ebook img

high performance analog circuit design using floating-gate techniques PDF

124 Pages·2007·1.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview high performance analog circuit design using floating-gate techniques

HIGH PERFORMANCE ANALOG CIRCUIT DESIGN USING FLOATING-GATE TECHNIQUES A Thesis Presented to The Academic Faculty by Guillermo J. Serrano In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Electrical and Computer Engineering Georgia Institute of Technology December 2007 Copyright (cid:176)c 2007 by Guillermo J. Serrano HIGH PERFORMANCE ANALOG CIRCUIT DESIGN USING FLOATING-GATE TECHNIQUES Approved by: Dr. Kevin Kornegay, Dr. Jennifer Michaels Committee Chair School of Electrical and Computer School of Electrical and Computer Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Paul Hasler, Advisor Dr. Levent Degertekin School of Electrical and Computer School of Mechanical Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. David Anderson Date Approved: 26 July 2007 School of Electrical and Computer Engineering Georgia Institute of Technology To my parents, Muneca y Luis, and to my brothers, Luis y Pablo iii ACKNOWLEDGEMENTS I would like to thank Dr. Paul Hasler for his guidance and numerous stimulating conversations during the course of my doctoral studies. Thanks are due to the mem- bers of my committee for all the insightful comments that have helped shape this dissertation. Manythanksto membersof ICElabfor puttingupwith meduringmysixyearsat GaTech. VenkateshSrinivasanandAbhishekBandyopadyayrequireaspecialmention for being both a great friend and an excellent work partner. It has been a pleasure working with you! Finally I want to thank my parents Muneca and Luis, and my brothers Luis and Pablo. This work would not have been possible without their love, support, and encouragement. iv TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv I MISMATCH: AN ANALOG CIRCUIT PERFORMANCE LIMITATION 1 1.1 Device Mismatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 MOS Matching Models . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Bipolar Matching Models . . . . . . . . . . . . . . . . . . . 3 1.2 Getting Around Mismatch . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Effect of Device Mismatches on Circuit Performance . . . . . . . . 5 1.3.1 Mismatch in Amplifiers . . . . . . . . . . . . . . . . . . . . 5 1.3.2 Mismatch in Voltage References . . . . . . . . . . . . . . . . 6 1.3.3 Mismatch in Current References . . . . . . . . . . . . . . . 7 1.3.4 Mismatch in Current-Steering Digital-to-Analog Converters 9 II A PROGRAMMABLE ANALOG MEMORY . . . . . . . . . . . . . . . 10 2.1 Floating-Gate Transistor: An Analog Memory . . . . . . . . . . . . 10 2.1.1 Circuit Description . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Analytical Description . . . . . . . . . . . . . . . . . . . . . 11 2.2 Charge Modification Mechanisms . . . . . . . . . . . . . . . . . . . 13 2.2.1 Fowler-Nordheim Tunneling . . . . . . . . . . . . . . . . . . 13 2.2.2 Hot-Electron Injection . . . . . . . . . . . . . . . . . . . . . 14 2.3 Programming Precision . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Weak Inversion . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2 Strong Inversion . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 17 v 2.4 Automated Rapid Programming of Floating-Gates . . . . . . . . . 19 2.4.1 Array Characterization . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . 21 2.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 24 2.5 Charge Retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5.1 Long Term Charge Loss . . . . . . . . . . . . . . . . . . . . 29 2.5.2 Radiation Effects . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 III A PRECISION CMOS AMPLIFIER . . . . . . . . . . . . . . . . . . . . 34 3.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Proposed Offset Voltage Compensation . . . . . . . . . . . . . . . 36 3.2.1 Amplifier Architecture . . . . . . . . . . . . . . . . . . . . . 37 3.2.2 Input Referred Offset Voltage Cancelation . . . . . . . . . . 37 3.2.3 Offset Voltage Temperature Sensitivity . . . . . . . . . . . . 38 3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 IV A PROGRAMMABLE LOW TC CMOS VOLTAGE REFERENCE . . . 46 4.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.2 Proposed Voltage Reference . . . . . . . . . . . . . . . . . . . . . . 47 4.3 Reference Architecture #1 . . . . . . . . . . . . . . . . . . . . . . . 48 4.3.1 Reference Temperature Sensitivity . . . . . . . . . . . . . . 50 4.3.2 Reference Minimum Power Supply . . . . . . . . . . . . . . 51 4.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 51 4.4 Reference Architecture #2 . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.1 Reference Temperature Sensitivity . . . . . . . . . . . . . . 58 4.4.2 Reference Minimum Power Supply . . . . . . . . . . . . . . 58 4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . 58 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 vi V A PROGRAMMABLE LOW TC CMOS CURRENT REFERENCE . . 63 5.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2 A Programmable Current Reference . . . . . . . . . . . . . . . . . 64 5.3 A Temperature Compensated Resistor . . . . . . . . . . . . . . . . 66 5.3.1 A Programmable Resistor . . . . . . . . . . . . . . . . . . . 67 5.3.2 A Low TC Resistor . . . . . . . . . . . . . . . . . . . . . . . 70 5.4 Proposed Current Reference . . . . . . . . . . . . . . . . . . . . . . 71 5.5 Charge Modification . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 VI A V COMPENSATED DIGITAL-TO-ANALOG CONVERTER . . . 83 TH 6.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 DAC Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.2.1 Binary Weighted DAC . . . . . . . . . . . . . . . . . . . . . 84 6.2.2 Unary Decoded DAC . . . . . . . . . . . . . . . . . . . . . . 86 6.2.3 Segmented DAC . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3 Basic DAC Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.1 Intrinsic Accuracy . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.2 Current Source Mismatch . . . . . . . . . . . . . . . . . . . 89 6.4 A V Compensated Current Source . . . . . . . . . . . . . . . . . . 92 th 6.5 Proposed Digital-to-Analog Converter . . . . . . . . . . . . . . . . 94 6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 VII CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.2 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 vii LIST OF TABLES 1 Achievable Bits of Accuracy (FOM) . . . . . . . . . . . . . . . . . . . 19 2 Floating-Gate Retention in 10 Years . . . . . . . . . . . . . . . . . . 31 3 Summary of Floating-Gate Transistor Performance . . . . . . . . . . 33 4 Summary of Amplifier Performance . . . . . . . . . . . . . . . . . . . 44 5 Qualitative Comparison of Different Amplifier Offset Voltage Cancela- tion Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 6 Summary of Voltage Reference Performance . . . . . . . . . . . . . . 61 7 Performance Comparison for Different Voltage References . . . . . . . 62 8 Summary of Current Reference Performance . . . . . . . . . . . . . . 81 9 Performance Comparison for Different CMOS Current References . . 82 viii LIST OF FIGURES 1 Floating-Gate Transistor: Circuit schematic and layout of a floating- gate pMOS transistor. . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Threshold Voltage Modification: Drain current of a floating-gate tran- sistor as a function of the gate voltage for different ∆Q values in the floating node. The inset figure emphasizes the sub-threshold region. . 13 3 Electron Tunneling: Cross section of the MOS capacitor along with the biases required to enable tunneling. . . . . . . . . . . . . . . . . . 14 4 Electron Injection: Cross section of the floating-gate transistor along with the biases required to enable injection. . . . . . . . . . . . . . . 15 5 Programming Precision: (a) Plot of ∆I as a function of the total ca- pacitance C on the floating-node for a fixed ∆Q. (b) Plot of the FOM T as a function of the initial current for a fixed ∆Q. . . . . . . . . . . . 18 6 Injection Rate Characterization: A plot of ∆I as a function of I for init several V values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 ds 7 Injection Rate Characterization: A plot of ∆I as a function of V for ds a given I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 init 8 Mathematical Modeling of Injection: Variation of model parameters k , k , and k with V . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1 2 3 ds 9 MathematicalModelingofInjection: (a)Variationofmodelparameter m with I . (b) Variation of f with I . . . . . . . . . . . . . . 23 initial initial 10 Target Programming: Asymptotic approach toward programming var- ious target current. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 11 Programming Accuracy: Average percentage error of a 50 sample data for a wide range of programmed currents. . . . . . . . . . . . . . . . . 25 12 Analog Storage: (a) Current values for a row of 50 floating-gate tran- sistors programmed as sine wave of 4nA , 40nA , and 80nA . (b) pp pp pp Percentage error for a 40nA sine wave programmed at a DC current pp of 1µA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 13 Analog Computational Elements: (a) A 8x8 DCT kernel programmed onto a floating-gate transistor array around a DC current value of 10nA. (b) Percentage error of the 8x8 DCT kernel. . . . . . . . . . . 27 14 Long Term Retention:(a) Drain current of a floating-gate transistor in a 0.5µm CMOS process measured over 16 days. (b) Drain current distribution of a floating-gate transistor current measured over 16 days. 28 ix 15 Charge Retention: Charge loss measured at different temperatures and time periods as estimated from threshold voltage changes is plotted using ◦’s along with the extrapolated theoretical fits in solid lines. . 30 16 Amplifier Macromodel: The inherent input referred offset voltage V os of the amplifier is canceled by programming an offset current I using os floating-gate transistors. . . . . . . . . . . . . . . . . . . . . . . . . . 35 17 Floating-Gate Based Offset Compensation: A circuit implementation of the proposed offset removal scheme in a single stage folded-cascode amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 18 Amplifier Die Micrograph: The prototype circuit occupies an area of 115µm×45µm in a 0.5µm CMOS process. . . . . . . . . . . . . . . . 39 19 Offset Programming: Transfer curves of the prototype amplifier config- ured as a comparator with offset voltages programmed in 10mV steps. 40 20 Offset Cancelation: (a) Plot of the input offset voltage against I − 3 I , programmed in 100µV steps. (b) Optimal voltage cancelation; a 4 minimum offset voltage of 25µV was obtained. . . . . . . . . . . . . . 41 21 Offset Voltage Temperature Sensitivity: Temperature variation of the input referred offset voltage across for a temperature range of 170oC. 42 22 Offset Voltage Drift: Offset voltage variation as a function of time for a period of 110 hours. . . . . . . . . . . . . . . . . . . . . . . . . . . 43 23 Conceptual representation of the proposed reference: (a) Schematic diagram of the proposed approach. (b) Graphical representation of the proposed approach. . . . . . . . . . . . . . . . . . . . . . . . . . . 47 24 Proposed Voltage Reference #1: Simplified circuit schematic of the proposed programable voltage reference #1. . . . . . . . . . . . . . . 48 25 Voltage Reference #1 Die Micrograph: Chip micrograph of the proto- type voltage reference in a 0.35µm CMOS process. . . . . . . . . . . . 51 26 Voltage Reference #1 Programmability: Plot of V against the pro- ref grammed voltage difference between M and M . . . . . . . . . . . . 52 2 1 27 VoltageReference#1Accuracy: Datapointanderrorplotforaccurate programming of V . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ref 28 Voltage Reference #1 Temperature Variation: (a) Voltage reference variation with temperature for different programmed V values. (b) ref Voltage reference variation with temperature for V = 0.4V. . . . . . 54 ref 29 Voltage Reference #1 Temperature Sensitivity: Experimental and the- oreticalplotsofthereferencevoltagesensitivityagainsttheirrespective programmed V values. . . . . . . . . . . . . . . . . . . . . . . . . . 55 ref x

Description:
HIGH PERFORMANCE ANALOG CIRCUIT DESIGN .. 25 Voltage Reference #1 Die Micrograph: Chip micrograph of the proto- type voltage reference in a
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.