Mon.Not.R.Astron.Soc.000,000–000 (0000) Printed6January2010 (MNLATEXstylefilev2.2) z 8.3 High-redshift star formation rate up to ∼ derived from gamma-ray bursts and influence of background cosmology 0 F. Y. Wang ⋆ and Z. G. Dai† 1 Department of Astronomy, Nanjing University,Nanjing 210093, P. R. China 0 2 n 6January2010 a J 5 ABSTRACT The high-redshift star formation rate (SFR) is difficult to measure directly even by ] O modernapproaches.Long-durationgamma-raybursts (GRBs) can be detected to the edge of the visible universe because of their high luminorsities. The collapsar model C of long gamma-ray bursts indicates that they may trace the star formation history. . h So long gamma-ray bursts may be a useful tool of measuring the high-redshift SFR. p Observationsshowthat longgamma-raybursts preferto formina low-metallicityen- - vironment.We studythe high-redshiftSFRuptoz ∼8.3consideringtheSwift GRBs o tracing the star formation history and the cosmic metallicity evolution in different r t background cosmological models including ΛCDM, quintessence, quintessence with a s a time-varying equationof state, and brane-worldmodel. We use latest Swift GRBs in- [ cludingtwohighest-z GRBs,GRB 080913atz =6.7andGRB 090423atz =8.3.We find that the SFR at z >4 shows a steep decay with a slope of ∼−5.0 in ΛCDM. In 2 the other threemodels,the high-redshiftSFR is slightlydifferentfromΛCDMmodel, v and also shows a steep decay. 0 4 Key words: Gamma rays: bursts – stars: formation 1 5 . 2 1 9 1 INTRODUCTION with supernovae (Stanek et al. 2003; Hjorth et al. 2003), 0 provideacomplementarytechniqueformeasuringtheSFR. Thestarformationhistory(SFH),especiallyathigh-redshift : GRBs at high redshfits are predicated to be observed be- v (z >6), is important in many fields in astrophysics. Direct cause of their high luminosities (Lamb & Reichart 2000; i SFR measurements are quite challenging at high-redshift, X Ciardi &Loeb 2000; Bromm &Loeb 2002, 2006; Gou etal. particularly at the faint end of the galaxy luminosity func- r 2004). Thefarthest GRBto dateis GRB090423 at z=8.3 tion. The star formation rate (SFR) has been comprehen- a (Tanvir et al. 2009; Salvaterra et al. 2009). So GRBs are a sivelyinvestigated.Hopkins&Beacom(2006)calibratedthe promisingprobeofthestarformation history(Totani1997; starformationhistoryouttoz>6usingtheultravioletand Wijersetal.1998; Porciani&Madau2001;Bromm &Loeb far-infrareddata.TheyfoundtheSFRistightlyconstrained 2002,2006; Tutukov 2003). Recent studies show that Swift at z <1, the SFR in the redshift range of 1<z <4 is ap- GRBsarenottracingthestarformationhistoryexactlybut proximately a constant and shows a steep decay at z > 4 includinganadditionalevolution(Daigneetal.2006;Cen& (Hopkins&Beacom2006).Li(2008)constrainedtheSFRup Fang 2007; Le & Dermer 2007; Yu¨ksel & Kistler 2007; Sal- toz=7.4byadding6newdataandfoundthesameresultas vaterra&Chincarini2007a;Guetta&Piran2007;Kistleret Hopkins&Beacom (2006)(Li 2008). Thehigh-redshift SFR al. 2008; Salvaterra et al. 2008; Butler et al. 2009). Obser- canalsobedeterminedbyobservationsofcolor-selectedLy- vations show that GRBs prefer to form in a low-metallicity manbreakgalaxies(LBGs)(Bouwensetal.2008;Mannucci environment(Leetal. 2003; Staneket al.2006). Inthecol- etal.2007;Vermaetal.2007).Otaetal.(2008)constrained lapsar paradigm, large angular momentum is required to theSFRusingLyαemitters(LAEs)(Otaetal.2008).InFig- power a GRB. Because high-metallicity stars are expected ure1,we list thedifferentobservational results. Wecan see to have significant mass loss through winds promoting the that different results disagree with each other even consid- loss of angular momentum, Langer & Norman (2006) and ering theuncertainties. Woosley&Heger(2006)havearguedthatGRBprogenitors Long-durationgamma-rayburststriggeredbythedeath willhavealowmetallicity(Woosley&Heger2006;M´esz´aros of massive stars, which have been shown to be associated 2006; Langer & Norman 2006). This has implications for the expected redshift distribution of GRBs (Natarajan et al. 2005; Salvaterra & Chincarini 2007a; Salvaterra et al. ⋆ [email protected] 2007b;Li2008). Charyetal.(2007) estimated alowerlimit † [email protected] 2 F. Y. Wang and Z. G. Dai 2 THE METHOD More recent observational studies indicated that the long 0.0 GRBhost galaxy metallicity isgenerally lower than thatof -0.5 (1+z)-5.01 the average massive star forming galaxies (Le et al. 2003; Stanek et al. 2006). Salvaterra & Chincarini (2007) found -1.0 that the differential peak flux number counts obtained by -3 Mpc) -1.5 BATSE and Swift could be well fitted using GRBs forming -1 yr -2.0 This work iUnnldoewr-mtheetaalsliscuitmypgtaiolanxtiehsat(Stahlevaftoerrmraat&ionChoifnGcaRriBnis2f0o0ll7oaw)s. M ( -2.5 Ho Hpokipnk &in B&e Baecoamco(m20(20060) 6 ) thecosmic starformation history and GRBsform preferen- og LBG: Bouwens et al. (2008) tiallyinlow-metallicity galaxies, theGRBformation rateis l -3.0 LAE: Ota et al. (2008) given by GRB: Yuksel et al. (2008) -3.5 GGRRBB:: TChhias rwy oertk al. (2007) ΨGRB(z)=kGRBΣ(Zth,z)Ψ∗(z), (1) -4.0 0.0 0.2 0.4 0.6 0.8 1.0 where kGRB is the GRB formation efficiency, Σ(Zth,z) is log(1+z) the fraction of galaxies at redshift z with metallicity below Zth (Langer&Norman2006) andΨ∗(z)istheobservedco- Figure 1. The cosmic star formation history. The black circles moving SFR. The redshift distribution of observable GRBs arefromHopkins&Beacom(2006).Thethreeopenpentaclesare is thestarformationratesatz=4.5,z=6andz=8derivedusing dN dV/dz Swift GRBdata. dz =F(z)/hfbeamiΣ(Zth,z)Ψ∗(z) 1+z , (2) where F(z) represents the ability both to detect the trig- ger of burst and to obtain theredshift (Kistler et al. 2008). The redshifts of high-redshift GRBs are determined by a spectral break in near infrared or infrared bands. Many ground-based facilities could recognize the spectral break of the SFR of 0.12±0.09 and 0.09±0.05 M⊙yr−1Mpc−3 andthenobtaintheredshift.GRONDobservedthespectral at z = 4.5 and 6, respectively, using deep observations of break of GRB080913 between i′ and z′ bands and the red- three z ∼5 GRBs with the Spitzer Space Telescope(Chary, shift of GRB080913 is z=6.7 (Greiner et al. 2009). Greiner Berger & Cowie 2007). Yu¨ksel et al.(2008) used Swift GRB et al. (2009) show that 2m-class telescopes can identify data to constrain the high-redshift SFR and found that no most high-redshift GRBs. The redshift of GRB090423 is steepdropexistsintheSFRupz∼6.5(Yu¨kseletal.2008). determined by NIR spectroscopic observations (Tanvir et Kistleretal.(2009)constrainedSFRuptoz ∼8usingfour- al. 2009; Salvaterra et al. 2009). So if the luminosities of years Swift data and found SFR to beyond z = 8 was con- high-redshift GRBs are high enough and spacecrafts (such sistent with LBG-basedmeasurements (Kistleretal. 2009). as Swift and Fermi) can detect, the redshifts can be ob- In this paper, we estimate the high-redshfit SFR us- tained using ground-basedfacilities. hf i is thebeaming beam ing latest Swift long-duration GRBs, considering the GRB factor and dV/dz is the comoving volume element per unit formation rate tracing SFH and thecosmic metallicity evo- redshift, given by lution.WeusetheSFRbetweenz=1andz=4andrelate the GRB counts in this redshift bin. The absolute conver- dV = 4πcd2LH(z). (3) sion factor between the SFR and the GRB rate is highly dz 1+z 1+z uncertain. But we do not need this factor in this method. The luminosity distance, d , to a source at redshift z is L Because weak low-redshift GRBs can not be seen at high z 1 redshifts,soweonlyusehighluminosityGRBs.Weproceed d =c(1+z) dz′, (4) analogouslytoYu¨kseletal.(2008).Buttherearetwodiffer- L Z H(z′) 0 ences between our method and Yu¨ksel’s method. First, we with consider that long GRBs prefer to form in low-metallicity regions and trace the star formation history, but Yu¨ksel et H(z)=H0 Ωm(1+z)3+ΩΛ (5) al. (2008) and Kistleretal. (2009) considered GRBsdonot p in a flat ΛCDM universe. For bursts with luminosities suf- tracestarformation historydirectly,instead implyingsome ficient to be viewed within an entire redshift range, Kistler kind of additional evolution. Second, we examine the influ- etal.(2008) foundthatF(z)couldbesettoaconstant(for enceofbackgroundcosmology.In1998,observationsontype more details, see Kistler et al. 2008, 2009). Iasupernovaesuggesttheacceleratinguniverse.Manymod- Some theoretical models (Woosley & Heger 2006; see els have been proposed to explain the accelerating expan- M´esz´aros 2006 for a review) require that GRB progenitors sion. Out of many particular models, we focus on four rep- should have metallicity 6 0.1Z⊙. According to Langer & resentativemodels:ΛCDM,quintessence,quintessencewith Norman (2006), the fractional mass density belonging to time-varyingequation of state, and brane-world. metallicitybelowagiventhresholdZ is(Langer&Norman th The structure of this paper is as follows. In section 2, 2006) we introduce the method. In section 3, we show our results onhigh-redshiftSFR.Finally,section4containsconclusions Σ(Z ,z)= Γˆ[α1+2,(Zth/Z⊙)2100.15βz], (6) and discussions. th Γ(α +2) 1 3 where Γˆ and Γ are the incomplete and complete gamma functions, α = −1.16 is the power-law index in the 1 Schechter distribution function of galaxy stellar masses (Panter,Heavens&Jimenez2004)andβ =2istheslopeof 1E53 the galaxy stellar mass-metallicity relation (Savaglio et al. 2005;Langer&Norman2006).WeadoptZth =0.1Z⊙ asin Langer & Norman (2006). 1E52 GisoRtBroWspeoicbshslueormwvietndhoebsilytuymSiwisnifots1ittyil-lreGdRshBift0d90is5t2r9ibuintiFonigoufre1129.lTonhge -2-1 erg cm s 1E51 L iso L =E /[T /(1+z)], (7) iso iso 90 1E50 whereE istheisotropicenergyinthe1−104keVbandand iso T istheGRBduration.Becauseonlybrightburstscanbe 90 seen at low and high redshifts, so we choose the luminosity 1E49 cut L >3×1051 ergs s−1 (Yu¨kselet al. 2008). There are 0 1 2 3 4 5 6 7 8 iso redshift z four groups of GRBs defined by this L cut in z=1−4, iso 4−5, 5−7, and 7−8.5. The GRBs in z = 1−4 act as a Figure2.Theluminosity-redshiftdistributionof119Swift long “control group” to base the GRB to SFR conversion, since durationGRBsintheΛCDMmodel.Thenumbercounts inred- thisredshiftbinhasbothgoodSFRmeasurementsandGRB shiftbinsz=1−4, 4−5,5−7, and7−8.5are28, 6,5, and1 counts.Wecalculatethetheoretically predicatednumberof respectively. GRBs in thisbin as Nthe = ∆t∆Ω 4dzF(z)Σ(Z ,z) Ψ∗(z) dV/dz 1−4 4π Z1 th hfbeami 1+z 4 dV/dz = A Z dzΣ(Zth,z)Ψ∗(z) 1+z , (8) 1 1E53 where A=∆t∆ΩF /4πhf i depends on the total time, 0 beam ∆t,andtheangularskycoverage,∆Ω.Thetheoreticalnum- ber in z=4−5 and 5−7 can be written by -1 s 1E52 Nzt1h−ez2 = hΨ∗iz1−z2A Zz1z2dzΣ(Zth,z)d1V+/dzz , (9) -2 L erg cm iso1E51 where hρ˙∗iz1−z2 is the average SFR density in the redshift rangez −z .Representingthepredicatednumbers,Nthe 1E50 1 2 z1−z2 with theobserved GRBcounts,Nobs ,weobtain theSFR z1−z2 in theredshift range z −z 1 2 1E49 0 1 2 3 4 5 6 7 8 hΨ∗iz1−z2 = NNzo11bo−−bss4z2 R14dzzz12dd1Vz+/dzdz1V+Σ/dz(zZΣth(,Zzt)hΨ,z∗)(z) . (10) Figure3.Theluminosity-redsrheidfsthidft izstributionof119Swift long R Below, we briefly introduce three other cosmological durationGRBsinthequintessence(w=w0).Thenumbercounts modelsinwhichwecalculatethehigh-redshiftSFR.Wewill inredshiftbins z =1−4, 4−5, 5−7, and 7−8.5 are27, 6, 5, restrictourattentiontoflatmodels(k=0)becausetheflat and1respectively. geometry is strongly supported by five-years WMAP data (Komatsu et al. 2009). Dai & Zhu 2007). The luminosity-redshift distribution of Wefirstconsiderthedarkenergywithaconstantequa- GRBs in this model is shown in Figure 4. tion of state w(z) = w , where −1 < w < −1/3. In such 0 Brane-world scenarios assume that our four- a case this component is called “quintessence”. Confronta- dimensional space-time is embedded into five-dimensional tion with recent observational datasets, Wang et al. (2007) space (Deffayet, Davli & Gabadadze 2002). Gravity in found Ω = 0.31 and w = −0.95. We use these data in M 0 five dimensions is governed by the usual five-dimensional the following calculations (Wang, Dai & Zhu 2007). The Einstein-Hilbert action. The bulk metric induces a four- luminosity-redshift distribution of GRBs in this model is dimensional metric on the brane. We consider the flat shown in Figure 3. Dvali-Gabadadze-Porrati model. The only parameter is If we consider that the quintessence arises from an Ω .Weusetheresult from Wanget al. (2009), Ω =0.20 evolving scalar field, it would be natural to expect that M M (Wang,Dai&Qi2009).Theluminosity-redshiftdistribution the equation of state should vary with time. We consider of GRBs in this model is shown in Figure 5. w(z)=w +w z/(1+z).WealsousetheresultsofWanget 0 1 The SFR conversion from one cosmology to another is al. (2007), Ω = 0.30, w = −1.08 and w = 0.84 (Wang, M 0 1 asfollows. Intheflatuniverse,thecomovingvolumeispro- portional to comoving distance cubed, V ∝ D3, and the c c 1 Seehttp://swift.gsfc.nasa.gov/docs/swift/archive/grb table. comoving volume between redshifts z−∆z and z+∆z is 4 F. Y. Wang and Z. G. Dai Table 2.Thehigh-redshiftSFRsinfourmodels. Model Redshift Starformationrate 1E53 ΛCDM 4.5±0.5 LogΨ∗=−1.287±0.30 ΛCDM 6.0±1.0 LogΨ∗=−1.750±0.30 -1 s 1E52 ΛCDM 8.0±0.5 LogΨ∗=−2.110±0.30 -2 m Quintessence 4.5±0.5 LogΨ∗=−1.296±0.30 L erg ciso1E51 QQuuiinntteesssseennccee 86..00±±01..50 LLooggΨΨ∗∗==−−21..278877±±00..3300 VarQuintessence 4.5±0.5 LogΨ∗=−1.394±0.30 1E50 VarQuintessence 6.0±1.0 LogΨ∗=−1.819±0.30 VarQuintessence 8.0±0.5 LogΨ∗=−2.214±0.30 Brane-world 4.5±0.5 LogΨ∗=−1.466±0.30 1E49 Brane-world 6.0±1.0 LogΨ∗=−1.905±0.30 0 1 2 3 4 5 6 7 8 Brane-world 8.0±0.5 LogΨ∗=−2.205±0.30 redshift z Figure4.Theluminosity-redshiftdistributionof119Swift long 3 THE DERIVED HIGH-REDSHIFT STAR durationGRBsinthequintessencewithatime-varyingequation FORMATION RATE ofstate (w=w0+w1z/(1+z)). Thenumber counts inredshift bins z = 1−4, 4−5, 5−7, and 7−8.5 are 30, 6, 5, and 1 In Figure 1, we show the measurement of the high-redshift respectively. SFR in the ΛCDM model with ΩM = 0.27, ΩΛ = 0.73 and H = 70kms−1Mpc−1. The star formation rates are 0 LogΨ∗ = −1.287 ± 0.30, LogΨ∗ = −1.750 ± 0.30, and LogΨ∗ =−2.110±0.30 M⊙yr−1Mpc−3 at z=4.5, 6.0, and 8.0,respectively.TakingintoaccountthePoissonconfidence interval for four observed GRBs, we assign a statistical un- certainty of a factor of 2 (Yu¨ksel et al. 2008). The derived high-redshiftSFRshowsasteepdecaywithaslopeofabout 1E53 5.0(theslopeof Hopkins&Beacom (2006) isabout 7.8). If we exclude a particular GRB or changes in redshift ranges, thederivedSFRwillchangeinsignificantly.Thisconclusion -2-1 m s 1E52 isconsistentwithYu¨kseletal.(2008),butthederivedhigh- g c redshift SFR is different from that of Yu¨ksel et al. (2008). L eriso1E51 Tinhleowm-mainetarellaicsiotnyirsegtihoants.we consider GRBs prefer to form We show the update SFH fit of Hopkins & Beacom 1E50 (2006) at high-redshifts based on ournewGRB results. We use a continuous form of a broken power law (Yu¨ksel et al. 1E49 2008), 0 1 2 3 4 5 6 7 8 redshift z (1+z)b η Ψ∗(z) = Ψ∗,0(cid:26)[(1+z)a]η+(cid:20)(1+z1)b−a(cid:21) Figure5.Theluminosity-redshiftdistributionof119Swift long durationGRBsinthebrane-worldmodel.Thenumbercountsin (1+z)c η 1/η + , (12) redshiftbinsz=1−4,4−5,5−7,and7−8.5are31,6,5,and (cid:20)(1+z1)b−a(1+z2)c−b(cid:21) (cid:27) 1respectively. where using η ≃ −10 smoothes the power law transitions. Our fitted result is shown by the thick gray line in Fig 1. Here,z =1andz =4.0aretheredshiftsofthebreaks,a= 1 2 3.4,b=−0.3andc=−5.0istheslopesofthesethreepower V (z,∆z)∝D3(z+∆z)−D3(z−∆z).Sincetheluminosity iscproportionalcto the comovcing distance squared, L ∝ D2, laws,andthenormalization isΨ∗,0 =0.02M⊙ yr−1 Mpc−3. c InTable2,weshowthehigh-redshiftSFRsinfourcos- theSFRdensityforagivenredshiftrangeis(Hopkins2004) mological models. The value of SFR in these models show L(z) D2(z) no remarkable difference. The reasons are as follows. First, Ψ∗(z)∝ V (z,∆z) ∝ D3(z+∆z)c−D3(z−∆z). (11) the GRB counts in redshift bins are different because the c c c luminosity distances in thesemodels are not equal.Second, The Hubble functions in different dark energy models are the comoving volume of these models are different. Third, showed in Table 1. We convert the SFR in the redshift thereis a conversion factor from one cosmological model to range z = 1−4 in ΛCDM to other models. The derived another.The derivedSFR in thesecosmological models are SFR can be used to calculate the high-redshift SFR in consistent with each other in quoted uncertainties. The in- quintessence, quintessence with a time-varying equation of fluenceof backgroundcosmology can beneglected when we state and brane-world model. usethis method to measure thehigh-redshift SFR. 5 Table1.ExpansionratesH(z)infourmodels.Weconsidertheflatuniverse. Inthebrane-worldmodel,Ωrc =(1−Ω2m)/4. Model CosmologicalexpansionrateH(z)). ΛCDM H2(z)=H02 Ωm(1+z)3+1−Ωm Quintessence H2(z)=H02 Ωm(1+(cid:2) z)3+(1−Ωm)(1+z(cid:3))3(1+w) VarQuintessence H2(z)=H02 Ωm(1+(cid:2) z)3+(1−Ωm)(1+z)3(1+w0−w1) ex(cid:3)p(3w1z) Braneworld H(cid:2)2(z)=H02 ( Ωm(1+z)3+Ωrc+ Ωrc)2 (cid:3) h p p i 4 CONCLUSIONS AND DISCUSSIONS REFERENCES In this paper, we constrain the high-redshift SFR up to Bouwens, R.J., et al. 2008, ApJ,686, 230 z ∼ 8.3 using the latest Swift GRB data including two Bromm, V., & Loeb, A. 2002, ApJ, 575, 111 highest-z GRBs, GRB 080913 at z = 6.7 and GRB 090423 Bromm, V., & Loeb, A. 2006, ApJ, 642, 382 atz =8.3infourbackgroundcosmologicalmodels.Wecon- Butler, N. R., Bloom, J. S. & Poznanski, D., 2009, sider that GRBs trace the star formation history and pre- arXiv:0910.3341 fer to form in a low-metallicity environment. The empirical Cen, R. & Fang, T., 2007, arXiv: 0710.4370 method is similar to Yu¨ksel et al. (2008) and Kistler et al. Chary, R., Berger, E., & Cowie, L. 2007, ApJ,671, 272 (2009). This method has two advantages. First, statistics Ciardi, B., & Loeb, A.2000, ApJ,540, 687 of the recent Swift GRB data allowed the use of luminos- Daigne,F.,Rossi,E.M.&Mochkovitch,R.,2006,MNRAS, ity cuts to fairly compare GRBs in the full redshift range, 372, 1034 eliminatingtheunknownGRBluminosityfunction.Second, Deffayet, C., Dvali, G. & Gabadadze, G. 2002, Phys. Rev. we can calculate the high-redshift SFR by comparing the D,65, 044023 counts of GRBs at different redshift ranges, normalized to Gou, L. J. et al. 2004, ApJ, 604, 508 SFR data at intermediate redshifts which have been well Guetta,D.,&Piran,T.2007,J.Cosmol.Astropart.Phys., constrainedbyobservations,eliminatingtheneedforknowl- 7, 3 edge of the GRB efficiency factor. But there are two differ- Hjorth, J., et al. 2003, Nature,423, 847 ences between our method and Yu¨ksel’s method. First, we Hopkins, A.M. 2004, ApJ,615, 209 consider that long GRBs prefer to form in low-metallicity Hopkins, A.M., & Beacom, J. F. 2006, ApJ, 651, 142 regions and trace the star formation history, but Yu¨ksel et Kistler, M. D., et al. 2008, ApJ,673, L119 al. (2008) and Kistleretal. (2009) considered GRBsdonot Kistler, M. D., et al. 2009, arXiv:0906.0590 tracestarformation historydirectly,instead implyingsome Komatsu, E. et al. 2009, ApJS, 180, 283 kind of additional evolution. Second, we examine the influ- Lamb, D. Q., & Reichart, D.E. 2000, ApJ, 536, 1 ence of background cosmology. Langer, L., & Norman, C. A.2006, ApJ,638, L63 Our results show that the SFR at z >4 shows a steep Le Floc’h et al. 2003, A&A,400, 499 decay with a slope of about −5.0 in ΛCDM. In three other Le, T., & Dermer, C. D.2007, ApJ,661, 394 models,thehigh-redshiftSFRisslightlydifferentfrom that Li, L. X. 2008, MNRAS,388, 1487 intheΛCDMmodel,andalsoshowsasteepdecay.Yu¨kselet Mannucci, F., et al. 2007, A&A,461, 423 al.(2008) foundthedecayslopewas−3.5atz>4.Ourde- M´esz´aros, P. 2006, Rep. Prog. Phys,69, 2259 rivedhigh-redshiftSFRisdifferentfromYu¨kseletal.(2008). Natarajan, P., et al. 2005, MNRAS,364, L8 The main reason is that we consider GRBs prefer to form Ota, K., et al. 2008, ApJ,677, 12 in low-metallicity regions. Li (2008) derived the SFH up to Panter, B., Heavens, A. F., & Jimenez, R. 2004, MNRAS, z = 7.4, and found that the decay slope at z > 4 was 4.48 355, 764 (Li 2008). Their result is consistent with ours. Porciani, C. & Madau, P.2001, ApJ, 548, 522 Salvaterra, R.,& Chincarini, G. 2007a, ApJ,656, L49 Salvaterra, R.,et al. 2007b, MNRAS,380, L45 Salvaterra, R.,et al. 2008, arXiv:0805.4104 Salvaterra, R.,et al. 2009, arXiv:0906.1578 Savaglio, S., et al. 2005, ApJ,635, 260 Stanek,K. Z., et al. 2003, ApJ, 591, L17 ACKNOWLEDGMENTS Stanek,et al. 2006, Acta Astronomica, 56, 333 We thank A. M. Hopkins and H. Yu¨ksel for sharing the Tanvir, N.R. et al. 2009, arXiv:0906.1577 SFR data. This work was supported by theNational Natu- Totani, T. 1997, ApJ,486, L71 ralScienceFoundationofChina(grants10233010,10221001 Tutukov,A. V. 2003, Astron. Rep.47,637 and10873009) andtheNationalBasicResearchProgram of Verma, A., et al. 2007, MNRAS,377, 1024 China (973 program) No. 2007CB815404. F. Y. Wang was Wang, F. Y., Dai, Z. G. & Zhu,Z. H.,2007, ApJ, 667, 1 alsosupportedbyJiangsuProject InnovationforPhDCan- Wang, F. Y., Dai, Z. G. & Qi, S., 2009, A&A,507, 53 didates (CX07B-039z). Wijers, R. A.M. J. et al. 1998, MNRAS,294, L13 6 F. Y. Wang and Z. G. Dai Woosley, S.E. & Heger, A. 2006, 637, 914 Yu¨ksel,H.,&Kistler,M.D.2007,Phys.Rev.D,75,083004 Yu¨ksel, H., et al. 2008, ApJ, 683, L5