Mon.Not.R.Astron.Soc.342,673–689(2003) High-resolution calculations of merging neutron stars – II. Neutrino emission (cid:2) S. Rosswog1 and M. Liebendo¨rfer2 1DepartmentofPhysicsandAstronomy,UniversityofLeicester,LeicesterLE17RH 2CITA,UniversityofToronto,Toronto,Ontario,CanadaM5S3H8 Accepted2003February25.Received2003February11;inoriginalform2002November22 D o w n lo ABSTRACT a d The remnant resulting from the merger of two neutron stars produces neutrinos in copious ed amounts. In this paper we present the neutrino emission results obtained via Newtonian, fro m high-resolutionsimulationsofthecoalescenceevent.Thesesimulationsusethree-dimensional h smoothedparticlehydrodynamicstogetherwithanuclear,temperature-dependentequationof ttps stateandamultiflavourneutrinoleakagescheme.Wepresentthedetailsofourscheme,discuss ://a c a theneutrinoemissionresultsfromaneutronstarcoalescenceandcomparethemwiththecore- d e collapse supernova case where neutrino emission has been studied for several decades. The m ic averageneutrinoenergiesaresimilartothoseinthesupernovacase,butcontrarytothelatter, .o u p the luminosities are dominated by electron-type antineutrinos that are produced in the hot, .c o neutron-rich,thickdiscofthemergerremnant.Thecoolerpartsofthisdisccontainsubstan- m /m tialfractionsofheavynuclei,which,however,donotinfluencetheoverallneutrinoemission n ra results significantly. Our total neutrino luminosities from the merger event are considerably s /a lowerthanthosefoundinpreviousinvestigations.Thisimposesconstraintsontheabilityof rtic neutron star mergers to produce a gamma-ray burst via neutrino annihilation. The neutrinos le -a areemittedpreferentiallyalongtheinitialbinaryrotationaxis,aneventseen‘pole-on’would bs appearmuchbrighterinneutrinosthanasimilareventseen‘edge-on’. tra c t/3 Keywords:densematter–hydrodynamics–neutrinos–methods:numerical–stars:neutron– 42 /3 gamma-rays:bursts. /6 7 3 /9 6 4 ceed via extremely neutron-rich and short-lived isotopes; and the 35 1 INTRODUCTION 6 initialneutronstarmagneticfieldsareexpectedtobeamplifieddur- b Binary pulsars such as the famous PSR 1913+16 are fascinating ing the merger to a strength, B ∼ 1017 G, so that their feedback y g u laboratoriesforextremephysics.Soonafteritsdiscoveryitwasre- on the fluid flow becomes dynamically important (Thompson & e s alized that the orbit of PSR 1913+16 is decaying due to energy Duncan 1993; Thompson 1994; Kluzniak & Ruderman 1998; t o n constantly leaking out of the system in the form of gravitational Rosswog&Davies2002). 1 1 waves(Taylor1994)andthereforemakingthefinalcoalescencean Neutronstarmergersrepresentaseverechallengeforcomputer A p ienaessacsapdaivbelersceoanssegqaumemncae-.raTyhbisumrstesrg(Peracezvyenn´stkhio1ld9s86p;roEmicihsleerfoertaarl-. sfoimreuxlaatmiopnlse.,wThitehceovreen-tcoisllgapenseuisnuepleyrnmouvlateid(iSmNeen)s,itohnearelaarnednuonblaiksiec, ril 2 0 1 1989; Narayan, Paczyn´ski & Piran 1992), ground-based gravita- openquestionsthatcouldbefirstaddressedinrestricteddimensions, 9 tional wave detection (Bradaschia et al. 1990; Abramovici et al. suchas,forexample,therobustnessofthedelayedneutrino-driven 1992;Danzmann1997;Kurodaetal.1997)andtheformationof supernova mechanism. Nevertheless, the two events have several rapidneutroncaptureelements(Lattimer&Schramm1974,1976; commonaspects:compactobjectsareformedinthecentreofthe Symbalisty&Schramm1982;Eichleretal.1989;Rosswogetal. eventandhugeamountsofgravitationalbindingenergy,oftheorder 1999;Freiburghaus,Rosswog&Thielemann1999). of1053erg,arereleasedintheformofneutrinos,makingneutrino Theinvolvedphysicsoftheeventisinalmosteveryaspect‘ex- physicsakeyingredientofbothscenarios.Thematerialinthein- otic’:theneutronstarfluidmovesinanddeterminesthedynami- nermost layers of both configurations is very dense, neutron-rich cal,curvedspace–time;inthecentresofthestarsandtheresulting and neutrino opaque. Most neutrinos are radiated from a hot and mergerremnantthebaryondensitiesreachmultiplesofthenuclear thick accretion disc in the neutron star merger case, and from a saturationdensity,ρ =2.5×1014gcm−3;nuclearreactionspro- shock-heatedmantleinthestandardsupernovascenario.Theneu- s trino emission and absorption are the key features in the picture of a neutrino-driven supernova, which has been sketched in the (cid:2) E-mail:[email protected] 1960s(Colgate&White1966;Arnett1967;Schwartz1967),then (cid:7)C 2003RAS 674 S.RosswogandM.Liebendo¨rfer refinedinthemid-1980s(Wilson1971;Arnett1977;VanRiper& pendence. The rates for the production of new neutrinos and the Lattimer 1981; Bowers & Wilson 1982; Bethe & Wilson 1985; diffusionofneutrinosfromlocalequilibriumarethenanalytically Bruenn1985;Wilson1985),andstillcontinuestobecontroversially integratedoverenergy.Thesmoothedminimumofproductionand discussedandimprovedbymanyresearchers.Oneresultofthisef- diffusion rates is used as a leakage source in the hydrodynamics fortistheemergenceofsophisticatedneutrinotransportschemes(al- equations.Weapplythisprocedureseparatelyfortheleptonnum- thoughcurrentlyrestrictedtolowspatialdimensions)toaddressthe berandenergytransfer. viabilityoftheneutrino-drivensupernovamodel.Startingwithleak- InSection2wewillsummarizepreviousresults,inSection3we ageschemesthatconsideredonlyneutrinoemission(VanRiper& reportontheneutrinoemissionresultsfromourmergersimulations. Lattimer 1981; Baron, Cooperstein & Kahana 1985), multigroup ThesummaryandadiscussionoftheresultsisprovidedinSection4 flux-limited diffusion approximations (Arnett 1977; Bowers & andthedetailsoftheneutrinotreatmentaregivenintheAppendix. Wilson 1982; Bruenn 1985; Myra et al. 1987; Bruenn, DeNisco & Mezzacappa 2001) have been developed that take the en- 2 BASIC MODEL FEATURES ergy spectra and a truncated expansion in the propagation di- AND PREVIOUS RESULTS D rection between emission and absorption into account. While o w multidimensionalsimulationsrelyingontransportapproximations Wehaveperformedasetofhigh-resolutionsimulationsofthelast n lo with externally imposed neutrino fluxes or spectra (Herant et al. in-spiralstagesandthefinalcoalescenceofadoubleneutronstar a d 1994; Burrows, Hayes & Fryxell 1995; Janka & Mu¨ller 1996; system.Largepartsofthemodelandthehydrodynamicevolution ed Mezzacappa et al. 1998; Fryer & Warren 2002) make a bridge havebeendescribedindetailinRosswog&Davies(2002),hereafter fro m betweensimulationandobservation,thetraditionalinvestigations referredtoasPaperI.Thenumericalrunsanalysedinthispaperare, h in spherically symmetric geometry proceeded to solutions of the apartfromadditionaltestruns,thesameasthosedescribedinPaper ttp s complete Boltzmann transport equation in stellar core collapse I.Herewefocusonthepartsofthemodelandtheresultsthatare ://a (Mezzacappa&Bruenn1993)andpost-bounceevolution(Rampp relatedtotheemissionofneutrinos. c a &Janka2000;Mezzacappaetal.2001;Burrows,Thompson&Pinto Keepinginminditsdecisiveroleforthe(thermo-)dynamicalevo- de m 2002),includingfullgeneralrelativity(Liebendo¨rferetal.2001). lutionofthemergerevent(see,e.g.,Rosswogetal.1999,2000)we ic The coalescence of neutron stars occurs on a much shorter time- use an equation of state (EOS) for hot and dense nuclear matter. .o u scale,oftheorderofmilliseconds,comparedwiththeshockrevival OurequationofstateisbasedonthetablesprovidedbyShenetal. p.c o inasupernova,whichisbelievedtotakeseveraltenthsofasecond. (1998a,b).Wehaveaddedtheleptonandphotoncontributions,and m Although weak interactions provide an important mechanism for extendeditsmoothlytothelow-densityregimewithagasconsist- /m n thecoolingofthediscthatisopaquetoallformsofelectromagnetic ingofneutrons,alphaparticles,electrons,positronsandphotons. ra s radiation,theydonotallowfordramaticchangesinthetempera- FordetailsconcerningtheEOSwerefertoPaperI.TheNewtonian /a tureandelectronfraction,atleastnotontime-scalesaccessibleto self-gravity of the fluid is calculated efficiently via a binary tree rtic le currentnumericalsimulations.Multidimensionalkinematicsseems (Benzetal.1990).Theback-reactionforcesthatemergefromthe -a to remain the dominant ingredient of neutron star mergers. As a emissionofgravitationalwavesareaddedinthepoint-masslimitof bs result of the complexity of the event simulations are still divided thequadrupoleapproximation. tra c intotwoclasses:eitherfocusingonthestrong-fieldgravityaspect To solve the equations of hydrodynamics for the neutron star t/3 4 (Wilson, Marronetti & Mathews 1996; Baumgarte et al. 1997; fluidwehaveappliedthesmoothedparticlehydrodynamicsmethod 2 /3 Oohara & Nakamura 1997; Shibata 1999; Faber & Rasio 2000; (SPH;e.g.Benz1990)orMonaghan(1992).Itisawidespreadmis- /6 7 Shibata & Uryu 2000; Ayal et al. 2001; Faber, Rasio & Manor conception that SPH is viscous ‘by nature’ and thus necessarily 3 /9 2001; Oechslin, Rosswog & Thielemann 2002; Shibata & Uryu introducesartefactsinsimulationsoflow-viscosityflow.First,the 6 4 2002), thereby sacrificing possibly important microphysics or degreeofviscositypresentinSPHis,asineverynumericalscheme, 35 6 exploring microphysics but using essentially Newtonian gravity afunctionofthenumericalresolution.ThecomponentsoftheSPH b y (Ruffert,Janka&Scha¨fer1996,1997;Rosswogetal.1999,2000; artificialviscositytensorscaletoleadingorderproportionaltothe g u Ruffert & Janka 2001; Rosswog & Davies 2002; Rosswog & smoothing length h, which tends to zero with increasing resolu- e s Ramirez-Ruiz 2002). Neutrino physics has, to our knowledge, so tion.ThestandardformoftheSPHartificialviscositytensor(e.g. t o n far only been included in the simulations of Ruffert et al. (see Monaghan1992)isknowntointroducespuriousforcesinpureshear 1 1 Ruffert&Janka2001,andreferencestherein)andinRosswog& flows.WehaveappliedaswitchsuggestedbyBalsara(1995)that A p DaIvniethsi(s2p0a0p2e)r.,wedetailourneutrinoleakageschemethathasbeen souripgpirneaslsefosrtmhesineftohrececsasinetohfeschaoscekosf.pAurfeusrhtheearraimndprroevperomdeunctescothne- ril 2 0 usedinourhigh-resolution,three-dimensionalsimulationsofmerg- cerns the artificial viscosity parameters, usually called α and β: 19 ingneutronstarsandreportonthecorrespondingneutrinoemission theyaremadetimedependent(assuggestedinMorris&Monaghan results.Ourleakageschemeismeanttojointhecurrentstateofthe 1997)andanadditionaldifferentialequationissolvedtodetermine artforthisspecific,three-dimensionalapplicationwheresimplicity theirvalues.Intheabsenceofshocksthesevaluesarenegligible, andnumericalefficiencyarevaluableassets.Itisnotsupposedto ifashockisdetectedtheparametersrisetotheirstandardvalues. compare with much more elaborate (but low-dimensional) trans- Thisartificialviscositytreatmentisdescribedandtestedindetailin portschemesnecessaryforquantitativestatementsaboutpossibly Rosswogetal.(2000). neutrino-driven supernovae. Knowing how important the stiff en- To quantify the amount of viscosity in our current simulations ergydependenceoftheweakinteractionsisinthesupernova,we wehaveestimatedtheeffectiveα-viscositypresentinthediscof designtheleakageschemetoavoidtheusageofmeanenergiesfor themergerremnant.Theeffectiveα-viscosityisα ∝h/H,where SS thedeterminationofneutrinosourcefunctionsoropacities.Wede- H isthethicknessofthedisc,andthereforedependsonhowwell termineforeachneutrinoenergyseparatelyaproductionrateand resolvedtheverticaldiscstructureis.Wefoundverylownumerical adiffusiontime-scale.Thelatterdependsonanon-localestimate values,α ∼10−3forthediscsinourmodelsandevenlowervalues SS fortheopticaldepthfromwhichweextracttheexplicitenergyde- inthebetterresolvedcentralregionsoftheremnant. (cid:7)C 2003RAS,MNRAS342,673–689 Calculationsofmergingneutronstars–II 675 Thewholecodeisparallelizedforshared-memoryarchitecture tered by charged-current reactions such as electron and positron andobtainsanexcellentspeed-upforupto∼100processors.Ina captures.Theenormouslytemperature-dependentweakinteraction typical application with several 105 particles a speed-up of 55 is processes can exhibit in some parts of the flow very short time- obtainedon60processors. scales,|Y /Y˙ |∼10−6s,whichiswellbelowthedynamicaltime- e e We follow the system evolution from an initial separation of scale of a neutron star, τ = (Gρ¯)−1/2 ≈ 2 × 10−4 s, while dyn ∼3R ,where R istheradiusofanisolatedneutronstar,forap- they are essentially infinite in other parts of the flow. Therefore, ns ns proximately15ms.Fromthechoseninitialseparationittakesthe neither the assumption of an instantaneous beta equilibrium nor neutronstarsonlyafewmillisecondstomerge.Theyleavebehindan frozenY valuesarejustified.Sinceinthedensepartsofthehot, e extremelymassivecentralneutronstar(∼2.4M(cid:9)),surroundedby mergedconfigurationtheneutrinomeanfreepathsareoftheorder ahotanddense,shock-heatedinnerdiscregion(withtemperatures of λ ∼ 0.75m(5×1014gcm−3/ρ)(10MeV/T)2, where ρ is the T∼3 MeV, densities ρ∼1012 g cm−3, a mass M ∼0.2 M(cid:9)) matterdensityandT isthetemperature,theinteractionoftheneu- disc andrapidlyexpandingdebrismaterial. trinoswiththeambientmatterhastobeaccountedfor.Hereandin Thecentralneutronstarisstronglydifferentiallyrotating,most therestofthepaperwemeasuretemperaturesinenergyunits,i.e. D pronouncedinthegenericcasewithoutinitialspin.Sincedifferen- k =1.AfullBoltzmannneutrinotransportinthecontextofthe o B w tialrotationallowsthecentralpartstospinextremelyfastwithout three-dimensionalmodellingoftheeventisbeyondthecurrentstate n lo the (slower rotating) outer parts of the object reaching the mass oftheartandcomputationalresources.However,sincethesimu- a d sheddinglimit,asubstantiallyhighermaximummasscanbestabi- lated physical time-scales are of the order of 15 ms and neutrino ed lized.Arecentinvestigation(Lyfordetal.2003)usingpolytropic momentum transfer is expected to be unimportant we consider a fro equations of state finds values of (Mr − Mnr)/Mnr up to 1.8 for detailedneutrinoleakagetobeanimportantsteptowardsreliable m h soft EOSs and for the polytrope closest to our nuclear EOS they physicalmodelsoftheevent. ttp fibenydo(nMdrth−etMotnarl)/bMinanrryupmtaoss0o.6f,2w.8hiMch(cid:9)co(Mrrersipsotnhdesmtoaxmimasusmesmwaeslsl troWnaenctoinnesuidtreirnothsr,eν¯ee,naenudtrtihneohfleaavvoyu-lresp:teolnecnterountrinneoust,rνinµo,sν¯,µν,eν,τe,leν¯cτ-, s://aca foradifferentiallyrotatingstarand Mnr isthemaximummassof whicharecollectivelyreferredtoasνx.Thebasicideaofourleak- dem anon-rotatingstar).Wethereforeexpectanextremelymassive,hot ageschemeistoprovideaphysicallimitviadiffusionrates.This ic neutron-star-likeobjecttobeformedinthecentreofthemergerrem- guaranteesthelimitationoftheneutrinoproductiontotheamount .o u nant,thelifetimeofwhichisdeterminedbythetimeittakestoget that is able to stream away. In the opaque regime the neutrinos p.c o ridoftherotationalsupport.Althoughaconclusiveanswertothis thereforeescapeonlyonadiffusiontime-scaleandinthetranspar- m pointcannotbegivenfromthecurrentcalculations(sincetheyare entregionstheyleavetheirproductionsiteessentiallywithoutany /m n essentiallyNewtonianandsomeofthephysicsingredientssuchas furtherinteractionwiththesurroundingmatter. ra s thehigh-densitypartoftheequationofstatearetodateonlypoorly Thedominantneutrinoprocessesinourcontextarethecharged- /a known),weestimatethattheneutronstarmightremainstablefor currentleptoncapturereactionsonnucleons,electroncapture(EC) rtic le mtoaanlylodwynthaemmicaaglnteimtice-sseceadlefis.elTdhsistotibmeea-mscpalliefimedatyobeenolornmgoeunsofiueglhd e−+p→n+νe (1) -abs strengths (∼1017 G; Thompson & Duncan 1993). If one assumes andpositroncapture(PC) tra c magnetic dipole radiation to drive the system towards black hole e++n→p+ν¯ , (2) t/34 formation,eventime-scalesofmonthscanbeeasilyobtainedwith- e 2 /3 outstretchingtheinvolvedparametersbeyondreasonablelimits.The which produce electron flavour neutrinos and the ‘thermal’, pair- /6 7 exacttime-scalebetweenthemergereventandthe(probable)final producingreactions,pairannihilation 3 /9 blackholeformationmaydependquitesensitivelyonthedetailsof e−+e+→ν +ν¯ (3) 64 thespecificmergerevent.ForafurtherdiscussionseeRosswog& i i 35 6 Davies(2002). andplasmondecay b y patTtehren:dembaritserairaolutnhdatthheascepnrtervailooubsjleyctbeexenhibcietnstarinfuignatellryesltainugncflhoewd γ →νi +ν¯i, (4) gue s ienmtoisesciocne,ntirsicreotrubrintsin,gantdowthaerrdesbythceocoelendtrbalyoebxjpeacnt.siTohniasncdonoelu(tTrin<o νw¯ih.iTchheplraottdeurcperonceeustsridnoomsiannadteasnintintheeutsrtirnoonsgolyfeallelcfltraovno-udresg,eνnieraantde t on 11 0.5MeV),equatorialinflowproducesabutterfly-shapedshockfront regime.Wedisregardelectroncapturesontonucleisincethesere- A p wobhjeencti.tIenntchoisunwtearysamhaotterflioawlthisatdirsivsetinllinbethinegvsehretidcaflrodmiretchteiocne.nTtrhael astcrtuiocntusrew,owuhldicrheqisuinreotdeavtaaiilleadblienffoorrmtahteiosennaubcolueti.thHeonwuecvleear,rtshheeslel ril 20 1 resulting disc is very thick with a height comparable to its radial captures are not expected to be important in our case, since the 9 extension. regimeswherethedominantneutrinoemissiontakesplaceareal- Inthepresentpaperwewillreportonthesesimulationswitha mostcompletelyphotodisintegrated(seebelow).Wefurtherneglect focusontheneutrinoemissionthatgoesalongwithaneutronstar neutral-current nucleon–nucleon bremsstrahlung as neutrino pro- coalescence. ductionprocess.Thisprocesshasrecentlyreceivedattentioninthe supernovacontext(Thompson,Burrows&Horvath2000).Itmay bepossiblethatthisprocessislocallyimportant,butrecentinvesti- 3 NEUTRINO EMISSION FROM NEUTRON gations(Keiletal.2002)includingthisandotherreactionsforthe STAR MERGERS supernovacaseonlyfoundoverallchangesoftheorder10percent. Under the conditions of a neutron star merger neutrinos are Sinceaccurateemissionratesaredifficulttoobtain(duetothepoor produced copiously and they provide the most efficient cooling knowledgeofthenucleon–nucleonpotentialandduetouncertain- mechanism for the dense, shock- and shear-heated neutron star tiesinthemagnitudeofmany-bodyeffects)andwedonotexpect debris. In addition, the related weak interactions determine the effectslargerthantheuncertaintiesinherentinourleakagescheme, compositional evolution via the electron fraction Y that is al- wedecidedtoignorethisprocess. e (cid:7)C 2003RAS,MNRAS342,673–689 676 S.RosswogandM.Liebendo¨rfer Table 1. Summary of the different runs. a0, initial separation; ν, neutrino physics; Tsim, simulated duration;M1/M2,massesinsolarunits;Part.no,totalparticlenumber. Run Spin M1 M2 Part.no a0(km) ν Tsim(ms) Remark A Corot. 1.4 1.4 207918 48 No 10.7 B Corot. 1.4 1.4 1005582 48 No 10.8 C Irrot. 1.4 1.4 383470 48 Yes 18.3 Gen.case D corot. 1.4 1.4 207918 48 Yes 20.2 Lowerν-limit E irrot. 2.0 2.0 750000 48 Yes 12.2 Upperν-limit F corot. 1.4 1.4 20886 52.5 Yes 15.1 Spur.ν-emission? 3e+49 10 D o w ν 9 n e lo 2.5e+49 ad 8 e d fro 7 m 2e+49 h 6 ttps erg/s] 1.5e+49 MeV] 5 ννe ://aca L [tot <E> [ 4 νxe demic .o 1e+49 up νx 3 .co m 2 /m 5e+48 n ra s ν 1 /a e rtic 0 0 le 0 5 10 15 20 0 5 10 15 20 -a b t [ms] t [ms] s tra c Figure1. Testingforspuriousneutrinoemission:shownaretheluminositiesofthevariousneutrinospecies(left)andthecorrespondingmeanenergies.After t/3 15ms,correspondingto∼50neutronstardynamicaltime-scales,thetotalneutrinoluminositylevelsofffourordersofmagnitudebelowtheemissionofthe 42 fullmerger. /3 /6 7 3 /9 6 4 2e+53 3300 35 6 b y g u 2255 e s 1.5e+53 ν ν t on e x 11 2200 A p L [erg/s]tot1e+53 <E> [MeV]<E> [MeV]1155 νe ril 2019 ν 1100 e ν 5e+52 e 55 ν x 0 00 0 5 10 15 20 00 55 1100 1155 2200 t [ms] tt [[mmss]] Figure2. RunC(nospins,2×1.4M(cid:9)):theleft-handpanelshowstheluminosities(inergs−1)ofthedifferentneutrinoflavours.Theright-handpanelgives thecorrespondingmeanenergies.Weregardthistobethegenericcase. (cid:7)C 2003RAS,MNRAS342,673–689 Calculationsofmergingneutronstars–II 677 1e+53 30 ν x ν 25 8e+52 e 20 6e+52 s] V] erg/ Me15 νe L [tot 4e+52 <E> [ ν 10 Do e w ν n e lo a 2e+52 d ν 5 ed x fro m h 0 0 ttp 0 5 10 15 20 0 5 10 15 20 s t [ms] t [ms] ://a c a Figure3. RunD(corotation,2×1.4M(cid:9)):theleft-handpanelshowstheluminosities(inergs−1)ofthedifferentneutrinoflavours.Theright-handpanel de m givesthecorrespondingmeanenergies. ic .o 3e+53 40 up .c o m /m 2.5e+53 ν nra s e 30 /a rtic 2e+53 le -a b ν s L[erg/s]tot1.5e+53 νe <E> [MeV]20 x tract/342/3 ν /6 7 1e+53 e 3 /9 6 ν 10 ν 43 x e 56 5e+52 b y g u e s 0 0 t on 0 5 10 15 0 5 10 15 1 t [ms] t [ms] 1 A p Figure4. RunE(nospins,2×2.0M(cid:9)):theleft-handpanelshowstheluminosities(inergs−1)ofthedifferentneutrinoflavours.Theright-handpanelgives ril 2 thecorrespondingmeanenergies.Weregardthistobeanupperlimitfortheneutrinoemission. 0 1 9 Table2. Typicalpropertiesofemissionregion,densitiesareingcm−3,temperaturesandchemicalpotentialsinMeV. Run log(ρ˜)νe log(ρ˜)ν¯e log(ρ˜)νx T˜νe T˜ν¯e T˜νx Y˜e,νe Y˜e,ν¯e Y˜e,νx µ˜e,νe µ˜e,ν¯e µ˜e,νx C 12.6 12.6 13.2 4.2 5.5 8.9 0.072 0.072 0.13 12.1 13.2 23.7 D 12.4 12.2 13.5 4.1 5.0 6.6 0.083 0.095 0.10 11.6 13.0 35.1 E 12.1 12.4 12.9 5.0 5.7 9.1 0.140 0.085 0.12 9.6 13.0 22.1 To determine the number and energy diffusion rates based on ν +A→ν +A, (6) i i neutrinoopacitieswetakeintoaccountthescatteringoffnucleons, andneutrinoabsorptionbyfreenucleons, νi +{n,p}→νi +{n,p}, (5) νe+n→p+e− (7) coherentneutrinonucleusscattering, ν¯ +p→n+e+. (8) e (cid:7)C 2003RAS,MNRAS342,673–689 678 S.RosswogandM.Liebendo¨rfer 24 22 SN ν 20 e ν 18 e V]16 νx e M 14 [ T 12 10 8 6 D o w 4 n lo a 2 d e d 09 9.5 10 10.5 11 11.5log(1 2ρ ) 12.5 13 13.5 14 14.5 from h ttp s ://a c a d e m ic 0.4 .o u p SN ν .co 0.35 e m ν /m 0.3 νe nra x s /a 0.25 rtic le -a Y b e 0.2 stra c 0.15 t/34 2 /3 /6 0.1 7 3 /9 6 0.05 43 5 6 b 0 y 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 g log( ρ ) ue s t o n 1 1 Figure 5. Shown are the SPH particle distributions in the log(ρ)–T (upper panel) and the log(ρ)–Ye plane (lower panel) of the generic case, run A lCap(s2e×d131-.M4(cid:9)M(cid:9)sta,rn,o10i0nimtiaslasftpeirn;boeuvnecryea2s0tahthpiacrktilcilnee.isThdeisppalarytiecdlesaswaithdotht)e.hFigohrecsotmlupmarinisoosnitiwesitahrethaelssouspheorwnonv:afilclaesdecwircelesshofowrtthheeνceo,nsdqiutiaornessfoofrathecoν¯le- pril 20 andthetrianglesrefertoνx. 19 Forthedetailsoftheimplementationofthereactionsandtheleakage binaryconfigurationjustoutsidethelaststableorbitbyrelaxingthe schemewerefertotheAppendix. twoneutronstarsintheirmutualgravitationalfield.Subsequently wefollowtheirdynamicalevolutionforapproximately50neutron 3.1 Totalluminosities,meanenergies stardynamicaltime-scaleswhiletheyrevolveonperfectlycircular Neutronstarsareexpectedtoheatupduringin-spiralbytidalin- orbitsaroundtheircommoncentreofmass.Onlyself-gravityand teractiontotemperaturesoftheorder108 K(Lai1994).Atthese hydrodynamicforcesareconsidered,noinitialradialvelocitiesare temperaturesnosignificantneutrinoemissionwilloccur.Inorderto appliedandthegravitationalwavebackreactionforcesareswitched testfortheamountof‘spurious’emissionofneutrinosinoursim- off.Wefindthatthetotalneutrinoluminosityreachesastationary ulationduetotheunavoidablenumericalheatupofthecompletely levelof∼3×1049ergs−1,seeFig.1,whichisfourordersofmag- degenerate stars, we perform a test run (a listing of the different nitude below the peak luminosities of the full merger calculation runsisprovidedinTable1).Weprepareacorotatingequilibrium andthereforecompletelynegligible. (cid:7)C 2003RAS,MNRAS342,673–689 Calculationsofmergingneutronstars–II 679 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/3 4 2 /3 /6 7 3 /9 6 4 3 5 6 b y g u e s t o n 1 1 A p ril 2 0 1 9 Figure6. Geometryoftheneutrinoemission:theleft-handcolumnshowsthetotalneutrinoenergypertimeandvolumeintheorbitalplane,theright-hand columndisplaystheverticalemissiongeometry.TheuppertwopanelscorrespondtorunC(2×1.4M(cid:9),nospins),themiddlepanelstorunD(2×1.4M(cid:9), corotation)andthelowestpanelstorunE(2×2.0M(cid:9),nospins).Thecontributionofthecentralobjectisnegligible. Theoverallneutrinoemissionpropertiesofthefullmergercal- initial spin. The explanation for this is twofold: on the one hand, culations are shown in Figs 2–4. The total neutrino luminosities thisrunstartsoutfromnumericallyexactinitialconditionswhile (left-hand panels) are calculated by summing up all particle con- thenon-rotatingcases,runCandE,sufferanacceleratedin-spiral tributionsandthermsenergiesforeachneutrinoflavourarecalcu- duetothestartwithinitiallysphericalstars.Ontheotherhand,neu- lated according to equation (A4). For the corotating case, run D, trinoemissiononlybecomesimportantoncethethicktorusaround substantialneutrinoemissionsetsinlaterthaninthecaseswithout thecentralhigh-densityparthasformed.Againthisprocesstakes (cid:7)C 2003RAS,MNRAS342,673–689 680 S.RosswogandM.Liebendo¨rfer longer for the corotating case since (due to the larger initial an- 20thparticleisshown)forourgenericrunC.Particleswithpeaklu- gular momentum) the torus-forming matter is initially launched minositiesareindicatedwithspecialsymbols(thesepeakvaluesare into wider orbits. The average neutrino energies reach peak val- nottobeconfusedwiththeaveragepropertiesmentionedabove). uessoonafterthestarshavefirstcomeintocontact.Thereasonfor Filledcirclesindicateparticlesthatemitν ataluminosityinex- e this is that the neutrinos from the hot debris material can, at this cessof10percentofthemaximumparticleν luminosity,squares e stage, escape without having to pass through any optically thick markthecorrespondingparticlesforν¯ emissionandtrianglesrefer e matter. to νx. As a result of the steeper temperature dependence (Qνx ∝ Thetotalneutrinoemissionseemstohavereachedaroughlysta- T9)alowerthreshold(3.5percent)hasbeenchosenfortheν in x tionarylevel(exceptforpossiblyrunC)bytheendofthesimulation. ordertodisplayroughlythesamenumberofparticles.Thecorre- Thetotalluminositiesrangefrom∼1053 ergs−1 forthesmoothly spondingplotforY asafunctionoflog(ρ)isshowninthesecond e mergingcorotatingcaseover∼2×1053ergs−1fortheirrotational panelofFig.5.Wecomparethestateofthesefluidelementstothe casewithtwice1.4M(cid:9)to∼4×1053ergs−1forourextremecase stateoffluidelementsinasimulatedpost-bounceevolutionofthe with2×2.0M(cid:9)andnoinitialspins.WeregardrunDasalower core of a 13-M(cid:9) progenitor star. As a result of the limitation to D limit that is unlikely to occur in nature (Bildsten & Cutler 1992; spherical symmetry in this simulation with Boltzmann neutrino o w Kochanek1992)andrunCasthegenericcasesincetheobserved transport(Liebendo¨rferetal.2002),thefluidelementsformasolid n lo neutronstarbinarysystemshavemassescloseto1.4M(cid:9)(Thorsett line.Inthesupernovacase,at100msafterbounce,wefindthepeak a d &Chakrabarti1999)andareexpectedtohaveaveryslowindividual emissionatdensitiesof1010.6,1011.3and1012.6gcm−3,respectively. ed spinatthemergerstage.TheextremecaserunEhasbeenperformed Thisisinagreementwiththehighemissionregionsidentifiedinthe fro m inordertoexploretheupperlimitontheneutrinoemissionfrom neutron star merger for the heavy lepton neutrinos and the elec- h themergerevent. tronantineutrinos.Thepeakemissionofelectronneutrinosinthe ttp ThTishiesmbeelaonwetnheergtyiepsicaarlev∼al8ueMsefoVunfodritnhceoerleecctorlolnap-tsyepseunpeeurntroinvaoes.. n(∼eu1t0ro11ngstcamr−m3)e.rgWeeraatptrpiebaurtsettohisoctocutrheatlesslsigphrtolnyohuingcheedrcdoemnspirteiess- s://ac a Thematerialinthenascentprotoneutronstarhasfirsttodeleptonize sionanddeleptonizationofinfallingmatteratlowdensitiesinthe de m onaneutrinodiffusiontime-scalebeforetheelectronfractionsare rotatingaccretiondiscifcomparedwiththefailedexplosionofa ic aslowasintheneutronstarmergerevent,wherebeta-equilibrium non-rotational supernova simulation. The heavy lepton neutrinos .o u hasbeenestablishedintheindividualneutronstarslongbeforethe steminbothSNandneutronstarmergerfromsimilardensities. p.c coalescence.Hence,thematerialinthesupernovaismoreelectron Toanalysetheimportanceofthee+/e−-capturereactions,equa- om degenerateatcomparabledensities.Electronsarethereforecaptured tions(1)and(2),versusthepair-producingreactionsequations(3) /m n fromhigherFermienergiesandproduceelectronneutrinoswitha and(4)weperformapost-processingexperiment.Wetakeonetime- ra harderspectruminthesupernovacase.Thesituationisdifferentfor sliceofourgenericrun(runC)att =14.1msandusethepairand s/a theelectronantineutrinos.Wefindrmsenergiesaround∼15MeV, plasmaneutrinoreactionsastheonlyemissionprocesses(i.e.the rtic le quitecomparabletormsenergiesinthesupernovacase.Thelower capturereactionsareartificiallyswitchedoff).Inthiscasethelumi- -a electrondegeneracyintheneutronstarmergerfavoursthepopula- nosityinelectron-type(anti)neutrinosisonly∼10percentofthe bs tionofpositrons,forwhichthechemicalpotentialhastobalance previousvalues,indicatingthatamajorcontributionstemsfromthe tra c the electron chemical potential because of pair equilibrium. The leptoncapturereactions. t/3 4 highpositronabundanceincombinationwiththeneutron-richmat- 2 /3 terleadstomorepositroncaptureeventsonfreeneutronsthaninthe 3.2 Emissiongeometry:discversuscentralobject /67 supernova.Thisresultsinhigherelectronantineutrinoluminosities. 3 /9 Theelectronantineutrinoluminosityfromtheremnantreachesupto InFig.6weplottheneutrinoenergy(sumofallflavours)pertime 6 4 ∼1.5×1053ergs−1,itprovidesthemaincoolingmechanismofthe andvolumeforrunC(uppertwopanels),runD(intermediatetwo 35 hotaccretiondisc.Theheavyleptonneutrinosreachrmsenergies panels) and run E (the two lower panels). The left-hand column 6 b of∼20–25MeV.Thisiscomparabletothesupernovarmsenergies. of panels shows the emission in the orbital plane, while the ver- y g Theirluminosity,however,tendstobesmallerintheneutronstar ticalemissiongeometry(azimuthallyaveraged)isdisplayedinthe ue s mergercasebecausethetemperaturesinthehigh-densityregimes, right-handcolumn.Notethattheemissionpertimeandvolumefrom t o n wheretheheavyleptonneutrinosemerge,aremanifestlylower(see thehot,butextremelydensecentralobjectsiscompletelynegligi- 1 below). ble,roughlytwoordersofmagnitudelowerthanthatcomingfrom 1 A nebaoyctTethohsnecρehνu,aitT-rrnai,ncuYotmeflrbiaazenverdoptuhµrreowd,pueghciycvtsaieoilnccnaublrlyaacttoeensadvpieteirroanpgsaeroqtifuctalhene,tieRt˜imeeνfisi,,sjs,X˜iwoνinh,ewrreeegiiXgohndteoed-f ttrohhefseetuhmbletusodtstfietsrroclflum(yms-ecsieonhfiooalgpu.esin1dpfl5atoeirwntmsPpboaeefprinaethtrgueIrs)ed.hiTosdchciks.ist-IrhpnibeaPuattttaeeipordnenrhiisiIntatwiltnshegoehrtXheafldeZe-imcpntlneeaendnrteiipontanthrheatdest pril 2019 (cid:1) e e R˜ef X neutrinoemissiongeometry,seetheright-handcolumninFig.6. X˜νi = (cid:1)j Rν˜i,efj j. (9) j νi,j 3.3 Opacitysources:importanceofheavynuclei These quantities are displayed in Table 2. Electron neutrinos and antineutrinosareemittedundersimilarconditions,typicallyatden- Our scheme accounts for the coherent scattering of neutrinos off sitiesaround1012.5gcm−3,temperaturesof4–5MeV(antineutrinos heavynuclei,fordetailswerefertotheAppendix.Wehadrealized atslightlyhighervalues)andaY ofbelow0.1.Theheavylepton that, despite the high temperatures encountered in the disc, mat- e neutrinosareemittedatsubstantiallyhigherdensities[log(ρ)≈13] terfindsitenergeticallyfavourabletoformanon-negligiblemass andtemperatures(T ≈9MeV). fractionofheavynuclei(PaperI).Asaresultofthe(approximate) Fig.5showsacomparisonbetweentheconditionsencountered proportionalityofthescatteringcross-sectiontothesquareofthe in neutron star mergers and those of SNe. In the upper panel we nucleon number of the heavy nucleus (see equation A18) nuclei show SPH particle densities and temperatures (black dots, every could possibly dominate as an opacity source. To estimate how (cid:7)C 2003RAS,MNRAS342,673–689 Calculationsofmergingneutronstars–II 681 importanttheheavynucleireallyarefortheneutrinoemission,we Theopticaldepthsatheight z =0,i.e.intheorbitalplane,are performthefollowingtest.Wetakeonetimeslice(t=14.1ms)of shown in Fig. 11 (from top to bottom:ν ,ν¯ and ν ). In the cen- e e x ourgenericcase,runC,updatetheneutrinogrid(seetheAppendix) tral object values of up to several times 104 are reached, beyond andthencalculatewiththeseopacitiesthepropertiesoftheemitted ∼130kmmatterisessentiallytransparenttoneutrinosofalltypes, neutrinos.Inonecaseweuse–asinthedynamicalsimulation– i.e.τν <0.1. i thefullsetofabundancesgivenbytheEOSforboththeemission Itisinterestingtonotethatitisonlyinthecentralobject(τν > i andabsorption/scatteringprocessesandintheothercaseweassume 10)thatneutrinosarereallytrapped(seeFigs8–11).Attheedgeof themattertobecompletelydissociatedintonucleons,i.e.themass thecentralobject,atdistancesof∼30kmfromtheorigin,theoptical fractionsaregivenby depthdropsrapidly,butthenonlydecreasesveryslowlythroughout thedisc(∼30–100km).Thewholehottorusregionisthereforein xp=Ye, xn=1−Ye, xα =0, xh=0. (10) thesemitransparentregime. Wefindalmostexactlythesamenumbersforboththemeanener- giesandthetotalluminosities,maximumdeviationsinthe(more 3.5 Directionaldependenceofneutrinoemission D o sensitive)totalluminositiesarebelow5percent. w Itisconsistentwithourapproachfromequations(A1)and(A2)to n The reason for this lies in the geometry of the heavy nucleus lo distribution. In Fig. 7 we show the azimuthally averaged values thinkoftheneutrinosemittedfromanSPHparticletobecomposed ad e oarfethsheohwenavfyornmucaltetuerswmiathssdfernascittiioens,axbho,voef1r0u1n0sgCc–mE−;3t,hbeeselovwaltuheast odfiff‘ufrseieonneequutraitnioosn’sawneda‘sdsiufmfuesitvheatntehuetdriinffouss’i.vIennaenuatrliongoyctoomgpeonneernatl d from densitymatteristransparenttoneutrinos.Nucleiarepresentinthe is emitted in the direction of the local, negative density gradient, h cool,equatorialinflowregionsidentifiedinPaperI(seefig.15in nˆ = −(∇ρ)/|−(∇ρ)|.WeusetheSPHprescriptiontodetermine ttp s Rosswog&Davies2002).Thebutterfly-shapedtemperaturedistri- thisden(cid:4)sitygradientatthepositionofparticlei: ://a c butionisalsoreflectedinthenucleusmassfraction.Itisinteresting ∇ρ = m ∇W , (12) ad tonotethatdespitetheextremetemperaturesinthecentralobject i j i ij em a thin, nuclear crust can survive in our coolest case (run D). The j ic hottestcase(runE)isessentiallyfreeofheavynuclei.Bycompar- wheremjistheparticlemass,Wij=W(|xi −xj|/hij)thestandard .oup ingFig.7withFig.6,right-handcolumn,itbecomesobviousthat SPHkernel(e.g.Monaghan1992)andhijisthearithmeticmeanof .co theneutrinosfromthemostluminousregimescanescapeineach theinvolvedsmoothinglengths.Thefreecomponent,incontrast, m /m caseverticallywithouthavingtopassthroughmaterialcontaining willemitisotropically.Thefractionwithwhichthebothcomponents n aninterestingamountofheavynuclei.Therefore,theinfluenceof contributetotheneutrinoluminosityofparticlejisgivenby ras tnheeglhiegaibvlye.nucleiontothetotalluminosityandthemeanenergiesis fνdii,fQj = QQeνdνfiiif,,jj and fνlio,cQj = QQeνlνofiic,,jj. (13) /article-ab 3.4 Opticaldepths,neutrino‘spheres’ I(tAc1a)nabnede(aAs2il)yacnhdetchkaetdththeaftrafcdνtiiif,oQnjs+apfplνroioc,aQcjh=th1ebiryoubsviinoguesqliumatiitosnins stract/3 thehigh-andlow-densityregimes.Similarly,fractionsoftheemitted 4 To illustrate how the opaque matter is distributed in the merger 2 remnantweplotinFigs8–10contoursofthespectrallyaveraged neutrinonumberdensity fdνiif,Rj and flνoic,Rj canbedefinedasabove, /3/6 neutrinoopticaldepth(seeequationsA23,A24andA8), butwithnumberemissionratespervolume, Rνi,j,ratherthanwith 73 τνi =χνi(cid:2)Eν2i(cid:3)=χνi FF42((ηηννii))(kT)2 (11) nferneeueertgrciyonmoempluoimsnseiinnootn,sirisatytde(cid:1)pesteperremsrovilniodeludamnbgyel,eQ,cν(cid:1)oi,mj.pWositehdtohfesaeddiefffiunsiitvieonasntdhea /964356 b sfotarnadlalrdneFuetrrimnoi isnpteegcrieaslsa(tsetheetheendAspopfenrduinx)C.–CEo.nsTihsteenFtnwaitrheothuer (cid:18)νi(ϑ)= (cid:20)(cid:20)L(cid:21)νi = 2πksiQn˜(dνϑiif,k)(cid:20)(ϑϑ) + j4Qπ˜lνoic,j, (14) y gues neutrinotreatmentwehaveusedtheequilibriumvalues(seeequa- t o tttvhriaooennnuisnAphepi5une)trgrmfiondoroesgstt,ehpnteahenedreaemlcgsyiehdnpodeawlrerasacpmcyao,nenteηetl,orsuorfrfeosfrteohtrfehtteohνeeνt¯/hxoνe¯.peIteinalcenaecdlatdrcohehnapvotahefnottaihfsnestehuufiemtgreeiulnderoecass- awtQh˜llhelνoiertc,hkr‘eed=iQpf˜faufνrνislt,ioiki,ccvQliekes’s·tnQh(e˜seueνifintν,rkcii.enIeontnshe,tehriQger˜ydνa‘iiff,bekrome=vei’essnefiνqedoiiu,unfQtarkrtiian·otoQen˜seνtofihrf,akedpojiaarsrtut‘eifmcrileseeeox’tkrtn,eoenfpurdiotcsrmaionllvoyeesi)r-,, n 11 April 20 1 andtheremainingonestotheheavyleptonneutrinos. thek sum,however,onlyextendsoverthoseparticlesthatradiate 9 The debris matter is most opaque to the electron-type neutri- into a ring of width (cid:20)ϑ in the ϑ-direction, ϑ − (cid:20)ϑ/2 < ϑ < k nos, which in addition to scattering are also absorbed on to the ϑ +(cid:20)ϑ/2,whereϑ isgivenbycos(ϑ ) = nˆ ·eˆ .Anobserver k k k z copiously available free neutrons. Electron-type antineutrinos see thatseesthemergerfromanangleϑ withrespecttotheinitialbi- matteraslessopaqueandmatterismosttransparenttotheν .We naryrotationaxis(=z-axis)wouldthusinferanapparentluminosity x alsoshow(asthethickline)the ‘neutrinosphere’,definedasthe of mloocustscwoiitnhciτdνei,=wit23h.rFaodriatlheexν¯teenasnidontsheofν∼x 7th0eknmeuatnridnopesapkhehreeisghatls- Laνpip(ϑ)=4π(cid:18)νi(ϑ). (15) of ∼20 km, since both neutrino types suffer essentially the same Thequantity(cid:18)ν (ϑ)forourgenericcase,runC,isshowninFig.12 i interactions(scatteringevents;intheextremelyneutron-richdebris (theotherrunsyieldsimilarresults).Theluminositypersolidangle absorptionontofreeprotonsisonlyaminorcorrection).Asare- ispeakedtowardsthez-axis:asystemobserved‘pole-on’(ϑ≈0◦) sultoftheiradditionalopacitysourcestheνedecouplesubstantially willyieldatotalneutrinoenergyflux,givenby fνi(ϑ)=(cid:18)νi(ϑ)/R2, furtherout,atradialextensionsof∼105kmwithpeakheightsof where R is the distance to the source, which is around 20 times ∼35km. largerthanthatofasystemthatisobserved‘edge-on’(ϑ ≈90◦). (cid:7)C 2003RAS,MNRAS342,673–689 682 S.RosswogandM.Liebendo¨rfer D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/3 4 2 /3 /6 7 3 /9 6 4 3 5 6 b y g u e s t o n 1 1 A p ril 2 0 1 9 Figure8. EndofrunC(2×1.4M(cid:9),nospins):logarithmoftheoptical depths(instepsof0.5)ofthevariousneutrinoflavourscalculatedonour grid.Thefirstpanelshowsνe,thesecondν¯e andthethirdνx.Thethick lines give the locus of the ‘neutrino sphere’ defined as τνi = 23, which isessentiallythelocuswheretheneutrinosdecouplefromthedebrismat- Figure7. Shownareazimuthallyaveragedvaluesoftheheavynucleus ters. For the ν¯e and νx the neutrino spheres almost coincide since both massfractionformatterwithρ>1010gcm−3(toptobottomrunC,Dand are subject to scattering processes, the absorption of ν¯e on to protons is E).Althoughheavynucleiarepresent,neutrinosfromthemostluminous onlyaminorcorrection.νe areadditionallyabsorbedintheneutron-rich regions(seeFig.6)canstreamoutverticallywithoutencounteringsubstantial environment.Therefore,thecorrespondingneutrinosphereissubstantially amountsofheavynuclei.Therefore,thelatteronesdonotinfluencethetotal larger. luminosityandtheaverageenergies. (cid:7)C 2003RAS,MNRAS342,673–689
Description: