ebook img

High frequency seismic and underwater acoustic wave propagation and imaging techniques PDF

138 Pages·2008·17.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview High frequency seismic and underwater acoustic wave propagation and imaging techniques

Alma Mater Studiorum Universita` di Bologna Dottorato di ricerca in Geofisica - XX Ciclo Tesi di Dottorato Settore scientifico-disciplinare FIS/06 High frequency seismic and underwater acoustic wave propagation and imaging techniques Dottorando: Tutor: Dr. Tony Alfredo Stabile Prof. Aldo Zollo Coordinatore: Prof. Michele Dragoni Esame finale anno 2008 2 i To my wife and my son, my everlasting love. ii Contents Introduction ix 1 Wave propagation theory 1 1.1 Elastodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Synthetic Seismogram Methods . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Ray-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Mathematical derivation . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Ray theory general validity conditions . . . . . . . . . . . . . . . . 13 1.4 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Method for rapid high-frequency seismogram calculation: the COMRAD code 19 2.1 Aim of a multiphase dynamic ray-tracing code . . . . . . . . . . . . . . . . 19 2.2 Method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Structure of the COMRAD code . . . . . . . . . . . . . . . . . . . . 27 2.3 Validation of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Applications of the COMRAD code in seismology 37 3.1 Forward modelling of active seismic data: the case study of Campi Flegrei caldera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 A brief description of Serapis active seismic survey . . . . . . . . . 39 3.1.2 Comparisons between synthetic sections and real sections . . . . . . 39 3.1.3 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Forward modelling of seismic sources . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 Faulting sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Synthetic seismograms for a vertical strike-slip point source . . . . . 47 3.2.3 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . 50 4 High frequency underwater acoustic propagation in the Gulf of Naples 51 4.1 Physical properties of the Gulf of Naples . . . . . . . . . . . . . . . . . . . 52 iv CONTENTS 4.1.1 Analysis of the weather conditions . . . . . . . . . . . . . . . . . . . 53 4.1.2 One-dimensional velocity and geoacoustic model of the Gulf of Naples 57 4.1.3 Noise sources up to a frequency of 100 kHz . . . . . . . . . . . . . . 64 4.2 Simulations of acoustic signal propagation at 100 kHz . . . . . . . . . . . . 65 4.2.1 Methodology used for the simulation of the signal propagation . . . 65 4.2.2 How to calculate the signal-to-noise ratio (SNR) . . . . . . . . . . . 66 4.3 Calculation of the SNR in the Gulf of Naples at 100 kHz . . . . . . . . . . 67 4.4 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Very high frequency Submarine Acoustic Imaging 75 5.1 The STSS-500 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Development of an Acoustic Imaging Numerical Simulator . . . . . . . . . 77 5.2.1 Forward modelling: Rayleigh scattering . . . . . . . . . . . . . . . . 78 5.2.2 Imaging: Beamforming techniques . . . . . . . . . . . . . . . . . . . 81 5.3 Three-dimensional imaging of submerged objects . . . . . . . . . . . . . . . 83 5.4 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Conclusions 91 Acknowledgements 93 A The COMRAD Code 95 A.1 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.1.1 What the program does . . . . . . . . . . . . . . . . . . . . . . . . 96 A.1.2 Program Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.2 The source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 B Fundamentals of underwater acoustics 113 B.1 The sonar equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 B.2 Sound attenuation in seawater up to a frequency of 1 MHz . . . . . . . . . 115 B.3 Calculation of the transmission reliability . . . . . . . . . . . . . . . . . . . 117 List of Figures 1.1 An example of seismogram recorder by a three component station. . . . . . 5 1.2 Subcritical, critical, and postcritical angles of incidence. . . . . . . . . . . . 14 2.1 Tree structure of ray strings stopped to the fourth generation. . . . . . . . 22 2.2 Tree structure of ray strings stopped to the fourth generation as in Figure 2.1, but using all of the (a) to (g) constraints . . . . . . . . . . . . . . . . . 23 2.3 Integral of scattering coefficients for an incident P-wave. . . . . . . . . . . 26 2.4 Integral of scattering coefficients for an incident S-wave. . . . . . . . . . . . 26 2.5 Block scheme of the Comrad.f computer code. . . . . . . . . . . . . . . . . 27 2.6 TFEM(t,f) and TFPM(t,f) plots for a receiver at 1 km distance from the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7 As in Figure 2.6 but referring to the receiver at 30 km distance from the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 An image of the Campi Flegrei caldera. . . . . . . . . . . . . . . . . . . . . 38 3.2 Comparison between a real section and a synthetic section for a 1-D Campi Flegrei model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Three different real sections in which the multiple reflection of Figure 3.2 is clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Comparison between the observed and synthetic sections for the average 1-D model of Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 AVO analysis (PS-to-PP ratio) to the second interface of the velocity model. 44 3.6 Extended source and point source conditions in far-field approximation. . . 45 3.7 Standard definition of fault-plane and slip vector orientation parameters. . 46 3.8 Synthetic seismograms for R and R receivers. . . . . . . . . . . . . . . . 48 2 4 3.9 Focal mechanism obtained from FPFIT program. . . . . . . . . . . . . . . 49 4.1 Bathymetric and topographic image of the Gulf of Naples. . . . . . . . . . 53 4.2 Mean air temperature and wind speed in the Gulf of Naples during one year. 54 4.3 Monthly frequency of the Wind direction in the Gulf of Naples. . . . . . . 56 4.4 Salinity profiles in the Gulf of Naples from the sea surface to the bottom. . 58 4.5 Temperature profiles in the Gulf of Naples from the sea surface to the bottom. 59 4.6 Velocity profiles in the Gulf of Naples calculated from the salinity and tem- perature data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 vi LIST OF FIGURES 4.7 Mean velocity profiles for the summer and winter seasons. . . . . . . . . . 62 4.8 The signal-to-noise ratio for the summer and winter months in the Gulf of Naples with the transmitter positioned at a depth of 1 m. . . . . . . . . . . 69 4.9 The signal-to-noise ratio for the summer and winter months in the Gulf of Naples with the transmitter positioned at a depth of 190 m. . . . . . . . . 70 4.10 The signal-to-noise ratio for the summer and winter months in the Gulf of Naples with the transmitter positioned at a depth of 299 m. . . . . . . . . 71 4.11 Monitoring system prototype developed during SisMa Project. . . . . . . . 73 5.1 Sound attenuation in seawater against range and frequency. . . . . . . . . . 80 5.2 Scheme of the beamforming technique used for the imaging process. . . . . 82 5.3 Source-receiver geometry used for the first example. . . . . . . . . . . . . . 84 5.4 Synthetic data and images obtained for the first example. . . . . . . . . . . 85 5.5 Two different configuration used for the acquisition system. . . . . . . . . . 86 5.6 Images of the target obtained using the configurations of Figure 5.5. . . . . 87 5.7 Real shape of the object and its image obtained by the imaging process. . . 88 List of Tables 2.1 Different velocity models to study the effect of the boundary between a half-space that contains the incident wave and a half-space that contains the transmitted wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Weights assigned for each region, defined by z parameter, and for each type of phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 The crustal velocity model used for the simulations. . . . . . . . . . . . . . 30 2.4 Computing time of COMRAD and core codes . . . . . . . . . . . . . . . . 30 2.5 Computing time of COMRAD code with constraints . . . . . . . . . . . . . 31 3.1 Average 1-D model for Campi Flegrei as derived by Maercklin and Zollo (2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Model used to compute synthetic seismograms for a vertical strike-slip point source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1 Mean annual temperature in the Gulf of Naples from 1997 to 2006. . . . . 54 4.2 Monthly total rain fallen in the Gulf of Naples (mean value from 1997 to 2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Values of the physical parameters of the propagation medium for the Gulf of Naples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Sound velocities of the summer and winter models for increasing depths. . 63 5.1 Physical properties of the cubic block and the background medium used for the second example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 B.1 The sonar parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 viii LIST OF TABLES

Description:
4 High frequency underwater acoustic propagation in the Gulf of Naples 51 5.2 Development of an Acoustic Imaging Numerical Simulator . 77 3.9 Focal mechanism obtained from FPFIT program The problem related to the transmission of data in seawater can be solved by the use.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.