HighPerformanceComputingonVectorSystems2008 · · · Michael Resch Sabine Roller Katharina Benkert · · · Martin Galle Wolfgang Bez Hiroaki Kobayashi Toshio Hirayama Editors High Performance Computing on Vector Systems 2008 MichaelResch MartinGalle SabineRoller WolfgangBez KatharinaBenkert NECDeutschlandGmbH Höchstleistungsrechenzentrum Hansaallee101 Stuttgart(HLRS) 40549Düsseldorf UniversitätStuttgart Germany Nobelstraße19 [email protected] 70569Stuttgart [email protected] Germany [email protected] [email protected] [email protected] HiroakiKobayashi ToshioHirayama CyberscienceCenter Centerforcomputationalscienceande-systems TohokuUniversity JapanAtomicEnergyAgency 6-3Aramaki-Aza-Aoba SumitomofudosanUenoBldg.No.8 Sendai,980-8578 6-9-3Higashi-UenoTaito-ku Japan Tokyo,110-0015 [email protected] Japan [email protected] Frontcoverfigure:SimulationoftheUVcuringprocessinautomotivecoatingwithmultipleultraviolet lamps.PictureduetoIFF,UniversityofStuttgart,GermanyandBMWGroup. ISBN 978-3-540-85868-3 e-ISBN 978-3-540-85869-0 DOI 10.1007/978-3-540-85869-0 LibraryofCongressControlNumber:2008934396 MathematicsSubjectClassification(2000):68Wxx,68W10,68U20,76-XX,86A05,86A10,70Fxx (cid:2)c 2009Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliableforprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnot imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Coverdesign:WMXDesign,Heidelberg Printedonacid-freepaper 987654321 springer.com Preface This book covers the results obtained in the Teraflop Workbench project during a fouryearsperiodfrom2004to2008.TheTeraflopWorkbenchprojectisacollabo- rationbetweentheHighPerformanceComputingCenterStuttgart(HLRS)andNEC Deutschland GmbH (NEC-HPCE) to support users to achieve their research goals usinghighperformancecomputing. TheTeraflopWorkbenchsupportsusersoftheHLRSsystemstoenableandfa- cilitateleadingedgescientificresearch.Thisisachievedbyoptimizingtheircodes and improving the process workflow which results from the integration of differ- ent modules into a “hybrid vector system”. The assessment and demonstration of industrialrelevanceisanothergoalofthecooperation. TheTeraflopWorkbenchprojectconsistsofnumerousindividualcodes,grouped togetherbyapplicationareaanddevelopedandmaintainedbyresearchersorcom- mercialorganizations.Withintheproject,severalofthecodeshaveshowntheabil- itytoreachbeyondtheTFlop/sthresholdofsustainedperformance.Thiscreatedthe possibility for new science and a deeper understanding of the underlying physics. Thepapersinthisbookdemonstratethevalueoftheprojectfordifferentscientific areas. TheworkintheTeraflopWorkbenchprojectgaveusinsightintotheapplications andrequirementsforcurrentandfutureHPCsystems.Weobservedtheemergence ofmulti-scaleandmulti-physicsapplications,theincreaseininterdisciplinarywork andthegrowingtendencytousetoday’sstand-aloneapplicationcodesasmodules inprospective,morecomplexcoupledsimulations.Atthesametime,wenoticedthe currentlackofsupportforthoseapplications.Ourgoalistoofferanenvironmentto ourusersthatallowsthemtoconcentrateontheirareaofexpertisewithoutspending toomuchtimeoncomputerscienceitself. WewouldliketothankallthecontributorsofthisbookandoftheTeraflopWork- benchprojectingeneral. Stuttgart,July2008 SabineP.Roller MichaelM.Resch v Contents I FutureArchitectures FirstExperienceswithNECSX-9.................................. 3 Hiroaki Kobayashi, Ryusuke Egawa, Hiroyuki Takizawa, Koki Okabe, AkihikoMusa,TakashiSoga,andYoichiShimomura 1 Introduction.............................................. 3 2 SystemOverview ......................................... 5 3 PerformanceEvaluation.................................... 6 4 Conclusions.............................................. 9 References..................................................... 10 ScalableComputinginaHybridSystemArchitecture................. 13 WilfriedOed 1 Introduction.............................................. 13 2 TheNeedforScalability ................................... 14 3 ProcessorTrends.......................................... 15 4 TheCrayXT5 HybridSupercomputer ....................... 17 h 5 TheCrayCascadeProgram................................. 19 6 Conclusion............................................... 20 References..................................................... 20 PrerequisitesfortheProductiveUsageofHybridSystems ............. 23 DannySternkopfandMartinGalle 1 Introduction.............................................. 23 2 HLRSSystemOverview ................................... 24 3 SWComponentsforaHybridSystem ........................ 25 3.1 BatchSystem..................................... 26 3.2 GlobalFilesystem ................................. 27 3.3 MPI............................................. 30 4 Conclusion............................................... 31 References..................................................... 31 vii viii Contents II MultiscaleandMultiphysicsSimulations ComplexNumericalSimulationsinProductionTechniques ............ 35 A.ScheibeandE.Westka¨mper 1 ProblemStatementandMotivation........................... 35 2 Multi-ScaleModelingandSimulationofManufacturingSystems . 36 2.1 VisionandScientificImpact ........................ 36 2.2 Challenges,TheoreticalConsiderationsandDefinitions.. 37 3 ANewConceptTowardsaComprehensiveandHolisticFactory SimulationModel......................................... 38 3.1 TheoreticalAspects................................ 38 3.2 VectorialModellingandSimulationApproachBased onBusiness/OrganizationalParametersandTechnical Tolerances ....................................... 40 4 ComplexExampleinAutomotiveCoatingIndustry............. 42 5 ConclusionsandFutureWork ............................... 44 References..................................................... 44 Multi-scaleandMulti-physicsApplications—UserRequirementsfor FutureApplications ............................................. 45 SabineP.Roller 1 Introduction.............................................. 45 2 AGlanceatPast,CurrentandFutureSimulationApplications.... 46 3 FutureApplicationPerspective .............................. 47 4 Examples................................................ 48 4.1 DynamicCoatingSimulation........................ 48 4.2 OceanWaterPlant................................. 48 4.3 Particle-loadenFlows .............................. 49 4.4 Multi-scaleAero-acoustics.......................... 50 5 FutureUserPerspective .................................... 51 6 Requirements,ArchitectureandTools ........................ 52 References..................................................... 52 III GridComputing&DataAnalysis An Application of the NAREGI Grid Middleware to a Nationwide Joint-UseEnvironmentforComputing ............................. 55 EisakuSakane,ManabuHigashida,andShinjiShimojo 1 Introduction.............................................. 55 2 NAREGIGridMiddleware ................................. 56 3 Issues ................................................... 57 3.1 ResourceProvisioning ............................. 58 3.2 Password/PassphraseManagement .................. 58 3.3 IssuanceofGridCertificate ......................... 58 3.4 GridOperations................................... 59 4 ApplicationMethod ....................................... 59 Contents ix 5 EvaluationofProposedMethod ............................. 61 6 CooperativeEvaluation .................................... 62 7 Summaryandfutureworks ................................. 63 References..................................................... 63 InteroperationbetweenAtomicEnergyGridInfrastructure(AEGIS) andOtherGrids ................................................ 65 YoshioSuzuki,NoriyukiKushida,NaoyaTeshima,KoheiNakajima,Akemi Nishida,andNorihiroNakajima 1 Introduction.............................................. 65 2 HistoryofGridComputingTechnologyatCCSE............... 66 3 AtomicEnergyGridInfrastructure........................... 68 4 Interoperability Technology based on Atomic Energy Grid Infrastructure............................................. 69 5 CollaborationwiththeHighPerformanceComputingCenter Stuttgart(HLRS).......................................... 72 6 CollaborationwithGrid-TLSEProjectPartners ................ 74 7 CollaborationwiththeU.S.DepartmentofEnergyUnderthe GlobalNuclearEnergyPartnership .......................... 74 8 Summary ................................................ 75 References..................................................... 76 ParallelFileSystemsinEuropeanGridProjects...................... 79 PeterW.HaasandMichaelM.Resch 1 Introduction.............................................. 79 2 TheHLRSFramework..................................... 80 2.1 Target ........................................... 80 2.2 Organization ..................................... 80 2.3 HLRSComputerConfiguration...................... 80 3 Ex@GridFramework...................................... 81 3.1 GaussCenterforSupercomputing.................... 81 3.2 Ex@GridDesign.................................. 81 4 ConsolidationintheDatacenter ............................. 82 4.1 DatacenterEthernet................................ 82 4.2 IEEE802.3ar:CongestionManagement............... 82 5 MulticlusterParallelFileSystems ........................... 83 5.1 MulticlusterGPFSinDEISA........................ 83 5.2 Network-centeredparallelHSMsystems .............. 83 5.3 ProjectedmassstoragesystematHLRS............... 84 6 TheTeraflopWorkbenchConcept............................ 84 6.1 WorkflowExample ................................ 85 6.2 Fenfloss ......................................... 85 6.3 DemonstrationintheHLRSCave.................... 85 6.4 VirtualTourofKiebingenWaterPowerPlant .......... 86 7 Conclusion............................................... 86 References..................................................... 87 x Contents DevelopmentofCognitiveMethodologybasedDataAnalysisSystem .... 89 ChiakiKino,YoshioSuzuki,NoriyukiKushida,AkemiNishida,Sachiko Hayashi,andNorihiroNakajima 1 Introduction.............................................. 89 2 TheBasicIdeaofCDAS ................................... 91 2.1 DataAnalysisProcess.............................. 91 2.2 VVandDDFunctions ............................. 91 2.3 SynthesisFunction ................................ 92 2.4 EvaluationandJudgment ........................... 92 3 SystemConfiguration...................................... 93 3.1 FlowofDataAnalysisbyCDAS..................... 93 3.2 ImplementationonaGridComputing ................ 94 4 ResultandDiscussion ..................................... 94 5 ConclusionsandFutureWorks .............................. 96 References..................................................... 97 IV ChemicalApplications 3D-FlameModellinginPowerPlantApplications .................... 101 BenedettoRisio,NorbertPaßmann,FriedhelmWessel,EgbertReinartz 1 Introduction..............................................101 2 Flamemodellingtoolandcomputerhardware .................102 3 NeurathA/Bboilermodel ..................................104 4 Simulationresults.........................................105 5 Summary ................................................110 References.....................................................110 HierarchicalModelingofCombustionProcesses ..................... 111 UlrichMaas,ViatcheslavBykov,AndriyRybakov,andRainerStauch 1 Introduction..............................................111 2 DynamicsofReactingFlows................................112 3 DetailedModels ..........................................114 3.1 Chemicalkinetics .................................115 3.2 Chemistry-TurbulenceCoupling .....................115 3.3 ModelingofMulti-PhaseProcesses ..................116 4 ModelReduction .........................................118 4.1 ChemicalKinetics.................................119 4.2 Chemistry-TurbulenceInteraction....................121 4.3 Multi-PhaseProcesses .............................123 5 CouplingoftheSub-Models ................................123 6 Summary ................................................125 References.....................................................126 Contents xi Understanding Molecular Recognition and Self-Assembly from Large-ScaleNumericalSimulations ................................ 129 StephanBlankenburgandWolfGeroSchmidt 1 Introduction..............................................129 2 ComputationalMethod.....................................131 3 ResultsandDiscussion.....................................131 4 Conclusions..............................................136 References.....................................................137 LargeScaleParticle-in-cellPlasmaSimulation....................... 139 SeijiIshiguro 1 Introduction..............................................139 2 Parallelization of 3D Particle-in-cell Code using High PerformanceFortran.......................................140 3 PICSimulationofBlobTransport ...........................141 4 Conclusion...............................................143 References.....................................................144 Multi-scaleModelingofCrackPropagation ......................... 145 MitsuhiroItakura,HideoKaburaki,MasatakeYamaguchi,andKen-ichi Ebihara 1 Introduction..............................................145 2 Multi-scaleModelofSCC..................................146 2.1 OxygenEmbrittlementMechanism...................146 2.2 MechanicsModelingofCrackGrowth................147 2.3 OxygenDiffusionModeling ........................149 3 SimulationDetailsandResults ..............................149 4 Conclusions..............................................151 References.....................................................152 V ClimateModeling,Hydro-andAerodynamics TheClimateModelECHAM5onNECSX-8......................... 155 StefanBorowski 1 Introduction..............................................155 2 RuntimeAnalysis .........................................156 3 Optimizations ............................................157 3.1 SingleCPUOptimizations..........................157 3.2 ScalabilityOptimizations...........................158 4 PerformanceResults.......................................158 4.1 SingleCPUPerformance ...........................158 4.2 Scalability .......................................159 5 Conclusions..............................................161 References.....................................................162 xii Contents ALargeSpectrumofFreeOceanicOscillations ...................... 163 MalteMu¨ller 1 Introduction..............................................163 2 StateofKnowledge .......................................164 3 FreeOceanicOscillationModelwithConsiderationofLSA......165 3.1 Theory ..........................................166 3.2 TheImplicitlyRestartedArnoldiMethod..............167 3.3 TheParallelizationwithMPI........................169 3.4 ThePerformanceoftheModel ......................169 4 Results ..................................................170 4.1 GravitationalModes ...............................171 4.2 VorticityModes...................................171 5 Conclusion...............................................174 References.....................................................174 DirectNumericalSimulationofControlledShearFlows ............... 177 MarkusJ.Kloker,TillmannA.Friederich,JensLinn 1 Laminar-Flow-ControlCase ................................177 1.1 Introduction ......................................177 1.2 NumericalModel..................................179 1.3 SecondaryInstabilityandControlSetup...............180 1.4 ControlResultsandConclusions.....................181 2 EffusionCoolingCaseat<Mach6.8>FlightConditions........184 2.1 Introduction ......................................184 2.2 NumericalModel..................................184 2.3 BlowingThroughSlits .............................185 2.4 BlowingThroughHoles ............................188 3 ComputationalAspectsandOutlook .........................191 References.....................................................193 Fluid-StructureInteractioninTurbineSimulation.................... 195 FelixLippoldandAlbertRuprecht 1 Introduction..............................................195 2 BasicEquations...........................................196 3 Fluid-StructureCoupling...................................200 4 EfficientMovingMeshScheme .............................201 5 CoupledCodesandArchitecture.............................202 5.1 FENFLOSS—CFDonVectorSystems...............202 5.2 FSICouplingwithFENFLOSSonSX-8 ..............203 6 vonKarmanVortexStreet ..................................204 7 FSIBenchmarkApplication ................................206 8 TidalTurbineRunner ......................................209 8.1 ComputationalModelandPerformance ...............210 8.2 Fluid-StructureInteractionResults ...................210 9 Summary ................................................212 References.....................................................213