306|Page3of4 JournalofVisualizedExperiments www.jove.com Discussion Thehigh-resolutionmicroendoscopytechniquedescribedhereprovidesresearchersinthebasicbiomedicalandclinicalresearchareaswitha flexible,robust,andcost-effectivemethodforvisualizingcellulardetailinsitu.Wehavedescribedaprotocolforassemblingtheimagingsystem anddemonstrateditsuseincellcultureinvitro,andinanimal,andhumantissuesinvivo.Whiletheimagingresultspresentedhereused proflavineasafluorescentcontrastagent,othergroupshavedemonstratedversionsofthesystemwithLEDilluminationwavelengthsandfilters chosentomatchexcitation/emissionspectraofotherdyes5-7. Resolutionandfield-of-viewareinitiallydeterminedbythecore-to-corespacingandimagingdiameterofthefiber-opticbundle.Wehaveused bundleswithapproximately4μmcore-corespacing,andimagingdiametersof330μm(movie1),720μm(Figure2,Figure3a,b),and1400μm (Figure3c).Thesmallerbundlescanbepassedthroughnarrowergaugeneedlesandaresignificantlymoreflexiblethanthelargerfibers.Weand others8have,insomecases,notedtheappearanceofautofluorescenceemissionsfromthefiberbundleitself.Whenattemptingtoexcite fluorophoresatUVwavelengths,orcollectemissionintheredspectralrange,attentionshouldbepaidtotheleveloffiberbundle autofluorescencecontributingtotheoverallmeasuredsignal. Whilemostofthehigh-resolutionmicroendoscopyworkreportedto-datehasusedabarefiberbundle,additionalmagnificationcanbeprovided byuseofGRINlensesbondedtothedistaltip.GRINlensesofferastraightforwardandeconomicalwaytoincreasespatialresolution,though theirsusceptibilitytoopticalaberrationsandlimitedNAiswellrecognized.IfGRINlensperformanceisinadequateforaparticularapplication, hybridGRIN/sphericallensobjectives9orminiatureobjectivelensassemblies10-11canbeemployed. Thehigh-resolutionmicroendoscopedescribedhereessentiallyoperatesasawide-fieldepi-fluorescencemicroscope;thereforenooptical sectioning(asinconfocalornonlinearmicroscopy)istobeexpected.Inourexperience,using455nmexcitationlightandtopicalproflavineasa contrastagent,lightisprimarilycollectedfromadepthcorrespondingtoafewcelllayers. Thisprotocoloughttoenablethereadertoassemblethehigh-resolutionmicroendoscopeonthebenchtop,withacompactfootprintof10"x8".If desired,thesystemmaybeenclosedinaboxandtheelectricalcomponents(LEDandcamera)poweredbyabatterypack(Figure1d).Many compactcamerascanbepoweredbytheIEEE-1394(Firewire)andUSBportsofthehostcomputer. Disclosures MPandDYhavenothingtodisclose.RRKholdspatentsrelatingtomicroendoscopicimagingplatforms. Acknowledgements ThisresearchwaspartlyfundedbytheNationalInstitutesofHealth,grantR01EB007594,theDepartmentofDefenseBreastCancerResearch Program,proposalBCO74699P7,andtheSusanG.KomenFoundationgrant26152/98188972. References 1. Pierce,M.C.,Javier,D.J.,Richards-Kortum,R.Opticalcontrastagentsandimagingsystemsfordetectionanddiagnosisofcancer,Int.J. Cancer123,1979-1990(2008). 2. Muldoon,T.J.,Pierce,M.C.,Nida,D.L.,Williams,M.D.,Gillenwater,A.,Richards-Kortum,R.Subcellular-resolutionmolecularimaging withinlivingtissuebyfibermicroendoscopy.Opt.Express15,16413-16423(2007). 3. Muldoon,T.J.,Anandasabapathy,S.,Maru,D.,Richards-Kortum,R.High-resolutionimaginginBarrett'sesophagus:anovel,low-cost endoscopicmicroscope.Gastrointest.Endosc.68,737-744(2008). 4. Muldoon,T.J.,Thekkek,N.,Roblyer,D.,Maru,D.,Harpaz,N.,Potack,J.,Anandasabapathy,S.,Richards-Kortum,R.Evaluationof quantitativeimageanalysiscriteriaforthehigh-resolutionmicroendoscopicdetectionofneoplasiainBarrett'sesophagus.J.Biomed.Opt.15; 026027(2010). 5. Zhong,W.,Celli,J.P.,Rizvi,I.,Mai,Z.,Spring,B.Q.,Yun,S.H.,Hasan,T.Invivohigh-resolutionfluorescencemicroendoscopyforovarian cancerdetectionandtreatmentmonitoring.Br.J.Cancer101,2015-2022(2009). 6. Dubaj,V.,Mazzolini,A.,Wood,A.,andHarris,M.Opticfibrebundlecontactimagingprobeemployingalaserscanningconfocalmicroscope. J.Microsc.207,108-117(2002). 7. Dromard,T.,Ravaine,V.,Ravaine,S.,Lévêque,J-L.,Sojic,N.Remoteinvivoimagingofhumanskincorneocytesbymeansofanoptical fiberbundle.Rev.Sci.Inst.78,053709(2007). 8. Udovich,J.A.,Kirkpatrick,N.D.,Kano,A.,Tanbakuchi,A.,Utzinger,U.,Gmitro,A.F.Spectralbackgroundandtransmissioncharacteristicsof fiberopticimagingbundles,Appl.Opt.47,4560-4568(2008). 9. Barretto,R.P.J.,Messerschmidt,B.,Schnitzer,M.J.Invivofluorescenceimagingwithhigh-resolutionmicrolenses,Nat.Methods6,511-512 (2009). 10. Rouse,A.R.,Kano,A.,Udovich,J.A.,Kroto,S.M.,Gmitro,A.F.Designanddemonstrationofaminiaturecatheterforaconfocal microendoscope,Appl.Opt.43,5763-5771(2004). 11. Kester,R.T.,Christenson,T.,Richards-Kortum,R.,Tkaczyk,T.S.Lowcost,highperformance,self-aligningminiatureopticalsystems,Appl. Opt.48,3375-3384(2009). Copyright©2011 CreativeCommonsAttributionLicense January2011| 47 |e2306|Page4of4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.