ebook img

High Precision Camera Calibration PDF

224 Pages·2011·5.535 MB·German
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High Precision Camera Calibration

Tobias Hanning High Precision Camera Calibration VIEWEG+TEUBNER RESEARCH Tobias Hanning High Precision Camera Calibration VIEWEG+TEUBNER RESEARCH Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. Habilitation thesis University of Passau, 2009 1st Edition 2011 All rights reserved © Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2011 Editorial Office: Ute Wrasmann | Sabine Schöller Vieweg+Teubner Verlag is a brand of Springer Fachmedien. Springer Fachmedien is part of Springer Science+Business Media. www.viewegteubner.de No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, pho- toc opying, recording, or otherwise, without the prior written permission of the copyright holder. Registered and/orindustrial names,trade names,trade descriptions etc.cited in this publica- tionare part of the law for trade-mark protection and may not be used free in any form or by any means even if this is not specifically marked. Cover design: KünkelLopka Medienentwicklung, Heidelberg Printing company: STRAUSS GMBH, Mörlenbach Printed on acid-free paper Printed in Germany ISBN 978-3-8348-1413-5 Contents Listofsymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Modellingthecameramapping 5 2.1 Geometricopticsforcomputervision . . . . . . . . . . . . . . . 5 2.1.1 The“thinlens”assumptionandfirstorderoptics . . . . . 5 2.1.2 Thecircleofconfusion . . . . . . . . . . . . . . . . . . . 8 2.1.3 Imageacquisition . . . . . . . . . . . . . . . . . . . . . . 9 2.1.3.1 Thesensorarray . . . . . . . . . . . . . . . . . 9 2.1.3.2 Asimplifiedsensormodel . . . . . . . . . . . . 11 2.1.3.3 Thesensorarrayascoordinatesystem . . . . . 12 2.2 Thepinholecameramodel . . . . . . . . . . . . . . . . . . . . . 13 2.3 Thirdorderopticsandthicklenses . . . . . . . . . . . . . . . . . 15 2.4 Thepinholecameramodelwithdistortion . . . . . . . . . . . . . 17 2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 Radialdistortion . . . . . . . . . . . . . . . . . . . . . . 18 2.4.3 Radiustransformations . . . . . . . . . . . . . . . . . . . 19 2.4.4 Otherdistortionfunctions . . . . . . . . . . . . . . . . . 21 2.4.4.1 Misalignedthinlens . . . . . . . . . . . . . . . 21 2.4.4.2 Misalignedlenssystems . . . . . . . . . . . . . 22 2.5 Invertingthecameramapping . . . . . . . . . . . . . . . . . . . 23 2.6 Thepinholecameramodelinhomogeneouscoordinates . . . . . . 25 v 3 Errorfunctionsforcameracalibrationand3Dreconstruction 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Projectiveandre-projectiveerror . . . . . . . . . . . . . . . . . . 27 3.3 Euclideanerror . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Errorfunctionsforcameracalibrationand3D-reconstruction . . . 34 3.4.1 Calibrationerrorfunctions . . . . . . . . . . . . . . . . . 34 3.4.2 Reconstructionerrorfunctions . . . . . . . . . . . . . . . 37 3.5 Non-linearoptimization . . . . . . . . . . . . . . . . . . . . . . . 38 4 Initialvaluesforcameracalibrationproblems 40 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2 ThetwostagemethodofTsai. . . . . . . . . . . . . . . . . . . . 42 4.3 Aninitialimagetransformationbydirectlineartransformation . . 47 4.4 Aninitialimagetransformationfromhomographies . . . . . . . . 50 4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4.2 Twonecessaryconditionsforplanartargets . . . . . . . . 50 4.4.3 Zhang’sinitialvalue . . . . . . . . . . . . . . . . . . . . 52 4.4.4 An initial image transformation with known center and zeroskew . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4.5 An initial image transformation with known aspect ratio andnoskew. . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.6 An initial image transformation with known aspect ratio andunknownskew . . . . . . . . . . . . . . . . . . . . . 56 4.4.7 Aninitialimagetransformationwithnoskew . . . . . . . 58 4.4.7.1 Astraightforwardconstraint . . . . . . . . . . 58 4.4.7.2 A solution by a linear least squares problem withCholeskydecomposition . . . . . . . . . . 59 4.4.8 Experimentalresults . . . . . . . . . . . . . . . . . . . . 60 4.4.8.1 Overview . . . . . . . . . . . . . . . . . . . . 60 4.4.8.2 Simulations . . . . . . . . . . . . . . . . . . . 61 4.5 Aninitialvaluefortheextrinsiccameraparameters . . . . . . . . 64 4.5.1 Introductionandproblemstatement . . . . . . . . . . . . 64 4.5.2 Standardposeestimation . . . . . . . . . . . . . . . . . . 64 4.5.3 Analgebraicre-projectiveapproachforregulargrids . . . 65 4.5.4 Anoptimalsolutionw.r.t.Euclideanerrorfor1Dtargets . 70 4.6 Aninitialsolutionforthedistortion . . . . . . . . . . . . . . . . 72 4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.6.2 Zhang’sinitialsolutionfortheradialdistortion . . . . . . 72 vi 4.6.3 Anoptimalinitialsolutionforalldistortionparameters . . 74 4.7 Cameracalibrationwithdistortionasasemi-linearproblem . . . . 77 4.7.1 Parameterreductionbysemi-linearoptimization . . . . . 77 4.7.2 Experimentalresults . . . . . . . . . . . . . . . . . . . . 78 4.7.2.1 Resultsforthenormalsetup . . . . . . . . . . . 79 4.7.2.2 Resultsforthewebcamsetup . . . . . . . . . . 85 4.7.2.3 Resultsforthewideanglesetup . . . . . . . . . 89 5 Calibrationofastereocamerasystem 91 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 Epipolargeometry . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.3 EpipolarCurves . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4 Stereocameracalibrationwithmultipletargets . . . . . . . . . . 97 5.5 Extrinsicstereocameracalibrationwithgeneralizedepipolarcon- straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5.5.1 Atwostepalgorithm . . . . . . . . . . . . . . . . . . . . 98 5.5.2 Aonestepalgorithm . . . . . . . . . . . . . . . . . . . . 100 5.5.3 Applicationandresults . . . . . . . . . . . . . . . . . . . 101 5.6 Extrinsic stereo cameracalibration with respectto theprojective error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.7 Extrinsicandintrinsicstereocameracalibration . . . . . . . . . . 105 6 Non-standardcameramodels 107 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 Featurepointextraction . . . . . . . . . . . . . . . . . . . . . . . 110 6.2.1 Standardfeaturepointextraction . . . . . . . . . . . . . . 110 6.2.2 Modelbasedextractionofisolatedsquares . . . . . . . . 113 6.2.3 Appropriabilityofthefeaturepointextractionmethods . . 117 6.2.3.1 Appropriabilitywithrespecttothesensormodel 117 6.2.3.2 Appropriabilitywithrespecttothecameramodel117 6.3 Theresidualdistortion . . . . . . . . . . . . . . . . . . . . . . . 119 6.3.1 Thepointspreadfunctionbyfirstorderoptics . . . . . . . 119 6.3.2 Othersourcesofresidualdistortion . . . . . . . . . . . . 126 6.3.3 Experimentalresults . . . . . . . . . . . . . . . . . . . . 126 6.4 Splinecorrection . . . . . . . . . . . . . . . . . . . . . . . . . . 134 6.4.1 Motivationandrelatedwork . . . . . . . . . . . . . . . . 134 6.4.2 Adepth-dependentdistortionterm . . . . . . . . . . . . . 134 vii 6.4.3 Depth-dependent distortion correction for the projective andre-projectiveerrorfunction . . . . . . . . . . . . . . 135 6.4.4 Thetensorsplinespace . . . . . . . . . . . . . . . . . . . 135 6.4.5 Tensor splines for the re-projective depth-dependent dis- tortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.4.6 SplinecorrectionfortheEuclideanerror . . . . . . . . . . 138 6.4.7 Theviewingrayforsplinecorrectedcameras . . . . . . . 139 6.4.8 Splinecorrectionforstereoreconstruction . . . . . . . . . 139 6.4.9 Disadvantagesofthesplinecorrection . . . . . . . . . . . 140 6.5 Atwo-planedistortionmodel . . . . . . . . . . . . . . . . . . . . 144 6.5.1 Motivationandrelatedwork . . . . . . . . . . . . . . . . 144 6.5.2 Theplane{z =−1} . . . . . . . . . . . . . . . . . . . . 145 6.5.3 Distortionmappingsin{z =1}and{z =−1} . . . . . . 146 6.5.4 There-projectionw.r.t.thetwo-planedistortion . . . . . . 147 6.5.5 Errorfunctionsforthetwo-planedistortionmodel . . . . 148 6.5.5.1 Theprojectiveerror . . . . . . . . . . . . . . . 149 6.5.5.2 TheEuclideanerror . . . . . . . . . . . . . . . 149 6.5.5.3 TheprojectedEuclideanerror . . . . . . . . . . 150 6.5.5.4 ThenormalizedEuclideanerror . . . . . . . . . 150 6.5.5.5 Depth-dependence of the two-plane distortion model . . . . . . . . . . . . . . . . . . . . . . 153 6.5.6 Calibrationalgorithm . . . . . . . . . . . . . . . . . . . . 155 6.6 Agenericmulti-planecamera. . . . . . . . . . . . . . . . . . . . 156 6.6.1 Introductionandrelatedwork . . . . . . . . . . . . . . . 156 6.6.2 Fromtheimagetoareferencecoordinatesystem . . . . . 156 6.6.3 Tensor spline approximation of the coordinate transfor- mation . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.6.4 Acalibrationsetupforthegenericmulti-planecamera . . 159 6.7 Experimentalresults . . . . . . . . . . . . . . . . . . . . . . . . 161 6.7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 6.7.1.1 Calibrationsetupforthestandardcameramodel 161 6.7.1.2 Calibrationsetupforthesplinecorrection . . . 161 6.7.1.3 Calibration setup for the two-plane distortion model . . . . . . . . . . . . . . . . . . . . . . 161 6.7.2 Resultsforsplinecorrectedcameras . . . . . . . . . . . . 162 6.7.2.1 Prototypereconstruction. . . . . . . . . . . . . 162 6.7.2.1.1 In-planesplinecorrection . . . . . . . 162 6.7.2.1.2 3dsplinecorrection . . . . . . . . . . 164 viii 6.7.2.2 Stereoreconstruction . . . . . . . . . . . . . . 171 6.7.3 Resultsforthetwo-planedistortionmodel . . . . . . . . . 173 6.7.3.1 Stereoreconstruction . . . . . . . . . . . . . . 173 6.7.3.2 Pointtopointerror. . . . . . . . . . . . . . . . 173 6.7.3.3 Anglesofreconstructedplanes . . . . . . . . . 177 6.7.3.4 Othertestseries . . . . . . . . . . . . . . . . . 180 6.7.3.5 Planaritytest . . . . . . . . . . . . . . . . . . . 187 6.7.3.6 Prototypereconstruction. . . . . . . . . . . . . 192 7 Conclusions 197 ix Abstract The main purpose of this work is to determine the camera mapping for optical measurement objectives. The standard approach models the camera mapping as a pinhole camera with distortion. We formulate different error functions for the pinhole camera model. Minimizing all error functions introduces a non-linear optimization. Therefore, we present initial values for the intrinsic and extrinsic cameraparametersincludingdistortion. Inparticular,thedistortioncanbedeter- mined by a linear least squares problem. This yields a semi-linear approach to cameracalibration. Stereo camera calibration introduces an additional constraint, which is used asepipolarlineconstraintintheliterature. Weextendthisconstrainttoepipolar curvesandpresentsomecalibrationapproachesforastereocamerasetup. These includetheepipolarcurveconstraint. Whenmodellingthecameraasapinholewithdistortion,weobservearesidual error. Weshowthatthiserrordependsonthedepthoftheobservedobject. Thus, wepresenttwoapproachestointroduceadepth-dependentdistortionmodel:First, we propose a spline correction of the residual error, second, we suggest a two- planedistortionmodel. Severalexperimentalresultssupportbothapproaches. x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.