GeneticsandMolecularBiology,32,1,190-196(2009) Copyright©2009,SociedadeBrasileiradeGenética.PrintedinBrazil www.sbg.org.br ResearchArticle High levels of genetic variability and differentiation in hilsa shad, Tenualosa ilisha(Clupeidae, Clupeiformes) populations revealed by PCR-RFLP analysis of the mitochondrial DNA D-loop region SabujKantiMazumderandMd.SamsulAlam DepartmentofFisheriesBiologyandGenetics,BangladeshAgriculturalUniversity,Mymensingh, Bangladesh. Abstract Thehilsashad,Tenualosailisha(Clupeidae,Clupeiformes)isanimportantanadromousclupeidspeciesfromthe WesterndivisionoftheIndo-Pacificregion.ItconstitutesthelargestsinglefishablespeciesinBangladesh.Informa- tion on genetic variability and population structure is very important for both management and conservation pur- poses.PastreportsonthepopulationstructureofT.ilishainvolvingmorphometric,allozymeandRAPDanalysesare contradictory.Weexaminedgeneticvariabilityanddivergenceintworiverine(theJamunaandtheMeghna),two estuarine(KuakataandSundarbans)andonemarine(Cox’sBazar)populationsofT.ilishabyapplyingPCR-RFLP analysis of the mtDNA D-loop region. The amplified PCR products were restricted with four restriction enzymes namely,XbaI,EcoRI,EcoRV,andHaeIII.Highlevelsofhaplotypeandgenediversitywithinandsignificantdifferenti- ations among, populations ofT.ilishawere observed in this study. Significant F values indicated differentiation ST amongtheriver,estuaryandmarinepopulations.TheUPGMAdendrogrambasedongeneticdistanceresultedin twomajorclusters,although,theseweresubsequentlydividedintothree,correspondingtotheriverine,estuarine andmarinepopulations.ThestudyunderlinestheusefulnessofRFLPofmtDNAD-loopregionasmolecularmark- ers, and detected at least two differentiated populations ofT. ilishain Bangladesh waters. Keywords:geneticvariability,PCR-RFLP,mtDNA,Tenualosailisha. Received:April10,2008;Accepted:July24,2008. Introduction estimates. Until 1972, hilsa shad fishery was prosperous upstream in the rivers of Bangladesh, especially in the The hilsa shad, Tenualosa ilisha, belonging to the PadmaandMeghna.Fisheryhasenteredintoaseverede- sub-family Alosinae of the family Clupeidae (Clupeifor- cline upstream and is nowadays mainly concentrated mes, Pisces), occurs in foreshore areas, estuaries, brack- downstream, as well as in estuaries, coastal areas and the ish-water lakes and freshwater rivers of the western divi- sea (Nurul Amin et al., 2004). Due to the low water dis- sion of the Indo-Pacific faunistic region. Its marine chargefromtheupstreamGangesattheFarakkabarrage(in distributionextendsfromIranandIraqinthePersianGulf West Bengal, India) with the consequent heavy siltation, tothewestcoastofIndiaintheArabianSeaandtheBayof theindiscriminateexploitationofjuveniles(Jatka),disrup- Bengal(PillayandRosaJr,1963). tion of migration routes, loss of spawning, feeding and Hilsa shad is the largest single fishable species in nursing grounds, increased fishing pressure, etc., have all Bangladesh,presentinalmostallthemajorriversystems, contributedtothisdecline. estuariesandmarineenvironments(BayofBengal),andat presentcontributingtoapproximately12%ofthetotalfish Thehilsashadislargelyananadromousspecies,but productionand20%offishery-capture(inlandandmarine) two other ecotypes - a fluvial potamodromous type and a withabiomassof78,273metrictonsfrominlandfisheries marine type - have been recognised. The potamodromous and198,850metrictonsfrommarine(DoF,2006).Hilsais stocksappeartoremaininthemiddlereachesoftherivers termedthenationalfishofBangladesh,duetoitspopularity throughout the year and breed therein. The anadromous and economic importance. However, the production of stocks,whosenormalhabitatisthelowerregionoftheestu- hilsa in Bangladesh has waned when compared to earlier ariesandtheforeshoreareas,ascendtheriversduringthe breeding season and return to the original habitat after spawning(Raja,1985).Theupstreammigrationduringthe Send correspondence to Md. Samsul Alam. Department of Fish- eries Biology and Genetics, Bangladesh Agricultural University, main breeding season depends largely on the commence- Mymensingh, Bangladesh. E-mail: [email protected]. mentofthesouth-westmonsoonandconsequentflooding MazumderandAlam 191 ofthemajorriversofBangladesh,BurmaandIndia.How- ies),Sundarbans(estuaries)andCox’sBazar(BayofBen- ever,theexactspawningseasonforthespeciesisstillcon- gal) with the help of artisanal fishers (Figure 1). Immedi- troversial,asspawningvariesfromafewmonthstoallthe ately after landing the fish on board, a piece of dorsal fin year round. However, it is not known whether migratory from each was carefully collected and preserved in 95% populations mix during migration or whether they pass ethanol.Thesampleswerestoredat-20°Cuntilfurtheruse each other spatially and temporally. Therefore, the exact for the extraction of DNA. Total DNA (nuclear + mito- stocksarestillindispute. chondrialDNA)ofeachindividualfishwasextractedfrom Reportsonthestockstructureofthevaluabletropical approximately50mgoffintissuebystandardproteinase-K shadT.ilisha,basedonsamplescollectedfromBangladesh digestion, phenol:chloroform:isoamyl alcohol extraction andIndiaandthroughmorphometric,allozymeandRAPD andthealcoholprecipitationmethodasdescribedbyIslam analyses, are contradictory. Dahle et al.(1997) claimed to and Alam (2004). The quality of the DNA samples was havediscriminatedthreepopulationsofhilsashadinBan- checked by electrophoresis on 1% agarose gel and the gladeshwaters,suchasChandpur(Meghnariver),Barguna quantitydeterminedbyusingaspectrophotometer,priorto (Brackishwater,estuarine)andCox’sBazar(seawater)by PCRamplificationofthemtDNAD-loopregion. usingRAPDmarkers.Onthebasisofasinglepolymorphic Amplification of mitochondrial DNA locus, PGM, Rahman and Naevdal (2000) claimed that thereexistedtwoseparategenepoolsofhilsashadinBan- The2.2kbD-loopregionofthemtDNA,includinga gladeshwaters.MiltonandChenery(2001),onthebasisof partofthecytochromeband12SrRNAgenes,wasampli- otolith chemistry and morphometry, and Salini et al. fiedfromeachofthe90samplesbyusingtheprimer-pairs (2004),onthebasisofallozymeandmorphometricanaly- L-12260(5’(cid:2)3’,CATATTAAACCCGAATGATAT ses,inferred,however,thattherewasasinglestockofhilsa TT) and H-1067 (5’ (cid:2) 3’, ATA ATA GGG TAT CTA in Bangladesh waters, this including the Bay of Bengal. ATCCTAGTTT)(Martinetal.,1992).ThemtDNAfrag- Brahmaneetal.(2006)identifiedtwogroupsofT.ilishain mentwasamplifiedinareactionvolumeof30(cid:3)Lcontain- India,onecomprisingtheGangesandYamunariversand ing 75 ng template DNA, 3 (cid:3)L of 10X buffer (100 mM theothertheHooghlyandNarmadarivers,byusingRAPD Tris-HCl,pH=8.3,15mMMgCl ,500mMKCl),3(cid:3)Lof 2 markers. 2.5mMdNTPs(dATP,dCTP,dGTP,dTTP),1(cid:3)Mofeach Amongthedifferentmarkersavailableforpopulation primerand2unitsofTaqDNApolymerase(GENEIBan- genetic analysis, differences in mitochondrial DNA are probablythemostwidelyused,sincetheyfollowmaternal inheritance,donotundergorearrangementsorrecombina- tionandpresenthighermutationratesthanthoseofnuclear genes(Avise,2004).RFLPanalysisofthemtDNAcontrol regionisasimpletechniqueforrevealinggeneticvariation inthemitochondrialgenomeofanorganism. Inthisstudy,weanalyzedhaplotypeandgenediver- sity in five samples of T. ilisha, using PCR-RFLPs of the mtDNAD-loopregionasgeneticmarkers.Theaimofthe presentstudywastocomparemtDNAgeneticdiversityin T. ilisha samples collected from rivers, estuaries and the sea,andtodelineategeneticdifferentiationamongpopula- tionsofthethreemajoraquaticenvironments.Wealsore- portherewhetherthereareanygeneticdifferencesbetween distant river populations of T. ilisha, as well as between estuarinepopulations.Thepurposeofthepresentstudyisto examinetheusefulnessofmitochondrialD-loopregiondi- versitytosupplementallozymeandRAPDdataonthepop- ulationgeneticstructureofT.ilisha. Materials and Methods Fish samples and extraction of DNA Ninetyhilsa(T.ilisha),withanaveragebodyweight Figure1-MapofBangladeshshowingthefivesites((cid:129))fromwherethe of about 400 g, were collected from five geographic lo- samples of T. ilisha were collected. The three big rivers, the Padma, cales:Balashi(Gaibandha,upstreamoftheJamunaRiver)), JamunaandMeghna,arealsoshown.Thesethreeriversconstitutethema- Chandpur(middleoftheMeghnaRiver),Kuakata(estuar- jorriverinefisheryofT.ilishainBangladesh.R:river. 192 Geneticvariabilityinhilsashad galore, India). An oil-free thermal cycler (Master Cycler the hypothesis of no differentiation between populations, GradientEppendorf,Germany)wasusedforPCRamplifi- weredeterminedbymeansof10000permutationsofhaplo- cationwiththefollowingcycleparameters:initialdenatur- types between populations. Genetic distance values be- ation at 94 °C for 3.0 min, followed by 35 cycles of tweenpopulation-pairswerecalculatedfromtheF values ST denaturationat94°Cfor45s,annealingat45°Cfor45s of the respective population-pair by using the formula: D andextensionat72°Cfor2.0min.Afinalextensionstepat (genetic distance) = -log(1 - F ) (Reynolds et al., 1983). ST 72°Cfor7minfollowedthelastcycle.ThePCRproducts Distance data were used to draw up an unweighted pair- wereconfirmedbyelectrophoresisonagarosegelandsub- groupmethodofaverages(UPGMA)dendrogrambyusing jectedtodigestionwithrestrictionendonucleases. MEGAversion4(Tamuraetal.,2007)software. RFLP analysis Results Four restriction enzymes (XbaI, EcoRI, EcoRV and PCRamplificationoftheD-loopregionresultedina HaeIII) were used for digesting the amplified fragments. productofapproximately2.2kbwithnodetectablesizedif- TenmicrolitresofthePCRproductwereusedforeachdi- ferences between T. ilisha samples. Using this sequence, gestion following manufacturer’s (Promega) recom- fourrestrictionenzymes(XbaI,EcoRI,EcoRVandHaeIII) mended conditions. The restricted PCR products were were selected to obtain RFLP markers. All enzymes pro- electrophoresed on 1.4% agarose gel containing ethidium duced polymorphic banding patterns and restriction sites. bromideandphotographedunderUVlightusingaGeldoc Restriction of the PCR fragment with the four restriction camera (UVP Inc). Two molecular weight markers, (cid:4)- endonucleasesresultedinatotalof35restrictionprofilesin DNA-HindIIIdigestand100bpDNAladderwererunon the samples collected from five locations in Bangladesh. eachgelalongwiththedigestedPCRproducts.Thesizesof Thecleavagepatternsandestimatedlengthsoftherestric- mtDNArestrictionfragmentsweremeasuredbyusingthe tionfragmentsfordifferentrestrictionenzymesareshown software,DNAfrag(Nash,1991). in Table 1. The cleavage patterns produced due to varia- tionsinrestrictionsiteswerethreeforXbaIandEcoRI,five Genetic data analysis and dendrogram construction forEcoRVandsevenforHaeIII.Insomecases,however, Restriction patterns generated from each restriction thesumofthefragmentsizesdidnotexactlyequalthetotal endonucleaseweregivenletterdesignationsintheorderof size of the amplified region, probably due to small frag- theirfrequencies.HaplotypeAreferstothemostcommon mentsbeinglostorbandsofsimilarsizeco-migrating.The digestion pattern in the analyzed samples. The remaining 35differenthaplotypes(compositegenotypes)detectedin alphabeticalprofilenames(B,C,etc.)indicatevariantdi- 90individualsofthefivepopulations,alongwiththeirnu- gestionpatternsreflectingtheirfrequenciesinorder.Com- mericalfrequencies,arepresentedinTable2. posite haplotypes were constructed from all the enzymes Outofthe35haplotypes,onlytwo,VIandXI,were usedandarrangedfromtheenzymegeneratingthefewest distributedrandomlyamongthefivepopulations,theoth- polymorphic patterns to that generating the most (XbaI, ers being either specific for a particular population or EcoRI, EcoRV and HaeIII in this order). The presence or sharedbytwoorthree(mostlytwo)populations(Table2). absence of restriction sites in the control region was in- HaplotypesII,III,IV,V,VII,IXandXwerespecifictothe ferredforeachofthefourenzymesfromaseriesofrestric- Balashi population, XII and XIII to the Chandpur, XVII, tionfragmentpatterns.Thesitecodesacrosstheamplified XVIII, XIX, XXI, XXIII, XXIV, XXV and XXVI to the regionforarestrictionenzymewereconcatenatedandeach Cox’s Bazar, XXVII, XXVIII, and XXIX to the Sundar- fish was assigned a code of four letters that described its bansandXXXVtotheKuakata.HaplotypeIwassharedby composite,multi-enzymehaplotype. the Balashi, Chandpur and Sundarbans populations, VIII Asingledatamatrixcomprisingthecompositehaplo- by the Balashi and Chandpur, XVI by the Chandpur and typesandtheirfrequenciesinthefivepopulationswascon- Sundarbans and XX by the Cox’s Bazar and Kuakata. structed.Haplotypeandgenediversity,bothcalculatedas Haplotype I was dominant in the Balashi and Chandpur per Nei (1987), and a hierarchical analysis of population population, haplotype VI in the Chandpur, haplotypes subdivisionperformedusingtheanalysisofmolecularvari- XVIIandXXintheCox’sBazarandXXVIIIintheSun- ancewith1000simulatedsamples(AMOVA,Excoffieret darbans.Noneofthehaplotypeswerefoundtobedominant al.1992),wereimplementedinARLEQUINv.3.1(Excof- intheKuakatapopulation. fieretal.,2005).BoththeTajima(1989)D-testandtheFu Polymorphichaplotypeswereobservedinallthefive (1997)Fs-testwereappliedtotestdeviationsfromneutral populations.Theratesofhaplotypes(numberofhaplotypes molecular evolution. Significance was assessed in both observed divided by the sample size) ranged from 0.500 casesbygeneratingrandomsamples(numberofsimulated (Chandpur)to0.722(Sundarbans)(Table3).Haplotypedi- samples:1000)underthehypothesisofselectiveneutrality versity was high in all the five populations, ranging from and population equilibrium, as implemented in 0.882(Chandpur)to0.960(Sundarbans).Theaveragegene ARLEQUIN. Significance levels of pair-wise F , under diversityacrossthelociwashighestintheSundarbanspop- ST MazumderandAlam 193 Table1-Restrictionpatternsfordifferenthaplotypesinthe2.2kbmtDNAD-loopfragmentfromninetyT.ilishacollectedfromfivelocationsinBangla- desh(valuesshowrestrictionfragmentinbp). Haplotypes Restrictionenzyme Recognitionsequence A B C D E F G XbaI T/CTAGA 1608 1241 2168 568 930 EcoRI G/AATTC 1439 1566 1529 566 566 566 95 EcoRV GAT/ATC 1432 1296 1296 1375 1432 707 707 675 707 675 HaeIII GG/CC 680 680 680 680 1210 680 849 660 660 660 660 580 660 680 440 541 409 580 200 409 660 425 200 390 200 200 ulation (0.569) and lowest in the Kuakata (0.343). The desh waters, including freshwater, estuarine and marine overall Fixation Index (F ) across the populations was environments,byPCRmtDNARFLPanalysis. ST 0.092andthepopulationspecificF indicesrangedfrom Thedetectionof35differenthaplotypesinonly90in- ST 0.085 (Sundarbans) to 0.105 (Chandpur). Tajima’s D test dividualsoffiveT.ilishasamplesunderlinestheusefulness (Tajima,1989)andFu’sFtest(Fu,1997)werenotsignifi- ofRFLPsoftheD-loopregionasmolecularmarkersforin- cant(p>0.05)inallthepopulations. vestigatingthegeographicstructureofthespecies.Highdi- Variance components and F-statistics analogs (Phi- versityindiceswereobtainedwithineachsample(Table3). st) were calculated with AMOVA. No significant differ- TheaveragehaplotypicdiversityinT.ilishaobservedinthe encesamongsampleswerefound.Hierarchicalanalysesin- present study, fell within the upper part of the range dicated that 90.78% variation was contained within local (0.473-0.998)forsomeotherfishesasreportedbyAviseet populationswhile9.22%wasdistributedamongthepopu- al.(1989),andreachedashighasthat(0.892)obtainedinred lations. However, significant differentiation (F ) values seabream collected from four locations of western Japan ST werefoundamongthefivepopulationsofT.ilisha.TheF through PCR-RFLP analysis of the mtDNA D-loop region ST value between the Chandpur and Sundarbans populations byTabataandMizuta(1997).However,sincetheestimation wasthehighestandthatbetweentheChandpurandBalashi of haplotype diversity is based on haplotype frequencies thelowest.TheF valuesbetweentheBalashi-Chandpur, alone,itisdependentonthenumberofrestrictionenzymes ST Cox’s Bazar-Kuakata, and Sundarbans-Kuakata popula- used (Graves and McDowell, 1994). These results suggest tion pairs were insignificant, while these values between thatgeneticvariabilityinT.ilishaisquitehigh.Highlevels theremainingsevenwerefoundtobesignificant(Table4). ofgeneticdiversityappeartobecommonlyobservedinmi- Geneticdistancevaluescalculatedfromthecorresponding gratory fishes with large panmictic populations (Santos et F valuesbetweenthepopulation-pairsareshowninTable al.,2007).Thisisbecauselargeeffectivepopulationsizeand ST 4.Thehighestgeneticdistancewasobservedbetweenthe highmigrationratesminimizetheeffectofgeneticdriftasa Chandpur and Sundarbans population, while the lowest forcethatlowersintra-populationgeneticvariability.How- was observed between the Chandpur and Balashi popula- ever,thepresenceofprivateallelesindicatesthatthesepopu- tion. The UPGMA dendrogram based on genetic distance lations are not completely panmictic. The non-significant resulted in two clusters. The first cluster contained four values(p>0.05)obtainedfromTajima’sDandFu’sFssta- populationsandthesecondcontainedonlytheCox’sBazar tisticaltestsindicatethatthesampledpopulationsofT.ilisha population.Thefirstclusterwassubsequentlydividedinto are in genetic equilibrium, which means that apparently two sub-groups. The two river populations, Balashi and there is no pressure of selection on the population with re- Chandpur,formedonegroupandthetwoestuarinepopula- gardtomitochondrialDNAhaplotypes. tions,KuakataandSundarbans,thesecond(Figure2). The test for population differentiation gave signifi- cant p-values (p < 0.05), indicating that composite haplo- types were not distributed randomly with respect to Discussion locality. F-statistics (Weir and Cockerham, 1984) yielded MitochondrialDNA-RFLPhasbeenprovedtobean an overall F value of 0.092 which indicates that genetic ST effective technique for population discrimination. The exchange occurring among the populations was not suffi- present study was an attempt to reveal genetic variability cienttopreventeithergeneticdifferentiationorstructuring and stock discrimination of hilsa populations in Bangla- intogeneticallydifferentiatedsubpopulationsinT.ilishain 194 Geneticvariabilityinhilsashad Table2-Geographicdistributionof35compositemtDNAD-loopregionhaplotypesamongfiveconspecificpopulationsofT.ilishabasedonfourre- strictionenzymes(XbaI,EcoRI,EcoRV,andHaeIII)(relativefrequenciesareinparentheses). Compositehaplotypes GeographicdistributionofmtDNAcompositehaplotypes Balashi Chandpur Cox’sBazar Sundarbans Kuakata I AAAA 3(0.167) 4(0.222) 0 1(0.056) 0 II AAAB 1(0.055) 0 0 0 0 III ABAC 1(0.055) 0 0 0 0 IV AAAC 2(0.111) 0 0 0 0 V ABCC 2(0.111) 0 0 0 0 VI AABB 2(0.111) 5(0.278) 1(0.055) 1(0.055) 2(0.111) VII ABBB 1(0.055) 0 0 0 0 VIII AAAE 1(0.055) 1(0.055) 0 0 0 IX AACA 1(0.055) 0 0 0 0 X AABB 2(0.111) 0 0 0 0 XI AADA 2(0.111) 1(0.055) 1(0.055) 1(0.055) 1(.055) XII ABAD 0 1(0.055) 0 0 0 XIII ACAA 0 1(0.055) 0 0 0 XIV AABC 0 2(0.111) 0 0 2(0.111) XV AADB 0 1(0.055) 0 0 1(0.055) XVI AABE 0 2(0.111) 0 1(0.055) 0 XVII AACB 0 0 3(0.167) 0 0 XVIII AACF 0 0 2(0.111) 0 0 XIX AACC 0 0 1(0.055) 0 0 XX CBBA 0 0 4(0.222) 0 2(0.111) XXI BADA 0 0 1(0.055) 0 0 XXII ABCD 0 0 1(0.055) 1(0.055) 0 XXIII CACA 0 0 1(0.055) 0 0 XXIV BACA 0 0 1(0.055) 0 0 XXV AABG 0 0 1(0.055) 0 0 XXVI AADC 0 0 1(0.055) 0 0 XXVII BACB 0 0 0 2(0.111) 0 XXVIII BADE 0 0 0 3(0.167) 0 XXIX BABA 0 0 0 2(0.111) 0 XXX BABB 0 0 0 2(0.111) 1(0.055 XXXI ABAE 0 0 0 1(0.055) 2(0.111) XXXII AADG 0 0 0 1(0.055) 2(0.111) XXXIII BAAE 0 0 0 1(0.055) 2(0.111) XXXIV BADC 0 0 0 1(0.055) 2(0.111) XXXV ABDB 0 0 0 0 1(0.055) Table3-Geneticvariabilitywithinthefivedifferentpopulationsofhilsashad(T.ilisha). Populations Balashi Chandpur Cox’sBazar Sundarbans Kuakata Samplesize 18 18 18 18 18 N.ofhaplotypes 11 9 12 13 11 N.ofpolymorphicsites 20 20 23 24 19 Rateofhaplotype 0.611 0.500 0.667 0.722 0.611 Haplotypediversity 0.948(cid:5)0.05 0.882(cid:5)0.05 0.967(cid:5)0.03 0.960(cid:5)0.03 0.954(cid:5)0.02 Expectedheterozygosity(genediversity) 0.451(cid:5)0.29 0.363(cid:5)0.26 0.531(cid:5)0.16 0.569(cid:5)0.24 0.343(cid:5)0.09 PopulationspecificF indices 0.099 0.105 0.092 0.085 0.079 ST Tajima’sDtest 0.751 0.150 1.280 0.082 0.565 Fu’sFstest -1.057 0.178 -3-26 -1.899 2.814 MazumderandAlam 195 Table4-EstimatesofpairwiseF (Populationdifferentiation)values(belowdiagonal)andgeneticdistance(abovediagonal)amongfiveT.ilishapopu- ST lationsinBangladesh.TheF valueswerecalculatedwith110permutations. ST Ba Ch CB Su Ku Ba 0.00000 0.00243 0.04816 0.07628 0.01959 Ch 0.00563NS 0.00000 0.07252 0.07847 0.03334 CB 0.10497*** 0.15380*** 0.00000 0.05637 0.03402 Su 0.16109*** 0.16531*** 0.12173*** 0.00000 0.00145 Ku 0.044120* 0.07391* 0.07536NS 0.00334NS 0.00000 Note:Ba:Balashi,Ch:Chandpur,CB:Cox’sBazar,Su:Sundarbans,Ku:Kuakata,NS:Notsignificant;*:p<0.05;***:p<0.000. flectedbythelowernumberofprivatehaplotypesinthese populations. Higher numbers of private haplotypes have beenobtainedinthetwomostdistantpopulations,Balashi andtheCox’sBazar(Table2),whichindicatesthatthelow numberofsamplesisnotthemaincauseofthehighnumber of private haplotypes in these populations. Therefore, we wouldliketoopinethatcertaindifferencesexistamongthe river populations, perhaps due to preferential movements Figure2-UPGMAdendrogramsummarisingthegeneticdistancebe- of a fraction of the migratory groups, although the differ- tweenpairsfromthefivedifferentpopulationsofT.ilisha. ence is not high enough to distinguish the populations as separatestocks(sub-populations). Bangladesh.GeographicdifferentiationofthehilsashadT. We observed significant differentiation between the ilisha has also been reported previously. Brahmane et al. riverineandmarine(Cox’sBazar)populations,butnotbe- (2006)identifiedtwogroupsofhilsainIndia,onecompris- tweenthemarineandoneoftheestuarine.Thereisnoevi- ing the Ganges and Yamuna rivers and the other the Ho- dence of spawning in the sea, but there is evidence of T. oghlyandNarmadarivers.Dahleetal.(1997)reportedthe ilisha estuarine spawning in Bangladesh (BOBP, 1987). existence of three stocks of hilsa shad in Bangladesh wa- Thus,fishesfromtheCox’sBazarregionmustmigrateto ters, namely the Chandpur (Meghna river), Barguna anyoftheriversoratleastuptotheestuaries.Ourresults (Brackishwater,nearKuakata))andCox’sBazar(saltwa- suggestthatfishesfromtheCox’sBazarregionmaygoup ter),whenusingRAPDmarkers.Ourresultssuggestthere totheKuakataregion,butnottotheMeghnaandJamuna are at least two, one marine, and the other riverine- rivers, as significant differentiations between the Cox’s estuarine,orpossiblythree(riverine,estuarineandmarine), Bazar and the two river populations have been observed, stocksofhilsainBangladesh.Thesecondpossibilitycom- butnotbetweentheCox’sBazarandKuakata(Table4). plieswiththehypothesisofthreegroupsofhilsashad,ana- Thefivesamplesweregroupedintotwoclustersonthe dromous, potamodromous and marine, as reported by basisofgeneticdistanceamongpopulation-pairs.Neverthe- PillayandRosaJr(1963).Now,thequestioniswhetherthe less,thetwoclusterswerefinallydividedintothreegroups T.ilishafeedingintheChandpurareamigratefurtherup- correspondingtothethreedifferentenvironments,riverine, streamtospawninthePadmaandtheJamunariversornot. estuarineandmarine(sea).Theslightdistancebetweenthe NosignificantdifferenceinF valuebetweenthesamples BalashiandChandpurpopulationindicatestheirbelonging ST from Balashi (the Jamuna) and Chandpur (the Meghna) tothesamestock.However,thesharingoftwohaplotypes suggestasinglepanmicticriverinepopulationofT.ilishain byallthepopulationshasledustopostulatethepresenceofa Bangladesh.However,thisconclusionmaybecontradicted certaindegreeofgeneflowamongthosestudied. through the presence of some private haplotypes in the Hilsa shad (T. ilisha) is the national fish of Bangla- Balashi and Chandpur populations. These results also run desh. The delicious taste and contribution of this fish has counter to those of Shifat et al. (2003), who reported that leadtoitspositionasoneofthemosteconomicallyimpor- thetworiverpopulationsofT.ilisha,theMeghnaandthe tantfishinthiscountry.Furthermore,hilsafisheryconsti- Padmaweredifferentstocks,thoughtheyobservedcertain tutes the largest single species fishery in the riverine, allelessharedbysomeindividualsofthesetworiversam- estuarineandmarineecosystemsofthecountry.Itisessen- ples. The presence of private haplotypes indicates the ex- tialtorecognizethatgeographicallyandgeneticallydiffer- tentofmixingbetweenpopulations.Duetotheirlocations ent populations as different stocks should be managed (Figure 1) and the mode of migration of the species, the separately (Carvalho and Hauser, 1994). Our studies on possibility of mixing in the Chandpur (the mid Meghna mtDNA PCR-RFLP in T. ilisha indicate that population river), Kuakata and Sundarbans populations is higher, re- sub-divisiondoesindeedexistinthisspecies.Onthebasis 196 Geneticvariabilityinhilsashad oftheAMOVA,wecanconcludethattherearethreestocks IslamMSandAlamMS(2004)Randomlyamplifiedpolymorphic ofhilsawithasubstantiallevelofinter-populationgenetic DNAanalysisoffourdifferentpopulationsoftheIndianma- divergenceamongriver,estuarineandmarinepopulations. jorcarpLabeorohita(Hamilton).JApplIchthyol20:407- 412. The high level of haplotype variability found in only five MartinAP,HumphreysRandPalumbiSR(1992)Populationge- populations underlines the usefulness of RFLPs of the netic structure of the armorhead, Pseudopentaceros D-loopregionasmolecularmarkerstoinvestigatethegeo- wheeler, in the North Pacific Ocean: Application of the graphicstructureofT.ilisha.Weanalyzedonly18individ- polymerasechainreactiontofisheriesproblems.CanJFish ualsfromeachpopulation,andtheelectrophoreticanalysis AquatSci49:2386-2391. ofrestrictionfragmentsisalsonotsoperfectassequencing MiltonDAandChenerySR(2001)Canotolithchemistrydetect thePCRproduct.Therefore,toreachamoredefinitecon- thepopulationstructureoftheshadhilsaTenualosailisha? clusion, larger samples from throughout the distribution Comparisonwiththeresultsofgeneticandmorphological range of the species in the country should be analyzed by studies.MarEcolProgSer222:239-251. NurulAminSM,RahmanMA,HaldarGC,MazidMA,Milton sequencing the mtDNA D-loop region and/or with faster DAandBlabberSJM(2004)Stockassessmentandmanage- evolvingmolecularmarkers,suchasmicro-satelliteloci. ment of Tenulosa ilisha in Bangladesh. Asian Fish Sci 17:50-59. Acknowledgments NashJHE(1991)DNAfrag,v.3.03.InstituteforBiologicalSci- ences,Ottawa. TheresearchwascarriedoutunderaSpecialAlloca- NeiM(1987)MolecularEvolutionaryGenetics.UniversityPress, tionforScienceandInformation&CommunicationTech- NewYork,pp176-207. nologyproject(2005-2006)oftheMinistryofScienceand Pillay SR and Rosa Jr H (1963) Synopsis of biological data on Information & Communication Technology, Government hilsa,Hilsailisha(Hamilton1882).FAOFishBiolSynops ofthePeople’sRepublicofBangladesh. n.25,Rome,63pp. RahmanMandNaevdalG(2000)Populationgeneticstudiesof References hilsashad,Tenualosailisha(Hamilton),inBangladeshwa- ters:Evidencefortheexistenceofseparategenepools.Fish AviseJC,BowenBWandLambT(1989)DNAfingerprintsfrom ManagEcol7:401-411. hypervariable mitochondrial genotypes. Mol Biol Evol RajaBTA(1985)AreviewofthebiologyandfisheriesofHilsa 6:258-269. ilishaintheupperBayofBengal.FoodandAgricultureOr- AviseJC(2004)MolecularMarkers,NaturalHistoryandEvolu- ganizationoftheUnitedNations,Rome,70pp. tion.2ndedition.ChapmanandHall,London,511pp. ReynoldsJ,WeirBSandCockerhamCC(1983)Estimationfor BOBP(1987)HilsainvestigationinBangladesh.BayofBengal the co-ancestry coefficient: Basis for a short term genetic Programme(BOBP).UNDP,Colombo,113pp. distance.Genetics105:767-779. BrahmaneMP,DasMK,SinhaMR,SugunanVV,MukherjeeA, Salini JP, Miltona DA, Rahman MJ and Hussain MG (2004) SinghSN,PrakashS,MauryePandHajraA(2006)Useof Allozymeandmorphologicalvariationthroughoutthegeo- RAPD fingerprinting for delineating populations of hilsa graphic range of the tropical shad, hilsa Tenualosa ilisha. shad Tenualosa ilisha (Hamilton, 1822). Genet Mol Res FishRes66:53-69. 5:643-652. SantosMCF,RuffinoMLandFariasJP(2007)Highlevelsofge- netic variability and panmixia of the tambaqui Colossoma Carvalho GR and Hauser L (1994) Molecular genetics and the macropomum(Cuvier,1816)inthemainchanneloftheAm- stockconceptinfisheries.RevFishBiolFish4:326-350. azonRiver.JFishBiol71(Suppl.):33-44. DahleG,RahmanMandEriksonAG(1997)RAPDfingerprint- ShifatR,BegumAandKhanH(2003)UseofRAPDfingerprint- ing used for discriminating among three populations of ing for discriminating two populations of Hilsa shad Hilsashad(Tenualosailisha).FishRes32:263-269. (TenualosailishaHam.)frominlandriversofBangladesh.J DoF(2006)FisheryStatisticalYearBookofBangladesh2005- BiochemMolBiol36:462-467. 2006.23rdedition.DepartmentofFisheries,Governmentof Tabata K and Mizuta A (1997) RFLP analysis of the mtDNA thePeople’sRepublicofBangladesh,87pp. D-loop region in red seabream Pagrus major populations ExcoffierL,SmousePEandQuattroJM(1992)Analysisofmo- fromlocationsofwesternJapan.FishSci63:211-217. lecularvarianceinferredfrommetricdistancesamongDNA TajimaF(1989)Statisticalmethodfortestingtheneutralmutation haplotypes: Application to human mitochondrial DNA re- hypothesisbyDNApolymorphism.Genetics123:585-595. strictiondata.Genetics131:479-491. TamuraK,DudleyJ,NeiMandKumarS(2007)MEGA4:Molec- ExcoffierL,LavalGandSchneiderS(2005)ARLEQUINv.3.0: ular Evolutionary Genetics Analysis (MEGA) software v. Anintegratedsoftwarepackageforpopulationgeneticsdata 4.0.MolBiolEvol24:1596-1599. analysis.EvolBioinformOnline1:47-50. WeirBSandCockerhamCC(1984)EstimatingF-statisticsforthe FuYX(1997)Statisticaltestsofneutralityofmutationsagainst analysisofpopulationstructure.Evolution38:1358-1370. population growth, hitchhiking and background selection. Genetics147:915-925. AssociateEditor:FábiodeMeloSene GravesJEandMcDowellJR(1994)Geneticanalysisofstriped marlin(Tetrapturusaudax)populationstructureinthePa- Licenseinformation:Thisisanopen-accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,and cificOcean.CanJFishAquatSci51:1762-1768. reproduction in any medium, provided the original work is properly cited.