ebook img

High-Power Lasers and Laser Plasmas / Moshchnye Lazery I Lazernaya Plazma / Мощные Лазеры И Лазерная Плазма PDF

248 Pages·1978·11.193 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High-Power Lasers and Laser Plasmas / Moshchnye Lazery I Lazernaya Plazma / Мощные Лазеры И Лазерная Плазма

HIGH-POWER LASERS AND LASER PLASMAS MOSHCHNYE LAZERY I LAZERNA YA PLAZMA MOIll,HbIE JIA3EPbI II JIA3EPIJAH TIJIA3MA The Lebedev Physics Institute Series Editors: Academicians D.V. Skobel'tsyn and N.G. Basov P. N. Lebedev Physics Institute, Academy of Sciences of the USSR Recent Volumes in this Series Volume 35 Electronic and Vibrational Spectra of Molecules Volume 36 Photodisintegration of Nuclei in the Giant Resonance Region Volume 37 Electrical and Optical Properties of Semiconductors Volume 38 Wideband Cruciform Radio Telescope Research Volume 39 Optical Studies in Liquids and Solids Volume 40 Experimental Physics: Methods and Apparatus Volume 41 The Nucleon Compton Effect at Low and Medium Energies Volume 42 Electronics in Experimental Physics Volume 43 Nonlinear Optics Volume 44 Nuclear Physics and Interaction of Particles with Matter Volume 45 Programming and Computer Techniques in Experimental Physics Volume 46 Cosmic Rays and Nuclear Interactions at High Energies Volume 47 Radio Astronomy: Instruments and Observations Volume 48 Surface Properties of Semiconductors and Dynamics of Ionic Crystals Volume 49 Quantum Electronics and Paramagnetic Resonance Volume 50 Electroluminescence Volume 51 Physics of Atomic Collisions Volume 52 Quantum Electronics in Lasers and Masers, Part 2 Volume 53 Studies in Nuclear Physics Volume 54 Photomesic and Photonuclear Reactions and Investigation Methods with Synchrotrons Volume 55 Optical Properties of Metals and Intermolecular Interactions ~ Volume 56 Physical Processes in Lasers Volume 57 Theory of Interaction of Elementary Particles at High Energies Volume 58 Investigations in Nonlinear Optics and Hyperacoustics Volume 59 Luminescence and Nonlinear Optics Volume 60 Spectroscopy of Laser Crystals with Ionic Structure , Volume61 Theory of Plasmas Volume 62 Methods in Stellar Atmosphere and Interplanetary Plasma Research Volume 63 Nuclear Reactions and Interaction of Neutrons and Matter Volume 64 Primary Cosmic Radiation Volume 65 Stellarators Voh. . me 66 Theory of Collective Particle Acceleration and Relativistic Electron Beam Emission Volume 67 Physical Investigations in Strong Magnetic Fields Volume 68 Radiative Recombination in Semiconducting Crystals Volume 69 Nuclear Reactions and Charged-Particle Accelerators Volume 70 Group-Theoretical Methods in Physics Volume 71 Photonuclear and Photomesic Processes Volume 72 Physical Acoustics and Optics: Molecular Scattering of Light; Propagation of Hypersound; Metal Optics Volume 73 Microwave-Plasma Interactions Volume 74 Neutral Current Sheets in Plasmas Volume 75 Optical Properties of Semiconductors • Volume 76 Lasers and Their Applications Volume 77 Radio, Submillimeter, and X-Ray Telescopes \ Volume 78 Research in Molecular Laser Plasmas Volume 79 Luminescence Cen ters in Crystals Volume 80 Synchrotron Radiation , Volume 81 Pulse Gas-Discharge Atomic and Molecular Lasers Volume 82 Electronic Characteristics and ElectrC;lll-Phonon Interaction in Superconducting Metals and Alloys Volume 83 Theoretical Problems in the Spectroscopy and Gas Dynamics of Lasers Volume 84 Temporal Characteristics of Laser Pulses and Interaction of Laser Radia tion with Matter Volume 85 High·Power Lasers and Laser Plasmas Volume 86 Superconductivity Volume 87 Coherent Cooperative Phenomena Volume 88 Cosmic Rays in the Stratosphere and in Near Space Volume 89 Electrical and Optical Properties of III-IV Semiconductors Proceedings (Trudy) of the P. N. Lebedev Physics Institute Volume 85 High -Power Lasers and Laser Plasmas Edited by N. G. Basov P. N. Lebedev Physics Institute Academy of Sciences of the USSR Moscow. USSR Translated from Russian by J. George Adashko New York University CONSULTANTS BUREAU NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Main en try under title: High-power lasers and laser plasmas. (Proceedings (Trudy) of the P. N. Lebedev Physics Institute; v. 85) Translation of Moshchnye lazery i lazernaia plazma. Includes bibliographical references and index. I. Laser plasmas. 2. Laser beams. 3. Lasers. I. Basov, NikolaI Gennadievich, 1922- II. Series: Akademiia nauk SSSR. Fizicheskiiinstitut. Proceedings;v. 85. QCI.A4114 vol. 85 [QC718.5.L3] 530'.08s [530.4'4] 78-794 ISBN 978-1-4684-1634-3 ISBN 978-1-4684-1632-9 (eBook) DOI 10.1007/978-1-4684-1632-9 The original Russian text was published by Nauka Press in Moscow in 1976 for the Academy of Sciences of the USSR as Volume 85 of the Proceedings of the P. N. Lebedev Physics Institute. This translation is published under an agreement with the Copyright Agency of the USSR (V AAP). © 1978 Consultants Bureau, New York A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N. Y. 10011 All rights reserved No part of this book may be reproduced, stored in a retrieval sytem, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher CONTENTS Stimulated Mandel'shtam - Brillouin Scattering Lasers V. V. Ragul'skii Introduction . . • • • . • • • . • • . • . • . • . • . • • . • . . • . • . . • . . • . • • . • . • • . . . . . 1 Chapter I Conditions for Obtaining Stationary Lasing with Stimulated Scattering of Light. . . . . 4 § 1. Influence of Intensity, Energy Density, and Exciting-Radiation Pulse Duration on the Laser Operation. • . . . . . . . . . . . . . . • . • . . • . . . . . 4 § 2. Experimental Verification of the Conditions for Stationary Lasing . . • . • • 6 Chapter II Gains and Line Widths for 5MBS in Gases 10 Chapter III Single-Frequency 5MBS Ring Laser . • • • • . . • . . . . . . . . . • . . • • • . • . • • . . . • • 14 § 1. Feasibility of Effective Conversion of Pump Radiation. • . . . . • • • . . . . . 14 § 2. Single-Frequency 5MBS Laser. . • • . . • . . . . . • • • . • . . . • . • • • . . . . . 15 Chapter IV Operation of 5MBS Amplifier in the Saturation Regime. • . • . . . . . . . . . • • • • . . • . 20 § 1. Characteristics of 5MBS Amplifier in the Stationary Regime. • • • • . • . • • 20 § 2. Experimental Investigation of Amplifier Operation in the Saturation Region. • • • . . . . . . . . • . • • • . . . . • • . • . . . . . . . . • . • • • • . . • . . 22 Chapter V Q Switching by 5MBS . . . . . . • • . . . . . . . • . • • . . . . • • • . . . . . . . • • . . . . . . . . 24 § 1. Lasing Dynamics. • . . . . . . . . . . • . . . . . . • • . . . • • . . • . . . • • • . . . . 24 § 2. Conditions under Which Q Switching Is Possible . • • . • . . . . . . . • • . • • • 28 § 3. Experimental Verification of the Q-Switching Conditions. • • • • • • . . . . . . 29 Chapter VI Inversion of the Exciting-Radiation Wave Front in 5MBS. . • . • • • • . . . • • . . . • . . . 30 § 1. Comparison of the Wave Fronts of the Exciting and Scattered Light with the Aid 'of a Phase Plate . • . . . • • . • • . . • • . . . . • • • . . • . • • • . • • • 30 § 2. Influence of the Structure of the Exciting Radiation Field on the Shape of the Scattered-Light Front. • . • • • . • . . . . . . . . • . • • . • . . . . • . . . . 33 § 3. Compensation for the Phase Distortions in an Amplifying Medium with the Aid of a "Brillouin Mirror" . • • . . . . . . • . . • . • • • . . . . • • . . . . • • . 35 Chapter VII 5MBS in the Case of Exciting Radiation with a Broad Spectrum 37 Appendix Experimental Technique • . • . . . • . . . . . • . . . . . • . • • • . . . . . • • • • • • . • . • • • . 41 § 1. Divergence Measurement Procedure. . • • • . . . • • • . • . • • • • . . • • • • • • 41 § 2. Cell for Optical Investigations of Compressed Gases. • • . • • . • • . . . • • • 42 v vi CONTENTS § 3. Faraday Decoupler. . • . . . . . . • . . . . . . . . . . • . . • . . . . 43 § 4. Single-Mode Ruby Laser with Pulse Duration 60 nsec. . • . • 43 § 5. Single-Mode Ruby Laser with Pulse Duration 60-200 nsec. . 45 § 13. Fabry - Perot Etalon with 46-cm Base. • • • • • • • • • . • • • • • • • • • • • • . • 45 Literature Cited . • • • • • • • • • • . • • • • . • • • . • • . • • • • • . • • . • • • • • • • • . . • • • 46 Compressed-Gas Lasers V. A. Danilychev, O. M. Kerimov, and 1. B. Kovsh Introduction 49 Chapter I Electroionization Method of Exciting Compressed-Gas Lasers. . • . • . . • • • • . 52 § 1. Mechanism of Current Flow through the Active Medium of an Electroionization Laser • • • • • . • • • • • • . • . • . • . . • • . • • • • • 54 § 2. Experimental Technique • • • • • . • . . • • • . • • • . • • . • • • . • • . . . . 58 2.1. Construction of Laser Chambers • . • . • . . . • • • . • • • • • • • • • • 58 2.2. Optical Resonators. . . . • • • • • • • • • • • • • • • • • • . • • • • . • • • • . . 63 2.3. Measurements of Laser Parameters. . • • • . . • . • • . . . • . • • . • • • 65 § 3. Electric Characteristics of Active Medium. • • • • • • • • • • • • • • • • • • • . • 68 3.1. Calculation of the Characteristics of the Discharge Excited by the Electroionization Method. • • • . • • . • . . . . • . • • • • . . • • . . . • • . . • • 68 3.2. Experimental Investigation of a Nonautonomous Discharge Initiated in a Compressed Gas by an Intense Electron Beam - Discussion of Results 73 Chapter II Electroionization CO2 High-Pressure Laser. • . • . . • • • • • • . • • • • • • • • • • • 84 § 1. Kinetics of Population of Working Levels; Gain of Active Medium of Electroionization CO2 Laser .•.•.•. ~ • . • • . • . . • • • • • • . . • • • • • 86 § 2. Threshold Characteristics, Output Energy, Power, and Efficiency of Laser; Divergence of the Radiation. • . • . . . • • . . . . . • . • • • . . 89 § 3. Gain Spectrum of Electroionization COz Laser . . • . • . . . . . . • . . . 97 §4. Relaxation of Upper Laser Level at High Pressures. • • • • . • • . . • • 104 § 5. Operating Regimes of Electroionization CO2 Lasers. • • . • . . • • • • • 109 Chapter III High-Pressure Gas Lasers Using Other Working Media. • • • • . • • • • • • . • • • • • • • 112 § 1. Electroionization CO Laser. • • • • • . • • • • . • • • • • • • • • • • • • • • • . • • • 114 § 2. Laser Operating with Compressed Xenon and Ar:Xe Mixture. • . • 118 §3. Ultraviolet High-Pressure Laser Using the Mixture Ar:N2 . . • • . 124 Conclusion .••••.•..• 127 Appendix Theory of Current Flow through an Ionized Gas .• 128 Literature Cited .•.....••••••••••.•.•• 142 Experimental Investigation of the Reflection and Absorption of High-Power Radiation in a Laser Plasma O. N. Krokhin, G. V. Sklizkov, and A. S. Shikanov Chapter I Reflection of Laser Radiation from a Plasma (Survey of the Literature) 147 CONTENTS vii § 1. Experimental Conditions Realized in Research on Laser-Plasma Parameters . • • . • . . . . • • • • • . . • . . • • . . • . • • • • • • • • • • • • • • . 148 § 2. Energy Composition of the Reflected Radiation; Anomalous Character of the Interaction of Laser Radiation with a Plasma in a Wide Range of Flux Densities ... " ....... " ..................... " " " . 149 1 • § 3. Spectral Composition of Reflected and Scattered Radiation • • • • • • • • • • • 156 Chapter II Investigation of the Absorption of Laser Radiation in Thin Targets. • • • • • • • • • • • • 161 § 1. Experimental Setup ••••• ~ •••••••••••..•••.•••.••••• ~ • . . • 161 § 2. Multiframe Schlieren Photography in, Ruby-Laser Light; Spatial Resolution .......... " ......... 163 GO •• " ••• " " •• " ••••• lit • • • § 3. Determination of the Time of Bleaching of a Thin Target . • . . • . . • • . • . 164 §4. Investigation of the Dynamics of Motion of Shock Waves in the Gas Surrounding the Target; Absorbed Energy. • . . • • • . • . . • • • • • . • • • 167 § 5. Discussion of Results. • • • • • • . . . . . . . . • • . . . . • • . • . . . • • • • . . . . 169 Chapter III Reflection of Laser Radiation from a Dense Plasma. . . • • • • . • . • . . • • • • • • . . • . 170 § 1. Experimental Setup . . . • . • • . . • . . . . • . . . . • • • . • . • • • • . • • • . • • . 170 § 2. Behavior of the Coefficient of Reflection of Laser Radiation from a Plasma in the FlUX-Density Interval 101°_1014 W/cm2 •• • • • • • • • • • • • • • • • • 171 §3. Dependence of the Reflection Coefficient on the Time; Plasma Probing by R uby-Laser Radiation. • • • • • • . • • • • . . . . • • • • . . • • . • • • • . • • 176 § 4. Oscillations of Reflected Radiation with Time. . • . • • . . • . • • . . • • • • • • 178 § 5. Directivity of Reflected Radiation. . . • • • . . • • • • • • • • • . • • • • • • • . • • 180 Chapter IV Generation of Harmonics of the Heating-Radiation Frequency in a Laser Plasma 182 § 1. Investigation of the Generation of the Second Harmonic of the Heating Radiation in a Laser Plasma; Dependence on the Flux Density; Variation with Time. • • • • • • • . • • • • • • • • • • • • • • • • • • • • • . • . . • 182 § 2. Generation of 3/2wO Line. • . • • . . • . • . . . • • . • . • • • • • • • • • • • • . • • • 185 Chapter V Anisotropy of X Rays from a Laser Plasma. • • • • • • . • • . . • . . • • • . . • • • • • • • • 186 § 1. Procedure of Multichannel Measurement of Continuous X Radiation . • . . . 186 § 2. Investigation of the Directivity of the X Rays . • . • . • • • . . . . • • . • • • • . 187 § 3. Possibility of Measuring the Electron" Temperature" of a Laser Plasma by the" Absorber" Method. • • • • • • . . • . . . • • • • . • • • • • . • . . . • . . 189 Literature Cited . . . . • • . . . . • . • . . . • • . . • . • . . . • • . . . . . . . . • . . • . • • . • • 191 Experimental Study of Cumulative Phenomena in a Plasma Focus and in a Laser Plasma V. A. Gribkov, o. N. Krokhin, G. V. Sklizkov, N. V. Filippov, and T. I. Filippova Introduction . . " . . " . . . . . . . . . . . . " " . . " 197 lit " " • • • • • " • • • III • • • " • • • • " g Chapter I Procedure of High-Speed Interferometric Investigation of a Nonstationary Dense Plasma .. 198 /OJ g • " ••• 0 " •••• " • " •• lit " " " •• " " •• g •• " " •••• " •• " • • § 1. The Maximum Information Obtained by Optical Laser Research Method s. " . . . . . " " " " . . . 198 0 " • • " lit " III " • " • • • • " • • • • • • " " " lit • " • § 2. High-Speed Laser Setup for Interferometric Investigations of a Plasma Focus and Cumulative Laser-Plasma Configurations. • • • • • • • • • • • . 199 viii CONTENTS § 3. Synchronization Methods. . • • . . . . . . • • • . . . . . • . • • • • . • • • • • • . • . 200 § 4. Discussion of the Applicability of Laser Interferometry and Interpretation of the Interference Patterns. • . . . • . . . . . . . . • • . . • • . • • • . . • . • . 201 Chapter II Investigation of Cumulative Stage of Plasma Focus . . . . . . . . . . • . . . . • . • • . . • . 204 § 1. Parameters of the" Plasma Focus" 1'1stallation. . . . . . . • . • . . . . . . . • . 204 § 2. Results of Reduction of the Interference Patterns of the First Contraction of the Plasma Focus. . . • . . . . • . . . • . • • . . . . • . . • . • . • . . . . . • • 204 § 3. Intermediate Phase . . . . • . • . • • • . • . . . . • • . . • • • . • • • . . • . • • . • . 209 § 4. Second "Contraction" of Plasma Focus . . . . • . • . . • • . • . • . • • • . • . . . 211 § 5. Concluding Stage. . . . . . . • • . • • . • . • • • . • • . • . . . . . • . . . • • • . . • . 213 Chapter III Discussion of Results of Experiments with Plasma Focus. . . . . • . • . . . . • . • • • . . 214 §1. First "Contraction" ..••••••••.......••..•....••••••.•• 214 § 2. Intermediate Phase .•.•.••.•.....••. 218 § 3. Second "C ontraction" ..............•.••....•.•••••.•... 221 § 4. Neutron Emission from Plasma Focus ... 223 Chapter IV Investigations of Cumulative Laser Plasma . • . . . . . . . . . . • . • • • • . . • • • . . . • . 224 § 1. Experimental Setup . . • . . . . . . . . • • • . . . . . . . . . . . . . • . . . • • • . 225 § 2. Collision of Two Laser Flares. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 § 3. Quasi-cylindrical Cumulation of Laser Pla,sma. • . . • . . . . • . • . . . . . . • 226 § 4. Investigation of X Rays from a Cumulative Laser . . . . • . . . . • . . . . . . . 229 § 5. Probe Studies of Laser Plasma . • . . . . . . • . • . . . . . • • • . . • • • . • • . . 230 Chapter V Discussion of Experimental Results 231 § 1. Collision of Flares ....•..• 231 § 2. Cone Cumulation .•..... 231 Conclusion .•.. 237 Literature Cited 238 STIMULATED MANDEL'SHT AM-BRILLOUIN SCATTERING LASERS V. V. Ragul'skii The generation and amplification of light in stimulated Mandel'shtam-Brillouin scattering (SMBS) are investigated. The conditions necessary for effective operation of 5MBS lasers, amplifiers, and modula tors are ascertained. The possibility of conversion, with efficiency close to 100"70, of the pump radiation in lasers and amplifiers at diffraction divergence of the generated light is demonstrated experimentally and theoretically. To choose the optimal medium for the construction of the laser devices, the gains and line widths of a number of compressed gases are determined. The influence of the width of the spectrum of the exciting radiation on the stimulated scattering is investigated. It is shown that the wave front of the light scattered by 5MBS can be inverted relative to the front of the exciting radiation. This effect is used to compensate for the phase distortions in the amplifying medium. INTRODUCTION The high intensity and coherence of laser light makes it possible to observe numerous nonlinear effects, particularity different processes of stimulated scattering of light. Soon after the invention of the laser, stimulated Raman scattering (SRS) was observed [1], followed by stimulated Mandel'shtam - Brillouin scattering (SMBS) [2]. A number of other types of stimu lated scattering were discovered later [3-8]. As is well known, in these processes the intensity of the scattered light increases nonlinearly with increasing intensity of the exciting radiation and can become comparable with the latter [9]. As a result, stimulated scattering can be used for an effective conversion of the laser frequency, as well as to change other characteristics of its radiation, such as the spatial distribution, the divergence, the width of the spectrum, etc. Since 5MBS is the dominant scattering process in many media [10], it is useful to consid er the possiblities of constructing laser devices on its basis. The present article is devoted to a study of this question. Mandel's htam - Brillouin scattering is due to fluctuations of the dielectric constant as a result of pressure fluctuations (sound waves) [11]. If the electric field intensity of the exciting radiation is large, then this field (together with the field of the scattered light) causes, on ac count of the electrostriction effect, an increase in the intensity of the sound wave. This in crease leads to an increase of the intensity of the scattered light, which in turns causes an in crease of the pressure fluctuations. As a result, the intenSity of the scattered light increases nonlinearly as it propagates in the scattering medium. This is precisely the effect known as stimulated Mandel'shtam -Brillouin scattering. Stimulated Mandel'shtam-Brillouin scattering has been the subject of a tremendous num ber of works. The reader can find detailed information in the review of Starunov and Fabelinskii [12] (see also [13] and [14]). We present here only the principal relations describing this phenom- 1 2 V. V. RAGUL'SKII enon. According to Tang's theory [15], in the case of a stationary regime the interaction of plane monochromatic waves of the exciting and scattered light traveling opposite to each other in an active medium is described by the equations ~ = gI (x)., (x), dd:Yx = gI (x):J (x), (1) where I and :J are the intensities of the exciting and scattered radiations; the scattered radia tion propagates in the direction +x (0 :s x:s l). The gain g is determined by the parameters of the scattering medium: (2) where v is the frequency of the exciting light, p is the density of the scattering medium, £- is its dielectric constant, n is the refractive index, v is the speed of sound in this medium, and c is the speed of light in vacuum. The position of the center of the gain line is given by the expression 2vn . e VB V - -c V Sill -2 ' (3) where e is the scattering angle. The line width 0))0 is determined by the damping of the hypersound in the active medium: 0)) 0 = 1/ (21fT s ), where T s is the hypersound damping time. If I varies little over the length of the scattering region (i.e., there is no saturation), we obtain from (1) :J (I) = :J (0) egIl• (4) Equations (1) are valid also for the saturation regime; the corresponding solution is given in Chapter IV. Equation (2) pertains to scattering through 180°. In scattering through an arbitrary angle e, the gain at the maximum of the line is equal to [16]: (5) Prior to the performance of the investigations described in this article, there were only few known publications on 5MBS lasers. The experimental studies [17-20] were devoted to the lasing spectrum at different angles between the axis of the laser cavity and the beam of the exciting radiation. The lasing threshold and the output power were determined [21]. Studies were made also of the competition in such lasers between the 5MBS and the SRS processes [19, 22]. The initial lasing period was analyzed theoretically by Yariv [23]. He has shown that the intensity of the generated radiation increases exponentially in time if the lasing is only on the first Stokes component of the 5MBS and there is no saturation. Stationary lasing on several components was theoretically considered in [24]. Its authors took into account saturation, but the analysis was carried out only for the case when the exciting radiation coincides in frequen cy with one of the resonator modes. This case has not yet been realized in experiment. The papers cited above constitute the entire literature on 5MBS lasers. We note that the experiments yielded a low « 1%) efficiency of conversion of the pump radiation into laser radia tion. The cause is apparently the nonstationary regime of the operation of the described lasers.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.