High quality local interpolation by composite parametric surfaces MicheleAntonellia,CarolinaVittoriaBeccarib,GiulioCasciolab aDepartmentofMathematics,UniversityofPadova,ViaTrieste63,35121Padova,Italy bDepartmentofMathematics,UniversityofBologna,PiazzadiPortaSanDonato5,40126Bologna,Italy Abstract InCAGDthedesignofasurfacethatinterpolatesanarbitraryquadrilateralmeshisdefinitelyachallengingtask. The 6 basicrequirementistosatisfybothcriteriaconcerningtheregularityofthesurfaceandaestheticconcepts. 1 Withregardtotheaestheticquality,itiswellknownthatinterpolatorymethodsoftenproduceshapeartifactswhen 0 2 thedatapointsareunevenlyspaced. Intheunivariatesetting,thisproblemcanbeovercome,oratleastmitigated,by exploitingapropernon-uniformparametrization,thataccountsforthegeometryofthedata. Moreover,recently,the n same principle has been generalized and proven to be effective in the context of bivariate interpolatory subdivision a J schemes. 7 In this paper, we propose a construction for parametric surfaces of good aesthetic quality and high smoothness thatinterpolatequadrilateralmeshesofarbitrarytopology. ] In the classical tensor product setting the same parameter interval must be shared by an entire row or column A of mesh edges. Conversely, in this paper, we assign a different parameter interval to each edge of the mesh. This N particular structure, which we call an augmented parametrization, allows us to interpolate each section polyline of h. themeshatparametersvaluesthatpreventwigglingoftheresultingcurveorotherinterpolationartifacts. Thisyields t highqualityinterpolatorysurfaces. a m TheproposedsurfacesareageneralizationofthelocalunivariatesplineinterpolantsintroducedinBeccarietal. (2013)andAntonellietal. (2014),thatcanhavearbitrarycontinuityandarbitraryorderofpolynomialreproduction. [ In particular, these surfaces retain the same smoothness of the underlying class of univariate splines in the regular 1 regions of the mesh (where, locally, all vertices have valence 4). Moreover, in mesh regions containing vertices of v valenceotherthan4,wesuitablydefineG1-orG2-continuoussurfacepatchesthatjointheneighboringregularones. 6 3 Keywords: Quadrilateralmesh,Localinterpolation,Non-uniformparametrization,Surface,Arbitrarytopology, 4 Curvenetwork 1 2010MSC: 65D05,65D07,65D17 0 . 1 0 6 1 1. Introduction : v A central topic in computer-aided geometric design is the construction of parametric curves and surfaces that i X interpolate a given set of points. In 2D, these points are the vertices of a control polygon, whereas in 3D they are r thevertices ofa controlpolyhedron (alsocalled amesh). In thiscontext, a “good”interpolant isone thatfaithfully a mimicstheshapesuggestedbytheinputdata: thismeans,e.g.,thatitdoesnotpresentselfintersections,noritbends tomuchoritistootightwithrespecttothegivencontrolpolygonorpolyhedron. Concerningunivariateinterpolation, itiswellknownthataproperchoiceofparametrizationiscrucialtoobtain goodqualitycurvesthatinterpolateunevenlyspaceddata(basicreferencesare[1,2]). Inparticular,auniformpara- metrizationmaygiverisetonoticeableinterpolationartifacts,sinceitdoesnotaccountforthegeometryofthedata. Theseartifactsoftendisappear,oraregreatlymitigated,whenasuitablenon-uniformparametrizationisused(Figure 1isanexample). Emailaddresses:[email protected](MicheleAntonelli),[email protected](CarolinaVittoriaBeccari), [email protected](GiulioCasciola) 1 (a) Uniformparametrization (b) Centripetalparametrization Figure1:Cubic(global)splineinterpolationofunevenlyspaceddata.Theuniformparametrizationfailswhereasapropernon-uniformparametri- zationyieldsagoodinterpolant. Although there is probably no “best” parametrization, since any method can be defeated by a suitably chosen dataset,sometechniquesproducegoodresultsinthemajorityofcriticalcases. Oneofthemosteffective[3–5],and probablythemostused, isthecentripetalparametrization. Alongsidethis, itisworthmentioningtheNielson-Foley parametization[6]andtherecentmethodproposedin[7],which,insomecases,showsbetterperformancethaneither oftheprevious. The possibility to manage a non-uniform parametrization is even more crucial when using local interpolation methods. Thelatteraremoreefficientthanglobalapproaches,becausetheydonotinvolvesolvingsystemsoflinear equations, which can readily be of large dimension when complex surfaces have to be generated. Moreover, local modificationofthedatacanbehandledbylocalupdatingoftheinterpolationmodelanddoesnotrequirerecomputing the entire model from scratch. However, local interpolation techniques are more prone to generating interpolation artifactsthanglobalonesandthereforetheysufferevenmorefromapoorchoiceofparametrization. The construction of local spline interpolants with specific properties and non-uniform parametrization has long been an open question. This is probably one of the reasons why, so far, local interpolation methods have had low uptakeincomputerdesignapplications.Intheunivariatesetting,tworecentworkshavedevelopedageneralapproach forsolvingtheproblem[8,9]. Thetechniqueproposedinthosepapersallowsustochooseanarbitrarysupportwidth and,correspondingly,constructvariousclassesoflocalsplineinterpolantsthatdifferonefromanotherintheirdegree, continuityandapproximationorder. Inthisway,onecanpicktheinterpolatingsplinewhosepropertiesbestsuitthe contextofapplication. Moreover,thepopularCatmull-Romsplines[10],aswellasothertypesoflocalinterpolants previouslyappeared(anon-exhaustivelistincludes[11–15])arespecialinstancesoftheconstruction. Inthispaperwegeneralizetheunivariatelocalinterpolatorysplinesin[8,9]tothebivariatesetting. Inparticular, by introducing an appropriate new parametrization technique, we will obtain parametric surfaces of good aesthetic qualityandhighsmoothness. We shall start by considering the case of a regular mesh, which is one where each vertex has exactly 4 incident edges. The main hurdle is represented by the need of defining a non-uniform parametrization that preserves the qualityofthelocalinterpolants,whengeneralizingfromtheunivariatetothebivariatesetting. Thestandardapproach is to construct a tensor product surface from the univariate splines that one wishes to use. Being uv the parametric domain, the tensor product requires the generation of one set of parameter values for all isoparametric curves in the u-direction; the same holds for the v-direction. For finding such a parametrization, the most reasonable way of proceedingistocreateagoodparametrizationforeachisoparametriccurveusingasuitablemethod,suchas,e.g.the centripetal parametrization, and then average each of these parameterizations to yield one. This approach will only produceacceptableresultsifalltheisoparametriccurvesessentiallyyieldthesameparametrization.Conversely,when thedatapointssignificantlydeviatefromaregulargrid,itwillresultinapoorchoiceinparameters.Theisoparametric curveswillunnaturallywiggle,andthisdefectwillbereflectedinthesurface(see,e.g.[2,§7.5.1]). Theabovediscussionsuggeststhattheclassicalideaofaveragingtheparametrizationshouldbeavoided. Hence wewilltakeanotheravenue. Inparticularweassigntoeachmeshedgeaparameterinterval, withoutrequiringthat thesameparameterintervalissharedbyanentireroworcolumnofmeshedges. Wecallsuchaparametrizationan augmentedparametrization. A similar parametrization concept has previously been exploited in the context of subdivision schemes. It was initiallyproposedinconnectionwithCatmull-Clarksurfaces[16–19],toenrichthemethodwithgreatercontrolover 2 theshapeoffree-formobjectsandlocalshapeeffectssuchascreaseedges. Infact,theterm“augmented”wasfirstly introducedin[18]withasimilarmeaningtotheoneweusehere. Morerecently,aninterpolatorysubdivisionscheme withaugmentedparametrizationhasbeendiscussedin[20].Theschemeallowsforinterpolatingeachsectionpolyline ofthemeshatindependentparametervaluesandthereforethemostappropriateparametrizationisusedtoconstruct eachsectioncurveofthelimitsurface.Thisapproachyieldssurfacesoffarsuperioraestheticqualitycomparedtotheir uniformortensor-productcounterparts. Unfortunately,itissubjecttothetypicalissuesofinterpolatorysubdivision schemes. Inparticulartheresultingsurfacescannotbeevaluatedatarbitraryparametersandhavesmoothnesslimited toC1. The construction of the local interpolatory surfaces proposed in this paper proceeds as follows. We start by assumingthatagoodparametrizationhasbeencomputedindependentlyforeachsectionpolylineofthemeshusing a suitable method. Accordingly, a different parameter interval is assigned to each mesh edge, which gives rise to an augmented parametrization. Next, we choose a class of local univariate spline interpolants based on the desired smoothness,orderofpolynomialreproductionorsupportwidth. Wethensuitablyconstructacompositesurfacethat containsalltheinterpolatorycurvesofthisclassgeneratedfromtheindividualsectionpolylinesofthemeshwiththe associatedparameterizations.Inthisway,eachsectionpolylineofthemeshisinterpolatedattheparametervaluesthat allowthebestqualityoftheresultingsectioncurve. Moreover,thesectioncurvesare“featurecurves”ofthesurface, which,inturn,isagoodqualityinterpolanttotheinputmesh. Wealsoprovethat,iftheunderlyingunivariatesplines areCk continuous, thenthecompositesurfaceisGk (meaningthatderivativesagreeaftersuitablereparametrization [21]). Asaconsequence,thecompositesurfaceretainsthegoodpropertiesofthecorrespondingunivariatesplines. Oppositelytoglobaltechniques,theconsideredapproachdoesnotrequiretosolvelargesystemsoflinearequa- tionsandallowsforlocaleditingofthegeneratedsurfaces. Moreover,otherlocalmethodstypicallyrequiretosupply additional input data, such as cross-boundary derivatives and twist vectors (an example is given by the well-known Coonspatches[1]). Amajordrawbackisthatthesequantitiesneedtobeheuristicallyestimatedandthisislikelyto beoneofthereasonswhy,tothebestofourknowledge,onlyG1 orG2 Coonspatcheshavebeenconsideredsofar. Conversely,thesurfacesproposedinthispapercanhavehighercontinuity. An important consequence of the locality of the proposed construction is that the method can be extended to handlemeshescontainingextraordinaryvertices(namelyverticeswithvalencedifferentthan4). Anysuchmeshcan bepartitionedintoregularandextraordinaryregions. Looselyspeaking,regularregionsarethosewhereallvertices areregularandthereforethelocalinterpolationschemecanbeapplied. Patchingtheregularregionswillgeneratea surfacewith“holes”correspondingtotheextraordinaryregions. Acrosstheboundaryofsuchholes,thetangentfield (and higher order derivative fields) are determined by the surrounding regular patches and, as a consequence of the augmentedparametrization, theychangeateveryboundarypointinapeculiarway. Themissingpartofthesurface shallbedefinedinsuchawaytointerpolatetheexistingderivativefields,uptoareasonableorderofcontinuity. The general problem of how to fill the hole around an extraordinary vertex is an active research topic even in thecaseoftheuniformparametrization. Recentdevelopmentsinclude[22–24],wheretransfinitemulti-sidedpatches are generated by interpolating derivative ribbons. Our main point here is not to provide a one-stop solution, but to demonstratehowtoobtaingoodqualitylocalinterpolatingsurfacesbyexploiting,insynergy,theaugmentedparame- trization,theregularpatchesdescribedaboveandalocalpatchingschemeforextraordinaryvertices. Wewilladdress thisissuebymansofeitherG1Coons-Gregorypatches[1,25,26]andtheirG2version[27,28].Inbothcases,wewill seehowtosuitablytweakthedefinitionofthepatches,inordertointerpolatethedesiredboundaryinformation. This willallowustogenerateaugmentedsurfacesthatinterpolateameshcontainingextraordinaryvertices,havearbitrary smoothnessintheregularregions,andareG1orG2continuousintheextraordinaryregions. We would like to remark that the research reported in this paper was carried out under the European Eurostars projectNIIT4CAD,aimedatthedevelopmentofnewtechnologies,mainlybasedonsubdivisionmethods,formodel- ingarbitrarytopologysurfaceswithinaCADsystem. Oneoftheadvancedobjectivesoftheprojectwastoconstruct localinterpolatorysurfacessuitableforintegrationinaCADsystemandthispaperisapartofsuchastudy. Theremainderofthepaperisorganizedasfollows. InSection2werecalltheunivariatelocalsplineinterpolants presentedin[8,9]. Basedonthese,inSection3weintroduceourlocalmethodtogenerateinterpolatorysurfacesof goodqualityandhighorderofcontinuity, givenasinputaregularmesh. Wealsodiscussalltherelevantproperties of the constructed surfaces. Section 3.1 presents some application examples to demonstrate the effectiveness of the 3 methodanditssuperiorperformancewithrespecttotheclassicaltensorproductapproach. InSection4weaddress the problem of patching the extraordinary regions of the mesh by G1 and G2 augmented Coons-Gregory patches. The latter patches are constructed to interpolate boundary curves and cross-boundary derivative fields. When this informationisnotavailable,itneedstobesuitablygeneratedandSection4.3illustratesapossibleapproachtohandle thisissue. Section4.4presentsexamplesofaugmentedsurfacescontainingextraordinaryverticesandfinallySection 5summarizestheresultsachievedandsuggestssometopicsforfutureresearch. 2. Local,non-uniform,univariatesplineinterpolation Suppose we are given a sequence of points p ,p ,...,p in Rn, n (cid:62) 2, where p and p are distinct and 0 1 N j j+1 p = p andanassociatedsequenceofparametervalues x < x < ··· < x . Weconsidertheperiodicsplinecurve N 0 0 1 N F:[x ,x ]→Rndefinedas 0 N (cid:88) F(x)= p ψ(x), (1) i i i whereψ : [x ,x ] → Rarefundamentalsplinefunctions,namelytheyarepiecewisefunctionsonthepartition{x } i 0 N j suchthatψ(x ) = δ . Sinceweareinterestedinlocalinterpolation, werequirethateveryψ hascompactsupport, i j i,j i namelythatitisnonzeroinafinitenumberofparametricintervals.Inthisway,whenthedatapointsareinRn,n=2,3, formula(1)representsaparametriccurvethatlocallyinterpolatesthegivendata.Itisevidentthatthisapproachallows ustoovercometheneedforsolvinglinearsystemsofequationsthatarisewhenglobalsplineinterpolationisused. Intheremainderofthepaper,wesupposethatthefundamentalfunctionsψ haveevensupportwidthw,namely i that ψi(x)=0, x(cid:60)[xi−w,xi+w]. 2 2 Thisassumptionguaranteesthataninterpolatingspline(1)preservespossiblesymmetriesinthedataandallowsusto consistentlysimplifythenotationthatwillbeintroducedlateron. If we limit ourselves to considering polynomial splines, the salient properties that characterize the fundamental functionsaredegree,continuity,maximumdegreeofpolynomialsthatcanbereproduced(thisisequaltotheapprox- imationorderminusone)andsupportwidth. Inthisrespect,itiseasilyseenthattheparametricinterpolant Fin(1) hasthesamepropertiesofthefundamentalfunctionsψ. i Ageneralmethodforconstructinglocalinterpolatorysplineswithspecificpropertiesandnon-uniformparametri- zationhasbeendevelopedinthetworecentpapers[8,9].Inthatframework,wecanchooseanarbitrarysupportwidth and,correspondingly,constructvariousclassesoflocalsplineinterpolantsoftheform(1)thatdifferonefromanother intheirdegree,continuityandapproximationorder. SpecialinstancesofsuchsplinesareCatmull-Romsplines[10], aswellasothertypesoflocalinterpolantsincludingthosein[11–15]. Adopting the notation in [8, 9], we indicate a class of splines having Degree g, Continuity order k, Polynomial reproductiondegreemandSupportwidthwbytheshorthandnotationDgCkPmSw. Tables1,2,and3in[8]andTable 2in[9]summarizethedifferentclassesthatwecanconstructforthemostusualchoicesofsupportwidth,namely4, 6and8. Someexampleswithw=4includethefamiliesD3C0P3S4,D3C1P2S4,D4C2P1S4,D5C2P2S4from[8]and D2C1P2S4orD3C2P2S4from[9]. Evenmoreclassesofsplinescanbefoundwideningthesupportwidthto6or8. Remark1. Thelocalsplineinterpolantsin[8]and[9]differinthefollowingway. In[8]afundamentalfunctionis formedbyonepolynomialsegmentineachinterval[xi,xi+1]. Thework[9]generalizestheconstructioninsuchaway that, inaparametricinterval, afundamentalfunctioncanbecomposedofmorethanonepolynomialsegment, with propercontinuityatthejoinbetweenonesegmentandanother. SuchsplinesarecalledBr-splines, wherer denotes thenumberofdifferentpolynomialpiecescontainedineachparameterinterval. ComparedtoB1splines,Brsplines can have lower degree, at equal support width, continuity and order of approximation. For example, the classes D2C1P2S4orD3C2P2S4mentionedabovearerespectivelyofB2andB3type. Wenowintroducealocalnotationfortherestrictionofasplineinterpolant Ftoaparametricinterval[xs,xs+1]. This will allow us to emphasize the local dependence on data and parameters and will be useful to generalize the 4 (a) (b) Figure2: (a)Fundamentalfunctionψi oftheclass D3C1P2S4, withthedifferentpiecesrepresentedindifferentcolors. (b)Thefundamental functionsoftheclassD3C1P2S4thatarenonzerointheinterval[xs,xs+1]. aboveframeworktothebivariatecase. Tothisaim,weshallobservethatineachparametricintervalthereareexactly wnonzerofundamentalfunctionsandeachofthemdependsonasequenceofw−1parameterintervalsoftheform di = xi+1−xi. (2) Therefore,wecanconvenientlydefinethevector (cid:16) (cid:17) d= ds−w+1,...,ds,...,ds+w−1 , (3) 2 2 which contains all the parameter intervals necessary to evaluate F in [xs,xs+1]. We call such a vector the local parameter vector relative to [xs,xs+1] (or, equivalently, relative to psps+1). If we now map the interval [xs,xs+1] to [0,d ],wecanwritethesegmentofFboundedby p and p as s s s+1 s+w (cid:12) (cid:88)2 F(x)(cid:12)(cid:12)[0,ds] = piψi(x,d), (4) i=s−w+1 2 whereψi(x,d)istherestrictionofψi(x)to[xs,xs+1]expressedintermsofthesequenceofparameterintervals(3). Asanexampleofoursettingandnotation,weprovideinAppendixAtheexpressionsforthewell-knownCatmull- Rom splines [10], corresponding to the class D3C1P2S4 in [8]. The fundamental functions of this class are also illustratedinFigure2. Moreover, to facilitate the reader in reproducing the examples proposed in the following sections, we also list in appendix the fundamental functions D5C2P2S4. The latter are an interesting application of the approach in [8], since they have high continuity, in spite of a very limited support. Moreover we remark that, given our interest in interpolating 3-dimensional data, it may be also useful to consider splines with continuityC3, or higher, and some graphical examples will be presented in the forthcoming sections. As it can reasonably be expected, in this case theexplicitexpressionofthefundamentalfunctionsismorecomplicated. Nevertheless, theevaluationofthespline interpolantcanstillbeperformedinacomputationallyefficientwayasdiscussedin[8,9]. Asrecalledintheprevioussection, thechoiceoftheparametersequence{x }hasalargeinfluenceontheshape j ofaninterpolatingsplinecurveandinthisrespectvariouseffectivemethodscanbeconsidered,suchas[3,6,7,29]. Sincethefocusofthispaperisnotoncomparingdifferenttechniques,wewilltakeasarunningexamplethecentripetal parametrization, which isacknowledged toproduce goodresults forthemajority ofcritical datasets. Accordingto thecentripetalparametrization,fixedx ,theparametervaluesx , j=1,...,N arecomputedthrough 0 j xi+1 = xi+(cid:13)(cid:13)(cid:13)pi+1− pi(cid:13)(cid:13)(cid:13)α2, (5) with α = 1 and (cid:107)·(cid:107) denoting the Euclidean norm. It is therefore clear that the parameter values depend on the 2 2 geometryoftheinterpolationpoints. Inaddition,from(5),thechordalanduniformparameterizationscanbederived, settingrespectivelyα=1andα=0[1,2]. 5 Inthefollowingsectionwegeneralizetothebivariatesettingtheconsideredlocal,non-uniform,univariatespline interpolants. Before proceeding, we need to remark that our assumption to work with periodic data has the sole purposeofsimplifyingthepresentation. Opencurvescansimilarlybedefined, providedthat“special”fundamental functionsareusedinordertoevaluate(1)intheboundaryintervals. Thesefundamentalfunctionsaredefinedsoasto interpolatethederivativesof Fuptosuitableorderat x and x andwereferthereaderto[9]formoredetails. The 0 N surfaceconstructiondevelopedinthefollowingsectioncanbeadaptedtohandleopendatasets,alongthesamelines oftheunivariatecase. 3. Localinterpolationofregularmeshesbyhighqualitysurfacesofarbitrarycontinuity InthissectionweassumethataregularmeshofpointsinR3 isgivenandwedevelopalocalmethodtogenerate aninterpolatorysurfaceofgoodqualityandhighorderofcontinuity,basedontheunivariatefundamentalfunctions introducedintheprevioussectionandonapropertechniqueofparametrization. By“goodquality”wemeanthatthe interpolatingsurfacewillfittheshapesuggestedbytheinputdatainafaithfulmannerandwillnotpresentundesired interpolationartifacts. Moreover,wewillprovethatthesurfacehasthesamesmoothnessoftheunderlyingclassof fundamentalfunctions,whichcanhavearbitrarycontinuityinthegeneralframework[8,9]. Aregularmeshisonewhereeveryvertexbelongstofouredges(andfaces)andcanthusbeseenasarectangular grid of 3D points, whose edges are associated with two independent domain directions. We say that two edges are opposite when they have no vertex in common and they belong to the same face, whereas we say that two edges are adjacent when they have one vertex in common and do not belong to the same face. We call an edge ribbon anyorderedsequenceofpairwiseoppositeedgesandasectionpolylineapolylineformedbyasequenceofpairwise adjacentedges. Moreover, wecallasectioncurveanycurvethatinterpolatestheverticesofasectionpolyline. For simplicity, the discussion will be limited to meshes without boundary and therefore we can assume that all section polylinesandcurvesareclosed. In the introduction to this work, we have drawn the reader’s attention the well-known fact that a tensor-product surfaceisnot,ingeneral,aninterpolantofgoodquality. Thisisbecauseallisocurvesofsuchasurfacemusthavethe sameparametrization.Asrecalled,thelatterrequirementmayresultinanunnaturalwigglingofthesectioncurvesthat isverylikelytohappenwhenthedatapointsareunevenlyspacedandisevenmoreevidentwhenlocalinterpolation methodsareused. In contrast to the tensor product technique, we wish to construct a surface where the vertices of each section polylineareinterpolatedattheparametervaluesthatallowforthebestqualityoftheresultingsectioncurve. Tothisaim,foreverysectionpolyline,wederiveanon-uniformparametersequencebyexploitinganappropriate data-dependent technique of parametrization. Then we assign to the section polyline edges the resulting parameter intervals.Forinstance,labeledby p themeshpoints,thecentripetalparametrizationappliedtoeachsectionpolyline i,j willyieldtheedgeparameterintervals di,j (cid:66)(cid:13)(cid:13)(cid:13)pi+1,j− pi,j(cid:13)(cid:13)(cid:13)α2 and ei,j (cid:66)(cid:13)(cid:13)(cid:13)pi,j+1− pi,j(cid:13)(cid:13)(cid:13)α2, α= 21. (6) Thiscanbeeasilyseencomparingtheaboveexpressionswithformulae(2)–(5). Wecalltheresultingconfigurationofparametersanaugmentedparametrization. Theaugmentedparametrization isfeaturedbythefactthattheparameterintervalsallocatedtotheedgesofonemeshfacewillnotform,ingeneral,a rectangle.Theterminologywasfirstlyusedin[18],dealingwithnon-uniformsubdivisionschemes,whereaugmented facesofamesharedefinedwithasimilarmeaning. Conversely,inatensorproductsurface,theparameterintervals mustbeequalforalledgesbelonginginthesameedgeribbon,or,equivalently,theintervalsallocatedtotheedgesof everymeshfacemustformarectangle. We now aim to construct a composite surface, which we call an augmented surface, where every section curve is a local, univariate, spline of class DgCkPmSw and has an independent parametrization determined by the edge parameter intervals of the corresponding section polyline. This means that the section curve piece bounded by p i,j and p shouldhaveanassociatedparametricintervaloflengthequaltod . Analogously, theparametricinterval i+1,j i,j betweenanytwovertices, p and p ofthecorrespondingsectioncurveshouldhavelengthe . Inthisway,each i,j i,j+1 i,j section polyline of the mesh can be interpolated at the parameter values that allow the best quality of the resulting 6 d d d d −2,2 −1,2 0,2 1,2 p p p p p −2,2 −1,2 0,2 1,2 2,2 e e e e e −2,1 −1,1 0,1 1,1 2,1 d d d d −2,1 −1,1 0,1 1,1 p p p p p −2,1 −1,1 0,1 1,1 2,1 e−2,0 e−1,0 S˜ e0,0 S e1,0 e2,0 v v d d d d −2,0 u −1,0 u 0,0 1,0 p p p p p −2,0 −1,0 0,0 1,0 2,0 e e e e e −2,−1 −1,−1 0,−1 1,−1 2,−1 d d d d −2,−1 −1,−1 0,−1 1,−1 p p p p p −2,−1 −1,−1 0,−1 1,−1 2,−1 Figure3:LabelingofverticesandparameterintervalsfortheconstructionoftheaugmentedsurfacepatchShavingtheexpression(10). sectioncurve.Moreover,suchcurvesserveasaguidefortheshapeofthesurface,whichwillbeinturnagoodquality interpolantoftheinputmesh. It is sufficient to illustrate the construction for a generic surface patch interpolating the points p ,p ,p , s,t s+1,t s,t+1 p andinparticular,withoutlossofgenerality,wecanconsiderthepatchwhichinterpolates p ,p ,p ,p , s+1,t+1 0,0 1,0 0,1 1,1 depictedinFigure3. (Asofnow,theneighboringpatchS˜ inFigure3shallbeoverlooked. Itwillbeusedlaterinthe proofofProposition2.) Anyotherpatchcanbeanalogouslyderivedafterproperindexshift. Let [0,1]2 be the parametric domain associated with the considered patch. The first stage of the construction is to choose a class of local, univariate, spline interpolants DgCkPmSw, based on the properties that we seek in the finalsurface. Hence, inviewoftheCk continuityofthefundamentalfunctions, weconsiderthepolynomialsδ (v) i,j i = −w +1,...,w −1, j = 0and(cid:15) (u)i = 0, j = −w +1,...,w −1,ofdegree2k+1,uniquelydeterminedbythe 2 2 i,j 2 2 followingconditions: δi,j :[0,1]→[di,j,di,j+1], δi,j(0)=di,j, and δi,j(1)=di,j+1, (7a) d(r)(0)=d(r)(1)=0, r=1,...,k, i,j i,j and (cid:15)i,j :[0,1]→[ei,j,ei+1,j], (cid:15)i,j(0)=ei,j, and (cid:15)i,j(1)=ei+1,j, (7b) (cid:15)(r)(0)=(cid:15)(r)(1)=0, r=1,...,k. i,j i,j The above polynomials, which we call the local parametrization functions, interpolate the two parameter intervals correspondingtooppositeedgesofameshfaceandthereforehavetheeffectof“blending”suchintervals. Moreover, the requirement that δ (v) and (cid:15) (u) have vanishing derivatives up to order k at 0 and 1 guarantees that they are i,j i,j monotonicfunctionswithpositivefirstderivative. We use the local parametrization functions to associate with any couple of coordinates (u,v) ∈ [0,1]2 two local parametervectorsdandeasfollows: (cid:16) (cid:17) d= d(v)= δ−w+1,0(v),...,δ0,0(v),...δw−1,0(v) , (8a) 2 2 and (cid:16) (cid:17) e=e(u)= (cid:15)0,−w+1(u),...,(cid:15)0,0(u),...,(cid:15)0,w−1(u) . (8b) 2 2 In this way, at the patch boundary described by (u,0), u ∈ [0,1], d = (cid:0)d−w/2+1,0,...,d0,0,...,dw/2−1,0(cid:1) is the local parameter vector relative to p p (see definition (3)). In addition, at the opposite boundary (u,1), d is the local 0,0 1,0 7 parameter vector relative to p p . Analogously, for any point (0,v) or (1,v), v ∈ [0,1], e is the local parameter 0,1 1,1 vectorassociatedrespectivelywith p p or p p . 0,0 0,1 1,0 1,1 Wealsoconsiderthetwolocalvariables x=uδ (v), and y =v(cid:15) (u), (9) 0,0 0,0 suchthatxandyspantheintervals[0,δ (v)]and[0,(cid:15) (u)]whilerespectivelyuandvvaryin[0,1]. 0,0 0,0 Finally,forany(u,v)∈[0,1]2,wedefinetheaugmentedsurfacepatchSby w w (cid:88)2 (cid:88)2 (cid:16) (cid:17) S(u,v)= p Ψ x,y,d,e , (10) i,j i,j i=−w+1j=−w+1 2 2 where (cid:16) (cid:17) (cid:16) (cid:17) (cid:16) (cid:17) Ψ x,y,d,e =ψ x,d ψ y,e , (11) i,j i j withlocalparametervectorsd,egivenby(8a)–(8b)andx,ycomputedthrough(9). NotethatSdependsonalocalgridofmeshverticesofsizeequaltow×w,wherewisthesupportwidthofthe underlyingfunctionsψ andψ . Forbrevity,wewillsometimessaythatthepatchhassupportw. i j Remark2. Forsimplicityofpresentationwehaveassumedthatthefunctionsψ(x,d)andψ (y,e)in(11)belongto i j the same family DgCkPmSw. However, it is nor difficult to see that the construction of an augmented patch can be adaptedforthecasewherethefundamentalfunctionsbelongtotwodifferentclassesDgCkPmSw. WeremarkthattheaugmentedpatchSisnotatensorproductsurface. Moreprecisely,wecaninterprettheabove constructionasfollows. Foragiven(u¯,v¯)∈[0,1]2,letd¯ ande¯ bethevectors d¯ = d(v¯), e¯ =e(u¯), computedthrough(8a)–(8b)andletd¯ = δ (v¯)ande¯ = (cid:15) (u¯). ThenthevalueofSat(u¯,v¯)isequaltothevalueat 0,0 0,0 (x¯,y¯)ofthetensorproductpatch w w (cid:88)2 (cid:88)2 (cid:16) (cid:17) (cid:16) (cid:17) T (x,y)= p ψ x,d¯ ψ y,e¯ , (x,y)∈[0,d¯]×[0,e¯]. (u¯,v¯) i,j i j i=−w+1j=−w+1 2 2 i.e.S(u¯,v¯) = T (x¯,y¯). Inthisview,adifferenttensor-productpatchT determinesthevalueofSateachdomain (u¯,v¯) (u¯,v¯) point(u¯,v¯)∈[0,1]2. TheconstructionoftheaugmentedsurfacepatchSisschematizedinFigure4foraclassoffundamentalfunctions having support width w = 4 and, more generally, can be summarized as follows. Every mesh face gives rise to a surfacepatch,parameterizedoverthedomain[0,1]2. Foragiven(u¯,v¯) ∈ [0,1]2 welocallyinterpolatetheparameter intervals,separatelyintheuandvdirection,inordertogeneratetwolocalparametervectors d¯ = d(v¯)ande¯ = e(u¯). We also map (u¯,v¯) into a couple of values (x¯,y¯). This mapping is such that, at the boundaries (u,0) and (u,1), u ∈ [0,1], x spans respectively the entire intervals [0,d ] and [0,d ]. Analogously, at the boundaries (0,v) and 0,0 0,1 (1,v), v ∈ [0,1], y spans respectively the intervals [0,e ] and [0,e ]. These are precisely the parameter intervals 0,0 1,0 allocatedtotheedgesofthegivenmeshface. Finally,weconsiderthesurfaceT (x,y)definedastensorproductof (u¯,v¯) thelocalunivariatefundamentalfunctionsofclassDgCkPmSwond¯ ande¯ andwesetS(u¯,v¯)=T (x¯,y¯). (u¯,v¯) Theremainderofthissectionisdevotedtoshowingthattheresultingcompositesurfacehasallthesoughtprop- erties. We start by proving that the surface section curves form a network of univariate spline interpolants of class DgCkPmSw, where each curve has an independent non-uniform parametrization determined by the edge parameter intervalsofthecorrespondingsectionpolyline. Inotherwords,ifanetworkofsectioncurvesofclassDgCkPmSwwas independently determined before constructing the surface, then the surface would precisely be the transfinite inter- polantofthesecurves. Proposition 1. The section curves of an augmented surface based on a class of fundamental functions DgCkPmSw arelocalunivariatesplinesinthesameclass. 8 v 1 d (u¯,v¯) 0,1 e0,1 (cid:15)0,1(u¯) e1,1 u e0,0 e1,0 0 1 d−1,1 d0,1 d1,1 (cid:15)0,1(u¯) S(u¯,v¯) e0,0 (cid:15)0,0(u¯) e1,0 d δ−1,0(v¯) δ0,0(v¯) δ1,0(v¯) (cid:15)0,0(u¯) 0,0 d d d y¯ T(x¯,y¯)=S(u¯,v¯) −1,0 0,0 1,0 e0,−1 (cid:15)0,−1(u¯)e1,−1 (cid:15) (u¯) 0,−1 δ−1,0(v¯) x¯ δ0,0(v¯) δ1,0(v¯) Figure4:Constructionofanaugmentedpatchinthecasew=4. Proof. It suffices to show that the section curve segment bounded by p and p (see Figure 3) belongs to the 0,1 1,1 unique local, non-uniform spline curve F of class DgCkPmSwthat interpolates the section polyline with vertices ...,p ,p ,p ,p ... andparameterintervals...,d ,d ,d ,d .... Hencethestatementcanbeextended −1,1 0,1 1,1 2,1 −1,1 0,1 1,1 2,1 totheentirenetworkofsectioncurvesbylocallyapplyingthesameargument. Accordingtothelocalrepresentation(4),wehave w (cid:88)2 F(x)= p ψ(x,d¯), x∈[0,d ], (12) i,1 i 0,1 i=−w+1 2 withlocalparametervector (cid:16) (cid:17) d¯ = d−w+1,1,...,d0,1,...,dw−1,1 . 2 2 Thepatchboundarywithendpoints p and p isdescribedby(10)foru∈[0,1],v=1. Atanysuchpoint(u,v), 0,1 1,1 thefundamentalfunctionsψ oftheclass DgCkPmSw, j = −w/2+1,...,w/2−1, havethevaluesψ (y,e) = 1and j 1 ψ (y,e)=0,forany j(cid:44)1,and,by(9),x=ud . Substitutingin(10)weget j 0,1 w (cid:88)2 S(u,1)= p ψ(x,d). i,1 i i=−w+1 2 Hence, the statement follows by observing that the local parameter vectors d and d¯ are equal and thus the curve segmentsrepresentedbytheaboveformulaandby(12)areidentical. Weshallnowstudythecontinuityofanaugmentedcompositesurface.Preliminarily,weobservethateachsurface patchisdefinedasacompositionofinfinitelydifferentiablefunctions(weassumethattheedgeparameterintervalsare nonzero, whenthemeshverticesaredistinct). Moreover,Proposition1guaranteesthecontinuityoftheconstructed surface and entails that two neighboring augmented patches haveCk continuous derivatives in the direction of their commonboundary. Thefollowingpropositionshowsthatthesamesmoothnessholdsinthecross-boundarydirection andinparticularallowsustoconcludethattheconstructedsurfaceisgloballyGk continuous1. Foreaseofnotation, weformulatethestatementforthetwopatchesSandS˜ representedinFigure3. Itisimmediatetoseethattheresult holdswhenconsideringanytwoneighboringpatchesandtheircommonboundary, providedappropriateadjustment ofnotation. 1Gkcontinuityreferstoagreementofderivativesagreeaftersuitablereparametrization[21]. 9 Proposition2. LetSandS˜ bethetwoadjacentaugmentedsurfacepatchesdepictedinFigure3,basedonfundamental functionsofclassDgCkPmSw. Thenthederivativesacrosstheircommonboundarysatisfytherelation ∂r ∂r S(u,v)| =∆r(v) S˜(u,v)| , r=0,...,k, (13) ∂ur (0,v) ∂ur (1,v) where δ (v) ∆(v)= 0,0 , (14) δ (v) −1,0 andδ andδ arethelocalparametrizationfunctionsdefinedin(7a). 0,0 −1,0 The above result can be shown by direct verification, and we postpone the proof to the end of this section. For nowitisimportanttoobservethatrelation(14)providesthescaling∆(v)thatrelatesthecross-boundaryderivatives ofSandS˜. Ingeneral,∆(v)isdifferentateachboundarypoint,butvariessmoothlyalongtheboundary,beingdefined astheratiooftwopositivepolynomials. AsaconsequenceofProposition2weobtainthefollowingresult. Proposition 3. Two augmented surface patches built upon a class of fundamental functions DgCkPmSwjoin along theircommonboundarywithGk-continuity. Proof. Withoutlossofgenerality,wecantakethetwopatchesSandS˜ inProposition2andconsiderthemap (cid:32) (cid:33) ∆(v)u+1 ρ(u,v)= , v where ∆(v) is given by (14). The above function ρ is aCk reparametrization between the two domains of S and S˜. Moreover,exploitingrelation(13),itisimmediatetoverifythat ∂r ∂r (cid:16) (cid:17) S(u,v)| = S˜ ◦ρ (u,v)| , r=0,...,k. ∂ur (0,v) ∂ur (0,v) TheaboveobservationsentailthatthetwoconsideredpatchesjoinalongtheircommonboundarywithGk-continuity. ToconcludethissectionweprovideaproofofProposition2. Preliminarily,thefollowingLemmaisstatedasan independentresult,sinceitwillbelaterrecalledinSection4. Lemma 1. Let S be an augmented surface patch of the form (10). Then its cross-boundary derivatives satisfy the followingrelations ∂r ∂r (cid:16) (cid:17) S(u,v)| = S x,y,d,e | δr (v), u¯ =0,1, ∂ur (u¯,v) ∂xr (u¯,v) 0,0 (15) ∂r ∂r (cid:16) (cid:17) S(u,v)| = S x,y,d,e | (cid:15)r (u), v¯ =0,1, ∂vr (u,v¯) ∂yr (u,v¯) 0,0 whereδ and(cid:15) arethelocalparametrizationfunctionsdefinedin(7a)–(7b). 0,0 0,0 Proof. Theresultimmediatelyfollowsbyusingthechainrule,therelation(9)andthefactthatδ(r)(v) = (cid:15)(r)(u) = 0, i,0 0,j r=1,...,k,u,v=0,1andi, j=−w +1,...,w −1. 2 2 We observe that the above Lemma is based on the fact that the local parametrization functions (7a)–(7b) have vanishingderivativesattheendpointsoftheirintervalofdefinition. Aswewillseeshortly,thispropertyalsoplaysa prominentroleinprovingProposition2. Aninterestingconsequenceisthat,inordertoprescribeacorrectsetoflocal parametrizationfunctions,itisnotsufficienttorequirethatthesefunctionsinterpolatetheedgeparameterintervals.In fact,althoughthisstrategymaystillallowustointerpolateanetworkofindependentlyparameterizedcurves,without theaforementionedconstraintonthederivatives,wewouldnotbeabletoensurethatthecompositesurfaceisglobally Gk continuous. 10