ebook img

High-Precision Methods in Eigenvalue Problems and Their Applications PDF

260 Pages·2004·3.371 MB·\260
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High-Precision Methods in Eigenvalue Problems and Their Applications

HIGH-PRECISION METHODS IN EIGENVALUE PROBLEMS AND THEIR APPLICATIONS Differential and Integral Equations and Their Applications A series edited by: A.D. Polyanin Institute for Problems in Mechanics, Moscow, Russia Volume 1 Handbook of First Order Partial Differential Equations A.D. Polyanin, V.F. Zaitsev and A. Moussiaux Volume 2 Group-Theoretic Methods in Mechanics and Applied Mathematics D.M. Klimov and V. Ph. Zhuravlev Volume 3 Quantization Methods in the Theory of Differential Equations V.E. Nazaikinskii, B.-W. Schulze and B. Yu. Sternin Volume 4 Hypersingular Integral Equations and Their Applications I.K. Lifanov, L.N. Poltavskii and G.M. Vainikko Volume 5 Equations of Mathematical Diffraction Theory Mezhlum A. Sumbatyan and Antonio Scalia Volume 6 High-Precision Methods in Eigenvalue Problems and Their Applications Leonid D. Akulenko and Sergei V. Nesterov HIGH-PRECISION METHODS IN EIGENVALUE PROBLEMS AND THEIR APPLICATIONS Leonid D. Akulenko Sergei V. Nesterov CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C. TF1675_discl.fm Page 1 Thursday, August 26, 2004 12:29 PM Catalog record is available from the Library of Congress This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press for such copying. Direct all inquiries to CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe. Visit the CRC Press Web site at www.crcpress.com © 2005 by Chapman & Hall/CRC No claim to original U.S. Government works International Standard Book Number 0-415-30993-X Printed in the United States of America 1 2 3 4 5 6 7 8 9 0 Printed on acid-free paper Contents Preface ............................................................... xiii Authors ............................................................... xvii BasicNotation.s.............................................................. xix Chapter1. StatementofEigenvalueProblems.Basic MethodsofTheir Solution .... 1 1.1. StatementoftheSturm–LiouvilleProblem .................................. 1 1.1.1. Boundaryvalueproblemforeigenvaluesandeigenfunctions .............. 1 1.1.2. Variationalstatementoftheeigenvalueproblem ........................ 3 1.2. AnalyticalMethodsofSolvingthe Sturm–LiouvilleProblem .................... 5 1.2.1. Generalschemeofanalyticalsolution ................................ 5 1.2.2. Reductiontoa Fredholmintegralequationofthe secondkind ............. 9 1.2.3. Reductiontoa Volterraintegralequationofthe secondkind .............. 10 1.3. SolvingtheSturm–LiouvilleProblembytheMethodofRegularPerturbations ...... 12 1.3.1. Statementoftheperturbedproblem .................................. 12 1.3.2. Standardprocedureofasymptoticexpansions .......................... 12 1.3.3. Findingtheexpansioncoefficients ................................... 13 1.3.4. Justificationquestions ............................................. 14 1.4. NumericalMethodsforSolvingthe Sturm–LiouvilleProblem ................... 14 1.4.1. TheRayleigh–Ritzmethod ......................................... 15 1.4.2. Some generalfacts and remarkspertainingto other numericalmethodsin the Sturm–Liouvilleproblem .......................................... 18 Chapter2. TheMethodofAcceleratedConvergencefortheSturm–LiouvilleProblem 21 2.1. Numerical-AnalyticalUpperandLowerBoundsforEigenvalues ................. 21 2.1.1. Theproblemofconstructingtwo-sidedestimates ....................... 21 2.1.2. Constructionandanalysisofcomparisonsystems ....................... 22 2.2. Criterion of Closeness between the First Eigenvalue and its Upper (Lower) Bound. Introductionofa SmallParameter ......................................... 23 2.3. TheoryofPerturbations .................................................. 23 2.3.1. Constructionofanequivalentperturbedproblem ....................... 23 2.3.2. Approximatesolutionofthe perturbedproblem ........................ 24 2.3.3. Reductionofthecorrectiontermtodifferentialform .................... 25 2.4. DescriptionoftheMethodof AcceleratedConvergence ........................ 26 2.5. SomeApplicationsoftheAcceleratedConvergenceMethod .................... 27 2.5.1. Testmodelproblems .............................................. 27 2.5.2. A methodforthe calculationofweightednorms ........................ 28 vi CONTENTS 2.6. TheMethodofAcceleratedConvergenceforHigherEigenvalues ................ 29 2.6.1. Anexamplewith thecalculationoftwo eigenvalues ..................... 29 2.6.2. Somepropertiesoftheprocedureoffindingsubsequenteigenvalues ........ 30 2.7. Problemswith BoundaryConditionsofthe SecondKind ....................... 31 2.7.1. Constructionofacomparisonproblem ................................ 31 2.7.2. Approximatesolutionofthe problem ................................. 31 2.7.3. Testproblem .................................................... 31 2.8. Problemswith BoundaryConditionsofthe ThirdKind ........................ 32 2.8.1. Statementofthethirdboundaryvalueproblem ......................... 32 2.8.2. Constructionofacomparisonsystem ................................. 33 2.8.3. Solutionoftheperturbedproblem ................................... 34 2.8.4. Differentialrelationbetweeneigenvaluesandtheintervallength ........... 35 2.8.5. Themethodofacceleratedconvergence ............................... 35 2.8.6. Example ........................................................ 36 2.9. Problemswith PeriodicBoundaryConditions ................................ 37 2.9.1. Statementoftheperiodicboundaryvalueproblem ...................... 37 2.9.2. Mainpropertiesoftheperiodicproblem .............................. 37 2.9.3. Constructionofupperbounds ....................................... 38 2.9.4. Constructionofthecomparisonsystem ............................... 38 2.9.5. Introductionofa smallparameter .................................... 39 2.9.6. Approximatesolutionofthe perturbedproblem ........................ 40 2.9.7. Themethodofacceleratedconvergence ............................... 41 2.9.8. Examples ....................................................... 43 2.10. ProofofConvergenceof SuccessiveApproximations.ExistenceTheorem ......... 47 2.10.1.Transformationofthe perturbedboundaryvalueproblem ................. 47 2.10.2.Proofofconvergenceofsuccessiveapproximations ..................... 48 2.11. ProofofQuadraticConvergence ........................................... 50 2.12. TheMethodofHyperacceleratedConvergence ............................... 51 2.12.1.Third-orderrefinementprocedure .................................... 51 2.12.2.Anapplicationofthemethodofhyperacceleratedconvergence ............ 52 2.13. TakingintoAccountExplicitDependenceofBoundaryConditionsonEigenvalues .. 52 2.14. Exercises ............................................................. 53 Chapter3. ApproximateAnalyticalSolutionofPerturbedEigenvalueProblems .... 55 3.1. StatementandAnalysisofthePerturbedSturm–LiouvilleProblem ............... 55 3.1.1. Propertiesofthe perturbedspectrum ................................. 55 3.1.2. Theproblemofseculartermsandregularizationoftheproblem ........... 56 3.1.3. Separationofvariables ............................................ 57 3.2. ApproximateSolutionoftheBoundaryValueProblem ......................... 58 3.2.1. Constructionofeigenfrequenciesandphasesofpartialvibrations .......... 58 3.2.2. Findingeigenfunctionsandthe constructionofan orthonormalbasis ....... 60 3.2.3. Remarks ........................................................ 61 3.3. ApproximationofFunctionsin TermsoftheApproximateBasis ................. 61 3.3.1. Theproblemofexpansionintermsofanapproximatebasis .............. 61 3.3.2. Uniformestimates ................................................ 63 CONTENTS vii 3.4. ApplicationstoInitialBoundaryValueProblems ............................. 64 3.4.1. Approximatesolution ............................................. 64 3.4.2. Errorestimates ................................................... 64 3.5. Exercises ............................................................. 65 Chapter4. GeneralizedSturm–Liouville Problem .............................. 67 4.1. StatementoftheGeneralizedSturm–Liouvilleproblem ........................ 67 4.1.1. Statementoftheboundaryvalueproblemindifferentialform ............. 67 4.1.2. Basic definitions ................................................. 67 4.2. SomeSturm–LiouvilleProblemswithExactSolutions ......................... 68 4.2.1. Examples ....................................................... 68 4.2.2. Somebasicgeneralpropertiesofsolutions ............................ 68 4.3. StatementofanAuxiliaryVariationalProblem ............................... 69 4.3.1. Variationalstatementoftheproblemanditsgeneralization ............... 69 4.3.2. Derivationandanalysisofthedeterminingrelation ...................... 69 4.4. ClosenessCriterionandtheTheoryofPerturbations ........................... 70 4.4.1. Somepropertiesofthesolutionofthecomparisonproblem ............... 70 4.4.2. Approximatesolutionofthe perturbedproblem ........................ 71 4.5. TheMethodofAcceleratedConvergenceforGeneralizedSturm–LiouvilleProblems 71 4.6. ModelProblems ........................................................ 72 4.6.1. Testexampleforanintegrableequation ............................... 72 4.6.2. Numericalexample;two-sidedestimates .............................. 73 4.7. GeneralizedParametricVibrations ......................................... 73 4.7.1. Statementofthegeneralizedperiodicproblem ......................... 73 4.7.2. Anexampleillustratingspectralproperties ............................ 74 4.7.3. Generalpropertiesofsolutionsofgeneralizedperiodicproblems ........... 75 4.7.4. An extended setting of the problem and the procedure of its approximate solution ........................................................ 75 4.8. Generalized Boundary Value Problems with Spectral Parameter in Boundary Conditions ............................................................ 76 4.9. Exercises ............................................................. 77 Chapter5. Asymptotics of Eigenvalues and Eigenfunctions of the Generalized Sturm–LiouvilleProblemforHigherVibrationModes ................ 79 5.1. GeneralNotionsRegardingtheAsymptoticBehaviorofEigenvaluesCorrespondingto HigherVibrationModes ................................................. 79 5.1.1. Statementofthegeneralizedproblem ................................. 79 5.1.2. Classicalresults .................................................. 80 5.2. ApplicationofAsymptoticMethodsofthe TheoryofNonlinearVibrations ........ 80 5.2.1. “Amplitude–phase”variables ....................................... 80 5.2.2. Approximationofthephase ........................................ 81 5.3. DeterminationofEigenfrequenciesandVibrationPhases ....................... 82 5.3.1. Introductionofintermediateparameters ............................... 82 5.3.2. Findingtheoriginalquantities ...................................... 83 5.3.3. Procedureofsuccessive approximations .............................. 84 viii CONTENTS 5.4. FindingAmplitudesandShapesofFree Vibrations ............................ 85 5.4.1. Approximatecalculationofhighermodeamplitudes ..................... 85 5.4.2. Findingeigenfunctionscorrespondingtohighermodes ................... 86 5.5. OtherTypesofBoundaryValueProblems ................................... 87 5.5.1. Boundaryconditionsofthesecondkind .............................. 87 5.5.2. Generalboundaryconditionsofthethirdkind .......................... 87 5.5.3. Remarksaboutgeneralizations ...................................... 88 5.6. CalculationsforSomeSpecific MechanicalSystems ........................... 88 5.6.1. Longitudinalvibrationsofaninhomogeneousrectilinearbeam ............ 88 5.6.2. Vibrationsofaninhomogeneousstring ............................... 89 5.6.3. Asymptoticsofeigenvaluesofthe Hillproblem ........................ 90 5.6.4. Spatialvibrationsofa satellite ...................................... 91 5.7. Exercises ............................................................. 93 Chapter6. Solutions of Fourth-Order Self-Conjugate Problems. Oscillation Properties ...................................................... 95 6.1. StatementofaSelf-ConjugateFourth-OrderBoundaryValueProblem ............ 95 6.1.1. Statementoftheproblemindifferentialform.Someremarks .............. 95 6.1.2. Statementoftheprobleminvariationalform ........................... 96 6.1.3. Introductionofnaturalphysicalvariables .............................. 97 6.1.4. Schemeofsolution ............................................... 97 6.2. TheMethodofSagittaryFunction.Sturm’sTheorems ......................... 99 6.2.1. Constructionofthecharacteristicequationandthesagittaryfunction ....... 99 6.2.2. Oscillationpropertiesofthesagittaryfunction ......................... 100 6.3. ComputationAlgorithmsofthe ShootingMethodBasedonthe SagittaryFunction .. 102 6.3.1. Algorithmofshootingwith respectto theordinate ...................... 102 6.3.2. Algorithmofshootingwith respectto theabscissa ...................... 103 6.4. Examples ............................................................. 104 6.4.1. A modeltestexample ............................................. 105 6.4.2. Comparisonwith theresultsofS. Gould .............................. 106 6.4.3. Parametricsynthesisforconicalbeams ............................... 106 Chapter7. The Method of Accelerated Convergence for Eigenvalue Problems for Fourth-OrderEquations .......................................... 109 7.1. Two-SidedEstimatesforLowerModeEigenvalues ........................... 109 7.1.1. Differentialandvariationalstatementsoftheproblem ................... 109 7.1.2. Constructionofupperbounds ....................................... 110 7.1.3. Relationbetweenthe upperboundandthelengthoftheinterval ........... 111 7.1.4. Constructionoflowerboundsandtwo-sidedestimates ................... 113 7.2. ClosenessCriterionandPerturbationTheory ................................. 113 7.2.1. Introductionofa smallparameter .................................... 113 7.2.2. Anapproximatesolutionofthe perturbedproblem ...................... 114 7.3. TheMethodofAcceleratedConvergenceforFourth-OrderBoundaryValueProblems 115 7.3.1. A differentialrelationbetweentheeigenvalueandthelengthofthe interval .. 115 7.3.2. Algorithmoftheacceleratedconvergencemethod ...................... 115 7.4. OtherTypesofBoundaryConditions ....................................... 116 CONTENTS ix 7.5. ProcedureofContinuationina Parameter ................................... 117 7.6. ModelProblems ........................................................ 117 7.6.1. Generalremarksaboutcalculations .................................. 117 7.6.2. Testexampleswith analyticallyintegrableequations .................... 118 7.6.3. Problem of transverse vibrations of an inhomogeneous beam occurring in applications ..................................................... 119 Chapter8. PerturbationMethodinEigenvalueProblemsforFourth-OrderEquations 121 8.1. ReductionoftheOriginalProblemtotheStandardPerturbedBoundaryValueProblem 121 8.1.1. Statementoftheinitialboundaryvalueproblem;preliminaryremarks ...... 121 8.1.2. Reductiontoperturbedboundaryvalueproblems ....................... 123 8.1.3. Somefeaturesofthe standardprocedureoftheperturbationmethod ........ 123 8.2. Regularizationofthe PerturbationMethod ................................... 124 8.2.1. Transformationofthe independentvariable ............................ 124 8.2.2. Regularprocedureofthe perturbationmethod .......................... 125 8.2.3. Justificationoftheperturbationmethod ............................... 126 8.3. MotionControlProblem ................................................. 128 8.4. FindingtheEigenvaluesandtheEigenfunctionsinthe FirstApproximation ........ 128 8.5. Exercises ............................................................. 131 Chapter9. Sturm–LiouvilleProblemsforVector-ValuedFunctions ............... 133 9.1. SettingoftheProblem.PreliminaryRemarks ................................ 133 9.1.1. Statementoftheproblemindifferentialform .......................... 133 9.1.2. Variationalstatementoftheproblem ................................. 133 9.2. ClosenessCriterionandPerturbationTheory ................................. 134 9.2.1. Constructionofthecomparisonproblem;analysisofits properties ......... 134 9.2.2. Introductionofa smallparameter .................................... 135 9.2.3. Approximatesolutionofthe problem ................................. 135 9.3. The Method of Accelerated Convergence for the Sturm–Liouville Problem for Vector-ValuedFunctions ................................................. 136 9.3.1. Propertiesofthe firstapproximationofthesolution ..................... 136 9.3.2. Algorithmofacceleratedconvergenceforvectorproblems ............... 137 9.4. ModelProblems ........................................................ 138 9.4.1. A systemofEulertype ............................................ 138 9.4.2. A systemwith periodiccoefficients .................................. 139 9.5. Exercises ............................................................. 139 Chapter10. VibrationsandStabilityofElastic Systems .......................... 141 10.1. PlaneVibrationsofa RotatingHeavyThreadandTheirStability ................ 141 10.1.1.Statement of the initial boundary value problem. Its solution by the Fourier method ......................................................... 141 10.1.2.Freevibrationsofa rotatingheavyhomogeneousstringsubjectedtotension . 145 10.1.3.Vibrationsofaninhomogeneousthread ............................... 149 10.2. ParametricSynthesisin theProblemof Instabilityofan InhomogeneousBeam ..... 152 10.2.1.Settingoftheproblemoflongitudinalbendingofanelastic beam .......... 152 10.2.2.Calculationofthe criticalforceforsome rigiditydistributions ............. 154

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.