Alma Mater Studiorum Universita` di Bologna Dottorato di ricerca in Geofisica - XX Ciclo Tesi di Dottorato Settore scientifico-disciplinare FIS/06 High frequency seismic and underwater acoustic wave propagation and imaging techniques Dottorando: Tutor: Dr. Tony Alfredo Stabile Prof. Aldo Zollo Coordinatore: Prof. Michele Dragoni Esame finale anno 2008 2 i To my wife and my son, my everlasting love. ii Contents Introduction ix 1 Wave propagation theory 1 1.1 Elastodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Synthetic Seismogram Methods . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Ray-Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Mathematical derivation . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Ray theory general validity conditions . . . . . . . . . . . . . . . . 13 1.4 Rayleigh Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Method for rapid high-frequency seismogram calculation: the COMRAD code 19 2.1 Aim of a multiphase dynamic ray-tracing code . . . . . . . . . . . . . . . . 19 2.2 Method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 General concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.2 Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Structure of the COMRAD code . . . . . . . . . . . . . . . . . . . . 27 2.3 Validation of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Applications of the COMRAD code in seismology 37 3.1 Forward modelling of active seismic data: the case study of Campi Flegrei caldera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 A brief description of Serapis active seismic survey . . . . . . . . . 39 3.1.2 Comparisons between synthetic sections and real sections . . . . . . 39 3.1.3 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Forward modelling of seismic sources . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 Faulting sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 Synthetic seismograms for a vertical strike-slip point source . . . . . 47 3.2.3 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . 50 4 High frequency underwater acoustic propagation in the Gulf of Naples 51 4.1 Physical properties of the Gulf of Naples . . . . . . . . . . . . . . . . . . . 52 iv CONTENTS 4.1.1 Analysis of the weather conditions . . . . . . . . . . . . . . . . . . . 53 4.1.2 One-dimensional velocity and geoacoustic model of the Gulf of Naples 57 4.1.3 Noise sources up to a frequency of 100 kHz . . . . . . . . . . . . . . 64 4.2 Simulations of acoustic signal propagation at 100 kHz . . . . . . . . . . . . 65 4.2.1 Methodology used for the simulation of the signal propagation . . . 65 4.2.2 How to calculate the signal-to-noise ratio (SNR) . . . . . . . . . . . 66 4.3 Calculation of the SNR in the Gulf of Naples at 100 kHz . . . . . . . . . . 67 4.4 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Very high frequency Submarine Acoustic Imaging 75 5.1 The STSS-500 Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 Development of an Acoustic Imaging Numerical Simulator . . . . . . . . . 77 5.2.1 Forward modelling: Rayleigh scattering . . . . . . . . . . . . . . . . 78 5.2.2 Imaging: Beamforming techniques . . . . . . . . . . . . . . . . . . . 81 5.3 Three-dimensional imaging of submerged objects . . . . . . . . . . . . . . . 83 5.4 Conclusions and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Conclusions 91 Acknowledgements 93 A The COMRAD Code 95 A.1 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 A.1.1 What the program does . . . . . . . . . . . . . . . . . . . . . . . . 96 A.1.2 Program Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 A.2 The source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 B Fundamentals of underwater acoustics 113 B.1 The sonar equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 B.2 Sound attenuation in seawater up to a frequency of 1 MHz . . . . . . . . . 115 B.3 Calculation of the transmission reliability . . . . . . . . . . . . . . . . . . . 117 List of Figures 1.1 An example of seismogram recorder by a three component station. . . . . . 5 1.2 Subcritical, critical, and postcritical angles of incidence. . . . . . . . . . . . 14 2.1 Tree structure of ray strings stopped to the fourth generation. . . . . . . . 22 2.2 Tree structure of ray strings stopped to the fourth generation as in Figure 2.1, but using all of the (a) to (g) constraints . . . . . . . . . . . . . . . . . 23 2.3 Integral of scattering coefficients for an incident P-wave. . . . . . . . . . . 26 2.4 Integral of scattering coefficients for an incident S-wave. . . . . . . . . . . . 26 2.5 Block scheme of the Comrad.f computer code. . . . . . . . . . . . . . . . . 27 2.6 TFEM(t,f) and TFPM(t,f) plots for a receiver at 1 km distance from the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.7 As in Figure 2.6 but referring to the receiver at 30 km distance from the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1 An image of the Campi Flegrei caldera. . . . . . . . . . . . . . . . . . . . . 38 3.2 Comparison between a real section and a synthetic section for a 1-D Campi Flegrei model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Three different real sections in which the multiple reflection of Figure 3.2 is clear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4 Comparison between the observed and synthetic sections for the average 1-D model of Table 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.5 AVO analysis (PS-to-PP ratio) to the second interface of the velocity model. 44 3.6 Extended source and point source conditions in far-field approximation. . . 45 3.7 Standard definition of fault-plane and slip vector orientation parameters. . 46 3.8 Synthetic seismograms for R and R receivers. . . . . . . . . . . . . . . . 48 2 4 3.9 Focal mechanism obtained from FPFIT program. . . . . . . . . . . . . . . 49 4.1 Bathymetric and topographic image of the Gulf of Naples. . . . . . . . . . 53 4.2 Mean air temperature and wind speed in the Gulf of Naples during one year. 54 4.3 Monthly frequency of the Wind direction in the Gulf of Naples. . . . . . . 56 4.4 Salinity profiles in the Gulf of Naples from the sea surface to the bottom. . 58 4.5 Temperature profiles in the Gulf of Naples from the sea surface to the bottom. 59 4.6 Velocity profiles in the Gulf of Naples calculated from the salinity and tem- perature data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 vi LIST OF FIGURES 4.7 Mean velocity profiles for the summer and winter seasons. . . . . . . . . . 62 4.8 The signal-to-noise ratio for the summer and winter months in the Gulf of Naples with the transmitter positioned at a depth of 1 m. . . . . . . . . . . 69 4.9 The signal-to-noise ratio for the summer and winter months in the Gulf of Naples with the transmitter positioned at a depth of 190 m. . . . . . . . . 70 4.10 The signal-to-noise ratio for the summer and winter months in the Gulf of Naples with the transmitter positioned at a depth of 299 m. . . . . . . . . 71 4.11 Monitoring system prototype developed during SisMa Project. . . . . . . . 73 5.1 Sound attenuation in seawater against range and frequency. . . . . . . . . . 80 5.2 Scheme of the beamforming technique used for the imaging process. . . . . 82 5.3 Source-receiver geometry used for the first example. . . . . . . . . . . . . . 84 5.4 Synthetic data and images obtained for the first example. . . . . . . . . . . 85 5.5 Two different configuration used for the acquisition system. . . . . . . . . . 86 5.6 Images of the target obtained using the configurations of Figure 5.5. . . . . 87 5.7 Real shape of the object and its image obtained by the imaging process. . . 88 List of Tables 2.1 Different velocity models to study the effect of the boundary between a half-space that contains the incident wave and a half-space that contains the transmitted wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Weights assigned for each region, defined by z parameter, and for each type of phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3 The crustal velocity model used for the simulations. . . . . . . . . . . . . . 30 2.4 Computing time of COMRAD and core codes . . . . . . . . . . . . . . . . 30 2.5 Computing time of COMRAD code with constraints . . . . . . . . . . . . . 31 3.1 Average 1-D model for Campi Flegrei as derived by Maercklin and Zollo (2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.2 Model used to compute synthetic seismograms for a vertical strike-slip point source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1 Mean annual temperature in the Gulf of Naples from 1997 to 2006. . . . . 54 4.2 Monthly total rain fallen in the Gulf of Naples (mean value from 1997 to 2006). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Values of the physical parameters of the propagation medium for the Gulf of Naples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Sound velocities of the summer and winter models for increasing depths. . 63 5.1 Physical properties of the cubic block and the background medium used for the second example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 B.1 The sonar parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 viii LIST OF TABLES
Description: